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Abstract 
 

In this paper, we investigate the oscillatory behavior of solutions to a certain class of nonlinear 

functional differential equations of the even order with damping. By using the integral averaging 

technique and Riccati type transformations, we prove four new theorems on the subject. Several 

examples are also considered to illustrate the main results. 
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1. Introduction 

In this paper, we will study the oscillatory behavior of solutions of the even order trinomial 

functional differential equation with damping term 

 

                            
2 2 21 1 1 1

0,
p p pn n n n

a t x t x t r t x t x t q t x g t x g t
     


       (1.1) 
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where 0 0t t  , 2n  is an even integer, and 1p   is a real number. We assume throughout this 

paper, and without further mention, that the following conditions hold: 

 

(C1)     0g : t , 0,  
 
is a real valued continuous function such that  g t t ,

 limt g t  ; 

 

(C2)     0 : t , 0,a     is a real valued continuously differentiable function, and 

   0 : t , 0,r   
 
is a real valued continuous function such that

    0a t r t   ; 

 

(C3)        0 : t , 0,q   
 
is a real valued continuous function. 

 

By a solution of equation (1.1) we mean a nontrivial function  

 

  0 : , , ,x xx T R T t    

 

 such that  

 

  1 , , ,n

xx C T R              
2

1 1 1 , , ,
p

n n

xa t x t x t C T R


 
   

 

and  x t  satisfies (1.1) for all sufficiently large .t  Here, we only consider those solutions  x t
 

of equation (1.1) satisfying   sup : 0x t t T   for all ,xT T
 
and we assume that (1.1) 

possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros 

on , ,xT 
 
and is called nonoscillatory, otherwise. Equation (1.1) is said to be oscillatory if all its 

solutions are oscillatory. 

 

The problem of determining the oscillation of solutions of higher order functional differential 

equations with deviating arguments has been a very active area of research in the last few 

decades. Much of the literature on the subject has been concerned with equations of types 
 

         0,
n

x t q t x g t   

                
1 11 1

0,
n n

x t x t q t x g t x g t
   


   

            
1

1 1
, 0

n n
x t x t F t x g t


 


  , 

 

and 
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1

1 1
, 0.

n n
a t x t x t F t x g t


 


   

 

A number of oscillation criteria for higher order delay differential equations without a damping 

term of these types can be found in the research papers of Agarwal et al. (2001), Zhang and Yan 

(2006), Zhang et al. (2010), Grace and Lalli (1984), Xu and Xia (2004), Xu and Lv (2011), 

Zhang et al. (2013) and the references cited therein. On the other hand very little is known for 

higher order functional differential equations with damping term, and so it becomes useful to 

prove new oscillation results in the case with a damping term. In the presence of damping, Liu et 

al. (2011) considered equation (1.1) and obtained the following oscillation criterion. 

 

Theorem 1.1. [Liu et al. (2011), Theorem 1]. 

 

Assume (C1) – (C3),   0,a t 
 
and let 2n   be even,    1

0 , , 0g C t g t  
 
for 0 ,t t and 

 

                               
 

 

 
0 0

1

1
1

exp .

ps

t t

r
d ds

a s a






   
    

    
 

                                                 

(1.2) 

 

Suppose that there exists a continuous function 

 

  0: , :H D t s t s t R     such that    0 0, 0, ; , 0, ,H t t t t H t s t s t      and H  has 

a nonpositive continuous partial derivative with respect to second variable in

  0 0, : .D t s t s t  
 
Assume further that there exist functions  0 , ,h C D R

    1

0, , , 0,K C t     such that  

 

        
 

 

 

 
    0, , , , , .

s r s
H t s K s H t s K s h t s t s D

s s a s





 
         

            (1.3) 

 

If for some constant  0,1   and for all constants 0,M   
 

 
       

     

      0

1

0

,1
limsup , ,

, ,

p
t

p
t

t

h t s s a s
s q s H t s K s ds

H t t p H t s G s K s







  
    

    
  

 

where      2: ,nG s Mg s g s    then equation (1.1) is oscillatory. 

 

Very recently, using the integral averaging technique and a comparison method, Zhang et al. 

(2014) also established some new criteria for oscillation and asymptotic behavior of equation 

(1.1). The results obtained in Zhang et al. (2014) not only improve some known results in the 
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literature, but also suggest a different method to investigate (1.1) in the case where n  is odd. By 

employing double Riccati transformation, Zhang et al. (2014) presented the following oscillation 

criterion for (1.1) in the case where 4n   is even. 

 

Theorem 1.2. [Zhang et al. (2014), Theorem 2.4].  

 

Assume (C1) – (C3), (1.2), 4n   is even, and let 0, ,D D H  be as in Theorem 1.1. Assume 

further that there exist functions  0 , ,h C D R     1

0, , , 0,K C t     such that (1.3) holds 

and for some constant  0 0,1 , 
 

 

 
       

 

0

1
1

1

0

1
limsup ,

,

p
nt

n
t

t

g s
H t s K s s q s

H t t s








  
  
  
  

   
 

   
 

1
2

0

,

.

,
2 !

p

p
n

h t s
s a s

p
ds

s
H t s K s

n








 
 

     
  
  

  

       (1.4) 

 

Suppose also there exist a continuous function * :H D R  such that 

 

   * 0 * 0, 0, ; , 0, ,H t t t t H t s t s t                                 (1.5) 

 

and *H  has a nonpositive continuous partial derivative with respect to second variable in 0.D If 

there exist functions  * 0 , ,h C D R     1

* 0, , , 0,K C t    such that  

 

        
 

 
   * * * * * 0, , , , ,

s
H t s K s H t s K s h t s t s D

s s






    


             (1.6) 

 

and 

 

 
       

   

   
0

2

*

* *

* 0 * *

,1
limsup , ,

, 4 ,

t

t
t

s h t s
H t s K s s Q s ds

H t t H t s K s






 
   
 
 
           (1.7) 

 

where 

 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 9 [2014], Iss. 2, Art. 16

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16



700                                                                                                                                                               Ercan Tunç 
                                                                                                                  

                                                                                                                                                            

 

 

 

 
 

 

 

 

1
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4

: ,
4 !

p p

n

t

g s
q s ds

s
t d

a

Q t
n

 


 




  
  
  

  
 
 
 






 

 

then equation (1.1) is oscillatory.  

 

The motivation for this paper comes from the ideas of Liu et al. (2011), Zhang et al. (2014) and 

the cited papers in the references. By using Riccati type transformations and the integral 

averaging technique, we establish some new sufficient conditions which guarantee the oscillation 

of solutions of equation (1.1). The obtained results improve upon those reported in Liu et al. 

(2011) in the sense that our conditions do not require the signs of   a t  and   ,g t and any 

constant 0.M   On the other hand, Zhang et al. (2014) said that the sign of derivative x  is not 

known, and so Theorem 1.2 involved double assumptions, as for instance, (1.4) and (1.7) (see 

Zhang et al. (2014, Remark 2.13). Here, we are also able to determine the sign of the derivative 

x . It is therefore hoped that the present paper will contribute to the studies for oscillatory 

behavior of solutions of functional differential equations with damping. We want to emphasize 

that the results in this work are different from those of Liu et al. (2011) and Zhang et al. (2014); 

that is, they are neither a special case nor a generalized form of the results in Liu et al. (2011) 

and Zhang et al. (2014). They are interesting in their own right. Finally, some examples are given 

to illustrate our results.  

 

2. Main Results 

Before presenting our main results, we begin with the following lemmas that are essential in the 

proofs of our theorems.  

 

Lemma 2.1. [Philos (1981)]. 

 

Let   0 , , .nf C t R   If 
 n

f  is eventually of one sign for all large t , then there exist a 0xt t  

and an integer , 0l l n   with n l  even for 
 

0,
n

f   or n l  odd for 
 

0
n

f   such that  

 

0,l          yields 
    0
k

f t   for , 0,1,2,..., 1xt t k l                     (2.1) 

 

and 

1,l n       yields      
1

1 0
k k

f t


   for , , 1,..., 1.xt t k l l n             (2.2) 
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Lemma 2.2. [Kiguradze and Chanturiya (1993), Graef and Saker (2013)]. 

 

If a function  f t  satisfies 
    0, 0,1,2,..., ,
i

f t i m   and 
   1

0,
m

f t


  then  

 

   

 1
.

! 1 !m m

f t f t

t m t m





 

 

Lemma 2.3. [Hardy et al. (1988)]. 

 

If X  and Y are nonnegative and 1,   then  

 

 1 1 ,XY X Y        

 

where equality holds if and only if .X Y  

 

Theorem 2.1. 
 

Assume that conditions (C1) – (C3), and (1.2) hold, 4n   is even, and 

 

 
 

 

0

1 1

1
.

p

t v u

q s ds du dv
a u


    
        
                                         (2.3) 

 

Let 0 , ,D D H  be as in Theorem 1.1. Suppose further that there exist functions  0 , ,h C D R

    1

0, , , 0,K C t     such that (1.3) is satisfied and for some constant  0,1 ,k
 

 

 
       

 

0

1
1

1

0

1
limsup ,

,

p
nt

n
t

t

g s
H t s K s s q s

H t t s








  
  
  
  

   
 

   
 

1
2 2

,

.

,
2 !

p

p
n n

h t s
s a s

p
ds

k s
H t s K s

n




 

 
 

     
  
  

  

       (2.4) 

 

Then equation (1.1) is oscillatory.  
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Proof: 

 

Let  x t  be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that 

 x t  is an eventually positive solution of equation (1.1). Then there exist a 1 0t t  such that 

  0,x t   and    0x g t   for all 1.t t  In view of (1.1), we have, for 1,t t
 

 

                          
2 2 1

1 1 1 1
0,

p p p
n n n n

a t x t x t r t x t x t q t x g t
  

   

     

 

which implies 

 

                                      
 

 
         

0

2
1 1

exp 0

t
p

n n

t

r
d a t x t x t

a







 

  
   

  
  
    for 1.t t            (2.5) 

 

Thus, 
 

 
         

0

2
1 1

exp

t
p

n n

t

r
d a t x t x t

a







 

 
 
 
 
  is decreasing, and so 

   1n
x t


 is eventually of 

one sign. We claim that  

 
( 1) ( ) 0nx t  ,     for 1.t t                                                    (2.6) 

 

If this is not the case, then there exists  2 1,t t   such that 
   1

0
n

x t


  for 2.t t  In view of 

(2.5), we have, for 2 ,t t
 

 

       
 

 
         

 

 
         

2

0 0

2 2
1 1 1 1

2 2 2exp exp

tt
p p

n n n n

t t

r r
d a t x t x t d a t x t x t

a a

 
 

 

 
   

   
   

   
   
   

     
 

 

2

0

1 exp ,

t

p

t

r
M d

a







 

   
 
 
  

 

where   
     

1 1 1

2 2 0
p n

M a t x t
 

  . Hence,  

 

   
 

 

 

 

2

1 1

1 1
xp ,

p
t

n

t

r
x t M e d

a t a









  
    

  
  
        for 2.t t  

 

Integration yields  
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2 2

1 1

2 2

2

1
xp .

p
t s

n n

t t

r
x t x t M e d ds

a s a








 
  
    

  
  

   

 

In view of (1.2), it follows that 
   2

lim
n

t x t


   . Similarly, we find 

 
           3 4

lim lim ... lim lim
n n

t t t tx t x t x t x t
 

   
      , 

 

which contradicts the fact that   0x t   for all 
1.t t  So, (2.6) is satisfied. Using (2.6) in (2.5), 

we obtain  

 

 

 
        

   
 

 
      

0

0

1
1

2
1

exp

1 exp 0.

t
p

n

t

t
p

n n

t

r
d a t r t x t

a

r
p a t d x x t

a

















 
      

 

 
   

 
 



  

From the last inequality, we see that 

 
    10 for .
n

x t t t 
                                                       

(2.7)  

 

Thus, from Lemma 2.1, there exist an integer  1,3,..., 1l n   such that (2.1) and (2.2) hold for 

1t t . Now, from (2.7), and Lemma 2.1 with the fact that  1,3, ..., 1l n  , we see that 

 

  10, forx t t t   ,                                                      (2.8) 

 

Hence, there exist a constant 0c   such that 

 

  1forx t c t t  .                                                     (2.9) 

 

Since  limt g t  , we can choose 2 1t t  such that   1g t t  for all 2t t , and so we have 

 

   2forx g t c t t  .                                            (2.10) 

 

We now assert that 1.l n  To this end, we suppose that 

 
       2 3

20 and 0 for
n n

x t x t t t
 

   . 

 

Using (2.6) in equation (1.1), we can write (1.1) in the form   
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1 1 1

1 1

20, for
p p p

n n
a t x t r t x t q t x g t t t

  
 


    .         (2.11) 

 

Integrating (2.11) from 2t t  to u t , letting u , and using (2.6) and (2.10), we get 

 

                   
1 1 1

1 1
p p p

n n

t t

a t x t r s x s ds q s x g s ds

 
  

 
     1p

t

c q s ds



  . 

 

That is, 

 

     
   

 
 

 1 1

1 1
p

n

t

x t c q s ds
a t





 

   
 

 .                                                   (2.12) 

 

Integrating (2.12) from t  to v , and letting v , we obtain 

 

   
 

 

 1 1

2 1
p

n

t u

x t c q s ds du
a u


 


 

    
 
  . 

 

Integrating the last inequality from 2t  to t  gives  

 

 
 

 

            
2

1 1

3 3 3

2 2

1 1 1
p

t
n n n

t v u

q s ds du dv x t x t x t
a u c c


 

  
  
         
   . 

 

Letting t  , we have 

 

 
 

 

   
2

1 1

3

2

1 1
p

n

t v u

q s ds du dv x t
a u c


  


  
         
   , 

 

which contradicts (2.3), and so we have 1.l n   In view of Lemma 2.1, (2.7), and the fact that 

1l n  , we conclude that 

 

                             
    0
n

x t 
   

and  
    0, 0,1,..., 1
i

x t i n       for 2.t t                     (2.13) 

 

Thus, 

 

9

Tunç: Oscillation Results for Even Order Trinomial Functional

Published by Digital Commons @PVAMU, 2014



AAM: Intern. J., Vol. 9, Issue 2 (December 2014)                                                                                                    705                                                                                                              

          

   

                 
2

2 2 1 1

2 2

t
n n n n

t

x t x t x s ds t t x t
   

      for 2.t t  

Integrating this inequality  3n  – times from 2t  to t  and using the fact that 
   1n

x t


 is 

decreasing on  2 ,t  , we have 

 

 
 

 
   

2

12

2 !

n

nt t
x t x t

n




 


    for 2.t t                               (2.14) 

 

Let  0,1k . Then for  2 21 : kt t k t t    , we have 2t t kt  . Now, (2.14) implies 

 

                                                
 

   
2 2

1

2 !

n n
nk t

x t x t
n

 
 


       for .kt t                                    (2.15) 

 

Integrating (2.15) for 2kt t t   yields 

 

                                                    
 

   
2 1

1

1 !

n n
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x t x t
n

 





        for .kt t                                   (2.16) 

 

Now consider the Riccati substitution, 

 

   
      

  

1
1

1

p
n

p

a t x t
w t t
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        for .kt t                        (2.17) 

 

Clearly,   0w t  , and we have by (1.1), (2.6), (2.15), and (2.17) that 
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        (2.18)                                       

 

By Lemma 2.2, we can easily deduce from (2.13) that 
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From this, we see that 1nx t   is nonincreasing, and hence 
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Using the latter inequality in (2.18), we obtain, for all kt t , 
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Replacing in (2.19) t  with s , multiplying both sides by    ,H t s K s  and integrating with 

respect to s  from kt  to t , we get, 
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which contradicts (2.4) and completes the proofs of the theorem.  

 

For the case when 2n   in equation (1.1), we do not need condition (2.3), and any constant 

 0,1k . Herewith, by using the Riccati substitution  
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we have the following result.  

 

Theorem 2.2. 
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(2.21) 

 

Then, equation (1.1) is oscillatory.  

 

Proof: 

 

The proof is standard and so the details are omitted.  

 

Theorem 2.3. 
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Then equation (1.1) is oscillatory.  
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Proof: 

 

Let  x t  be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that 

 x t  is an eventually positive solution of equation (1.1). Then there exist a 1 0t t  such that 

  0,x t   and    0x g t   for all 1.t t  Proceeding as in the proof of Theorem 2.1, we arrive at 
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Using (2.24) in (2.23), we have, for kt t , 
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Replacing in (2.25) t  with s , multiplying both sides    ,H t s K s  and integrating with respect 
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1
1

1
,

k

p
nt

n

t

g s
H t s K s s q s ds

s







 
 
 

   

                    
 

 

 

 
 , ,

k k

t t

t t

s r s
H t s K s w s ds H t s K s w s ds

s a s





 
     

 
   

                                                   
 

       
 

2
2 2 2 1

2
1

,
2 ! 1 !

k

p
n nt n n

t

p k s k s
H t s K s w t ds

n s a s n


    

     
  

                         
 

 

 

 
 , , ,

k

t

k k k

t

s r s
H t t K t w t H t s K s H t s K s w s ds

s s a s





  
          

  

                                     
 

       
 

2
2 2 2 1

2
1

,
2 ! 1 !

k

p
n nt n n

t

p k s k s
H t s K s w s ds

n s a s n


    

     
  

                        , ,

k

t

k k k

t

H t t K t w t h t s w s ds    

                                       
 

       
 

2
2 2 2 1

2
1

,
2 ! 1 !

k

p
n nt n n

t

p k s k s
H t s K s w s ds

n s a s n


    

     
  

     
     

    

 
 

2

2

2 2 2 1

2 ! 1 !1
, ,

4 , 1
k

pt

k k k n n n n

t

n s a s n
H t t K t w t h t s ds

H t s K s p k s k s




   

  
   

  
  

                                   
 

       
 

2
2 2 2 11

,
2 ! 1 !

k

p
n nt n n

t

p k s k s
H t s K s w s

n s a s n


   

       

  

                                     
     

    

 
 

2
2

2 2 2 1

2 ! 1 !1
,

2 , 1

p

n n n n

n s a s n
h t s ds

H t s K s p k s k s




   


  

  
  


 

            

     

     

    

 
 

2

2

2 2 2 1

,

2 ! 1 !1
, .

4 , 1
k

k k k

pt

n n n n

t

H t t K t w t

n s a s n
h t s ds

H t s K s p k s k s




   



  
  

  


                       (2.26) 

 

From (2.26), we see that 
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Proceeding as in the proof of Theorem 2.1, we obtain 
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which contradicts (2.22) and completes the proof of the theorem. 

 

For the case when 2n   in equation (1.1) we do not condition (2.3), any constant  0,1k . 

Hence, we have the following oscillation criterion.  

 

Theorem 2.4. 
 

Assume that 2p  , and conditions (C1) – (C3), and (1.2) are satisfied. Let 0 , ,D D H  be as in 
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such that (1.3) holds, and 

 

 
       

       

     
0

1 2 2

0

,1
limsup ,

, 4 1 ,

p pt

t
t

g s s a s s h t s
H t s K s s q s ds

H t t s p H t s K s




 



  
    

   
 . 

 

Then equation (1.1) is oscillatory.  

 

Example 2.5.  

 

Consider the fourth-order delay differential equation with damping 
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so (1.2) and (2.3) are satisfied, respectively. To apply Theorem 2.1, it remains to show that 

condition (2.4) holds. To see this, note that if    
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which implies that (2.4) holds. Therefore, every solution of (2.27) is oscillatory by Theorem 2.1. 
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Example 2.6. 

 

Consider the sixth-order delay differential equation with damping 

 

        5 5 3 2

5

1
0

3

t
tx t x t t x

t

  
   

 
,                                       (2.28) 

 

for  1,t  , where      5 3 26, 2, , 1 ,n p a t t r t t q t t      and   3g t t . Then, 

 

                    
 

 

 
0 0

1

1

6

1 1

1 1 1
exp exp

ps s

t t

r
d ds d ds

a s a s


 

 

      
               
     

                                                       5

1 1

1 5 1
exp 5 exp 5ds ds

s s s

 
 

      
 

   

 

and 

 

 
 

 

0 0

1
1

3 21 1
p

t v u t v u

q s ds du dv s ds du dv
a u u

     



      
               

       

                                           

0

3 2

2

t v

du dv
u

 

    . 

For    
2

,H t s t s  ,   1K t  , 4
1

2
k  , and   2t t  , we see that condition (2.22) holds as 
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Therefore, every solution of (2.28) is oscillatory by Theorem 2.3. 

 

Example 2.7.  

 

Consider the second-order delay differential equation with damping 
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where  exp : uu e . Therefore, every solution of (2.29) is oscillatory by Theorem 2.2. 

 

3.  Conclusion 

An even order trinomial functional differential equation with a damping term is considered. The 

oscillatory behavior of solutions of this equation is discussed. In proving our results, we employ 
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Riccati type transformations and integral averaging technique. Some examples are also 

constructed to illustrate our theoretical findings. 
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