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Abstract

In this paper, we investigate the oscillatory behavior of solutions to a certain class of nonlinear
functional differential equations of the even order with damping. By using the integral averaging
technique and Riccati type transformations, we prove four new theorems on the subject. Several
examples are also considered to illustrate the main results.
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1. Introduction

In this paper, we will study the oscillatory behavior of solutions of the even order trinomial
functional differential equation with damping term

p-2 p-2

(att) (o) +r (o)

X" (1)

x(nfl)(t)‘ x(“*l)(t)+q(t)‘x(g(t))‘p72x(g(t))zo, (1.1)
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where t>t; >0, n>2is an even integer, and p >1 is a real number. We assume throughout this
paper, and without further mention, that the following conditions hold:

(C1) g:[ty0)—>(0,x) is a real valued continuous function such that g(t)<t,
lim,_,, g(t)=o0;

(C2) [t oo) (
 [t0) > [0,
a'(t)+r(t)=0;

) is a real valued continuously differentiable function, and

) a real wvalued continuous function such that

(C3) q: [ty,0)—(0,) is areal valued continuous function.
By a solution of equation (1.1) we mean a nontrivial function
x:[T,o)>R, T, 2t,
such that

p-2

xeC"*([T,,0),R), a(t)‘x(”’l) (t)\

X" (t) eC* ([T, ), R),

and x(t) satisfies (1.1) for all sufficiently large t. Here, we only consider those solutions X(t)

of equation (1.1) satisfying sup{‘x(t)‘:tzT}>0 for all T>T,, and we assume that (1.1)

possesses such solutions. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros
on [Tx,oo), and is called nonoscillatory, otherwise. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.

The problem of determining the oscillation of solutions of higher order functional differential
equations with deviating arguments has been a very active area of research in the last few
decades. Much of the literature on the subject has been concerned with equations of types

and
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!

x<“->(t)) +F(tx(g(1)))=0.

a-1

X(n—l) (t)

a(t)

A number of oscillation criteria for higher order delay differential equations without a damping
term of these types can be found in the research papers of Agarwal et al. (2001), Zhang and Yan
(2006), Zhang et al. (2010), Grace and Lalli (1984), Xu and Xia (2004), Xu and Lv (2011),
Zhang et al. (2013) and the references cited therein. On the other hand very little is known for
higher order functional differential equations with damping term, and so it becomes useful to
prove new oscillation results in the case with a damping term. In the presence of damping, Liu et
al. (2011) considered equation (1.1) and obtained the following oscillation criterion.

Theorem 1.1. [Liu et al. (2011), Theorem 1].

Assume (C1) - (C3), a'(t)>0, and let n>2 be even, g e C'[t,,»), g'(t)>0 for t >t,,and
S

T[is)ex ‘ drﬂplds—oo. (1.2)
f

Suppose that there exists a continuous function

©

|
St —
QD -
I
(\‘
~ |~

H:D={(t,;s):t=s>t,} >R such that H(t,t)=0, t>t;; H(t;s)>0, t>s>t, and H has
a nonpositive continuous partial derivative with respect to second variable in
D,={(t,;s):t>s>t,}. Assume further that there exist functions heC(Dy,R),

K,5 eC'([ty,),(0,)) such that

If for some constant 6 €(0,1) and for all constants M >0,

t

i
P H (t,to)t{

PEalr (t’S)K(S)_[‘h(ES)‘J (M ng:)(;)(s))“ =

where G(s):=6Mg"*(s)g’(s), then equation (1.1) is oscillatory.

Very recently, using the integral averaging technique and a comparison method, Zhang et al.
(2014) also established some new criteria for oscillation and asymptotic behavior of equation
(1.1). The results obtained in Zhang et al. (2014) not only improve some known results in the
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literature, but also suggest a different method to investigate (1.1) in the case where n is odd. By
employing double Riccati transformation, Zhang et al. (2014) presented the following oscillation
criterion for (1.1) in the case where n>4 is even.

Theorem 1.2. [Zhang et al. (2014), Theorem 2.4].

Assume (C1) — (C3), (1.2), n=4 is even, and let D, D,, H be as in Theorem 1.1. Assume
further that there exist functions heC(D,,R), K,5eCl([t0,oo),(O,oo)) such that (1.3) holds

and for some constant 4, €(0,1),

i
P H (t,t,)

- — 7 ds=c.  (1.4)
{H(t,s)K(S) (f;ofz)J |
Suppose also there exist a continuous function H..: D — R such that
H.(t,t)=0, t>ty; H.(t,s)>0, t>s>t, (1.5)

and H. has a nonpositive continuous partial derivative with respect to second variable in D,. If
there exist functions h. e C(D,,R), K., p e C*([t,,0),(0,0)) such that

_9 s)K.(s))- s)K. (s p'(S)= S s)e
SRR )RR (2 =h (1), ¥(Es)eD, (9
and
- 1 p(s)h.(ts) |
Ilrtniup H*(t,to)tJ; H*(t’S)K*(S)p(S)Q(S)_4H*(t,s) 9 ds = oo, (1.7)
where

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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_TQ(s)[g(S)J“ ]

(77_'[)ni4 ! 3(77) d77

Q)= T |

~e—3

then equation (1.1) is oscillatory.

The motivation for this paper comes from the ideas of Liu et al. (2011), Zhang et al. (2014) and
the cited papers in the references. By using Riccati type transformations and the integral
averaging technique, we establish some new sufficient conditions which guarantee the oscillation
of solutions of equation (1.1). The obtained results improve upon those reported in Liu et al.

(2011) in the sense that our conditions do not require the signs of a'(t) and g'(t),and any

constant M > 0. On the other hand, Zhang et al. (2014) said that the sign of derivative X" is not
known, and so Theorem 1.2 involved double assumptions, as for instance, (1.4) and (1.7) (see
Zhang et al. (2014, Remark 2.13). Here, we are also able to determine the sign of the derivative
X". It is therefore hoped that the present paper will contribute to the studies for oscillatory
behavior of solutions of functional differential equations with damping. We want to emphasize
that the results in this work are different from those of Liu et al. (2011) and Zhang et al. (2014);
that is, they are neither a special case nor a generalized form of the results in Liu et al. (2011)
and Zhang et al. (2014). They are interesting in their own right. Finally, some examples are given
to illustrate our results.

2. Main Results

Before presenting our main results, we begin with the following lemmas that are essential in the
proofs of our theorems.

Lemma 2.1. [Philos (1981)].

Let feC"([t,,0),R"). If £ is eventually of one sign for all large t, then there exist a t, >t,

and an integer 1, 0<I <n with n+1 even for f™ >0, or n+1 odd for f™ <0 such that
1 >0, yields f*(t)>0 for t>t, k=012..,1-1 (2.1)

and
1+k

I<n-1, yields (-1)™ f¥(t)>0 fort=t, k=Il1+L..,n-1.  (22)

Published by Digital Commons @PVAMU, 2014
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Lemma 2.2. [Kiguradze and Chanturiya (1993), Graef and Saker (2013)].

If a function f(t) satisfies f"(t)>0, i=0,12,..,m, and f™¥(t)<0, then

fH,_ ')

t"/mt ™ (m-1)

Lemma 2.3. [Hardy et al. (1988)].
If X and Y are nonnegative and A >1, then
AXY = XA <(A-1)Y7,
where equality holds if and only if X =Y.
Theorem 2.1.
Assume that conditions (C1) — (C3), and (1.2) hold, n>4 is even, and

o| @ © Y(p-1)
j@[ﬁ{q(s)ds} du}de. (2.3)

to| v

Let D,,D,H be as in Theorem 1.1. Suppose further that there exist functions heC(DO,R),
K,5 eC*([ty,),(0,)) such that (1.3) is satisfied and for some constant k (0,1),

S

§(s)a(s)£‘h(t’s)‘}

Iirtrstup v (i,to)j[H (t,s)K(s)é(S)q(s)[gn:_(ls)) 7

0

ds = oo, (2.4)

Then equation (1.1) is oscillatory.

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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Proof:

Let X(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that
x(t) is an eventually positive solution of equation (1.1). Then there exist a t, >t, such that
X(t)>0, and x(g(t))>0 forall t>t. Inview of (1.1), we have, for t >,

oy (t))'+r(t)

p-2

x" (1)

X" (t)=—q (t)(x(g (t)))pf1 <0,

which implies

!

X" (t)| <0 fort>t,. (2.5)

p-2

X" (t)\

(expu: ;EZ)) dz‘} a(t)

p-2

x(" (t)‘ x"?(t) is decreasing, and so x"V(t) is eventually of

Thus, exp[_t[ gigd r] a(t)

one sign. We claim that

x" () >0, fort>t,. (2.6)

If this is not the case, then there exists t, €[t;, %) such that X" (t) <0 for t>t,. In view of
(2.5), we have, for t>t,,
(r) ]
exp dz |a(t)
I

X(n—l) (tg) X(n—l) (tz )

x( D) (t)‘ p-2 (") (t) <exp UZ. ;EZ; d ’[j a (t2 ) ‘p—z

=-M plexpﬁ%dr}

)

where M :(a(tz))]/(p_) x" ¥ (t,)|> 0. Hence,

XY (1)< —M | —ex —t r(r)dr " for t>t,.
O Zwe e ™)) :

Integration yields

Published by Digital Commons @PVAMU, 2014
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In view of (1.2), it follows that lim,_,_ x"? (t) =—oo. Similarly, we find

lim,_,, X" (t)=lim__ X" (t)=...=lim__ X'(t)=lim_,_ x(t) =,

which contradicts the fact that x(t)>0 for all t>t,. So, (2.6) is satisfied. Using (2.6) in (2.5),
we obtain

-1

exp@%drﬁa’(tﬁ r(t)}(X(H) (t))p

+(p —1)a(t)exp(j r(T; dr](x(”‘”)p_2 x" (t) <0.

QD
—_~
=N

From the last inequality, we see that
x" (t)<0 fort>t,. (2.7)

Thus, from Lemma 2.1, there exist an integer | e{l, 3,...,n—1} such that (2.1) and (2.2) hold for
t>t,. Now, from (2.7), and Lemma 2.1 with the fact thatl {13, ..., n—1} , we see that

X'(t)>0, fort>t, (2.8)

Hence, there exist a constant ¢ >0 such that
x(t)>c fort>t. (2.9)
Since lim,_,, g(t) =20, we can choose t, >t, such that g(t)>t, forall t>t,, and so we have
x(g(t))zc fort=t,. (2.10)
We now assert that | =n—1.To this end, we suppose that
xX"?(t)<0 and x"¥(t)>0 for t>t,.

Using (2.6) in equation (1.1), we can write (1.1) in the form

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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rq(®)(x(g(1) =0, fort=t,.  (211)
Integrating (2.11) from t >t, to u>t, letting u — oo, and using (2.6) and (2.10), we get
a(t ( ) Ir ( ) ds+jq ( g(s)))pflds chflj'q(s)ds

That is,

» Y(p-1)
X" (t)> c[%_!.q(s)ds] . (2.12)

Integrating (2.12) from t tov, and letting v — oo, we obtain

oo o Y(p-1
"2 (t)> c!(ﬁ!q (s)dsj du.

Integrating the last inequality from t, to t gives

jM(Lj SJJ/(pl)du] v <2 (X9 (1) X" (1) £ X 1)

Letting t — oo, we have

o] -

which contradicts (2.3), and so we have | =n—-1. In view of Lemma 2.1, (2.7), and the fact that
| =n—1, we conclude that

x(”)(t)<0 and x(i)(t)>0, i=0,1..n-1 for t>1t,. (2.13)

Thus,

Published by Digital Commons @PVAMU, 2014
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t
X" (1) = X" (t,) + j X"V (s)ds>(t—t,)x" (1) for t>t,

t
Integrating this inequality (n—3) — times from t, to t and using the fact that x" ™ (t) is

decreasing on [t,,), we have

n-2
)= o0y fortst, (2.14)

Let k €(0,1). Then for t >t,/(1-k) =t >t,, we have t—t, > kt. Now, (2.14) implies

, kn—ztn—z (n1)
X (t)zmx (t) for t>t,. (2.15)
Integrating (2.15) for t >t >t, yields
kn—Ztn—l (n—l)
x(t)zmx (1) for t>t,. (2.16)

Now consider the Riccati substitution,

for t>t,. (2.17)

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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JW(t)—é‘(t (p_l)knZtnza(t)(x(:—l)(t))p
(n=2)1(x(t))
_ r(t) w(t)— (p—1)k™ 2" 2wP e (t)
J (t) (n—2)!(5(t)a(t))3/(p—1)' (2.18)

By Lemma 2.2, we can easily deduce from (2.13) that

sz for t>t,.
X'(t) n-1

1

From this, we see that x/t"* is nonincreasing, and hence

X(g(t))zgn_l(t) for t>t,.

x(t) "

Using the latter inequality in (2.18), we obtain, for all t>t, ,

-y 5(t) r(y) (P-Dk" 4" 2w (t)

w(t)<- g—t) p_l+ — 7 w(t)-
(t)< 5(t)Q(t)( = ] (§(t) a(t)J (t) =2 (2.19)

Replacing in (2.19) t with s, multiplying both sides by H(t,s)K(s) and integrating with
respectto s from t, to t, we get,

j H(t’S)K(Sﬁ(S)Q(S)(L(lS)Jp_lds

e
t S

Published by Digital Commons @PVAMU, 2014
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<H(tt)K (tk)w(tk)+j\h(t,s)\w(s)ds

tk ( P _1) k™?s"* p/(p-1)
—|H(t,s)K(s - W s)ds. (2.20)
L e
Now setting
X :[H o)k (g (PoDK S T”/p w(s)
| (n-2) (5(s)a(s)”
and
(p-1)/p
Y:(p—_ljp_l‘h(t,s)‘p_l 5(s)a(s) _ |
K (s (p-1)k"?*s"?
e
in Lemma 2.3 with 4 = P , we conclude that
p-1
scaars "]
In(ts)ws)—H (15)K (5) — B )< S
(n-2)1(5(s)a(s)) (o K
So that, by (2.20) we obtain
k) 5(S)q(3)(g;:(18)}p_ 5(s)ak(ns)2 pl(\h(;s)\] i
H(t,s)K(s)(n_Sz)J |

Now,

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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-
j H(ts>K<s>5<s>q<s>[9;E§)J“{H(t )‘Z?;‘k(j{s“}pl[“(;s)]pds
L 58 (n-2)! |
il (t,s>Ms)s(s)q(s)[g:(f)}p1{H (t S)i(:)ak(f)zﬂw[h(tés)]p *
_. ) () __
e 2] o )‘:((:):‘(j{smr(“?)}p i
i SR8 (n-2)!

forall t>t,. This gives

HimSup (i,to)ﬂ'* (t'S)K(S)5(S)q(S)[gnS:_(ls)J _
s(s)a(s) (‘h(t,s)‘}p i
k"2g"2 T_l p

{H (t,s)K(s) (n=2);

sIK(s)é(s)q(s)(@] _ ds+K (t, )w(t, )<,

S

which contradicts (2.4) and completes the proofs of the theorem.

For the case when n=2 in equation (1.1), we do not need condition (2.3), and any constant

k €(0,1). Herewith, by using the Riccati substitution

Published by Digital Commons @PVAMU, 2014
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we have the following result.
Theorem 2.2.

Assume that conditions (C1) — (C3), and (1.2) hold, and let D,, D, H be as in Theorem 2.1.
Suppose further that there exist functions heC(D,, R), K,5EC1([t0,oo),(O,oo)) such that
(1.3) is satisfied, and

t

i
P (t,to);[

ds=oo. (2.21)

Then, equation (1.1) is oscillatory.

Proof:

The proof is standard and so the details are omitted.
Theorem 2.3.

Assume that p>2, n>4 is even, and conditions (C1) — (C3), (1.2) and (2.3) are satisfied. Let
D,, D, H be as in Theorem 2.1. Suppose also that there exist function K, s e Cl([to,oo),(o,oo)),

heC(D,, R) such that (1.3) holds for some constant k €(0,1),

t

limsup J’{H(t,S)K(S)é(s)q(s)(gn:(15)] §

e H(LY): s

 (r-2p5(9)a(s) {(nl)!j“hz(t,s)}ds_w. 02

4H (t,5)K(s)(p—-1)k"?s"?{ k" 2s"*

Then equation (1.1) is oscillatory.

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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Proof:

Let X(t) be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that
x(t) is an eventually positive solution of equation (1.1). Then there exist a t, >t, such that

X(t)>0, and x(g(t))>0 for all t>t. Proceeding as in the proof of Theorem 2.1, we arrive at
inequality (2.19) which can be written as, for all t>t,,

K _S !(_(slztk)na(t:))”“"” WO 22y

From (2.16), we have

Now,

> (5(t)a(t))e k“tnlJ N (2.24)

Using (2.24) in (2.23), we have, for t > t,,
w’(t)g—é(t)q(t)[%J _ +(%—%Jw(t)

(p-1)k™2"? (2t
_(n—Z)!é(t)a(t)[(n_l)J wi(t). (2.25)

Published by Digital Commons @PVAMU, 2014
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Replacing in (2.25) t with s, multiplying both sides H (t,s)K(S) and integrating with respect
to s from t, to t, we obtain

s S o

S

s-jH (t,s)K(s)w'(s)dHth (t,s)K(s)(i((Ss))—%jw(s)ds

%i 1(n—2)!§(s_)a(sn)_ _ ((n—l)_!] i It s) ds. (2.26)

From (2.26), we see that

https://digitalcommons.pvamu.edu/aam/vol9/iss2/16
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" “’S>K<S>5<s>q<s>[wr

S

t _ ( )' () () (n—l)! p-2 .
( ) ( )(p )kn2 ”2[kn—zsn_lj h (t, )

SH(tt)K(Ew(t) <H (L) K (t)w(t).

Proceeding as in the proof of Theorem 2.1, we obtain

°)jo[H (t’s)K<S>5(s)q(s>(g:(f)jpl
(n-2)15(s)a(s) [ (n-1)! jpz h? (t,s)} is

1
Z H (t,S)K(S)(p 1)kn 2 n-2 kn—zsn—l

-

limsup

t—o0

<] [K(s)cs(s)q(s)[g”:(f)] K (g )w(t,)<oe

which contradicts (2.22) and completes the proof of the theorem.

For the case when n=2 in equation (1.1) we do not condition (2.3), any constant k e(O,l).
Hence, we have the following oscillation criterion.

Theorem 2.4.

Assume that p >2, and conditions (C1) — (C3), and (1.2) are satisfied. Let D,, D, H be as in

Theorem 2.1. Suppose also that there exist functionsheC(Dy, R), K,& eC*([t,,»),(0,))
such that (1.3) holds, and

t

limsup '[[H (ts)K (s)§(s)q(s)(9_3))p‘ B 5(s)a(s)s*Ph*(t,s) ds = oo

e H(tE)] s 4(p-1)H(t,5)K(s)

Then equation (1.1) is oscillatory.
Example 2.5.

Consider the fourth-order delay differential equation with damping

Published by Digital Commons @PVAMU, 2014 17
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1 1 t

tx"(t)) +=x"(t)+=x| = |=0, 2.27

(o)) + 0+ (£ @27

and

so (1.2) and (2.3) are satisfied, respectively. To apply Theorem 2.1, it remains to show that
condition (2.4) holds. To see this, note that if H (t,s)=(t-s)*, K(t)=1, and &(t)=t, then

h(t,s) :(t—s)[Z—(t—S)(s’l —54‘)] . Now, for k =1//2, we have

t

limsup

ol
e H(LY):

- |irzlsmup ( _11)2 ﬂ%(t —-s)’ _%[2—0 —s)(s,—1 _5-4)]2}05

=limsup 12(t— st ———-t t+6tInt+ —t’Int+—— |=o0,
e (t-1) 42t 105t> 875 375 125 250

35 1 573, 4244 1 2949j

which implies that (2.4) holds. Therefore, every solution of (2.27) is oscillatory by Theorem 2.1.
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Example 2.6.

Consider the sixth-order delay differential equation with damping

!

(%) 1 oy (L)
(tx (t))+t5x (t)+t x(?’] 0, (2.28)

for te[L o), where n=6, p=2, a(t)=t, r(t)=1/t°, q(t)=t? and g(t)=t/3. Then,

and

Z_T]Slﬁ%dudv:oo.
t v

For H(t,s)=(t—s)’, K(t)=1, k:%{E, and &(t)=t*, we see that condition (2.22) holds as

: 1 1 2 4, 12 2
| —(t-s)’s¥?—==[2—(t-s)(2s" -s°®
|rtrls;up(t_1)zjl'(35( s)’s s[ (t-s)(2s"-s*)] jds
]
~limsup——— | 2274524 _1gpny 9239742, 10 4;
e (t-1)| 13365 5103 25515
b (7-64680t° - 792t5)+@} _ oo
385t 1701

Therefore, every solution of (2.28) is oscillatory by Theorem 2.3.
Example 2.7.

Consider the second-order delay differential equation with damping
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x"(t)+exp(_t)x'(t)+exp(zt)x@:o, (2.29)

for te[loo), where n=2, p=2, a(t)=1, r(t)=exp(-t), q(t)=exp(2t) and g(t)=t/2.
Then,

—38
1
QD
—_~
w
~
@D
X
©
|
S e 0
D | =
e
= N
~ | ~—
o
|
A
| I—
k-]
AN
o
w
Il

f

\%

Il
pe— g P8 g
©
—_
D
X
o
—_
~—~
D
X
©
—_
N
N
o
w

Since Iexp(Zs)ds=w . for u>1, we get

(o]l

Let H(t,s)=(t—s)", K(t)=1, and &(t)=1. Then, h(t,s)=(t—s)[2+(t—s)exp(-s)]. Now,
condition (2.21) yields

Iimsup Z'H (t—s) exp(2s ——[2+t s)exp(-s)] }ds

t—owo —

=limsup

1
e (t —1)2

{%(e‘” — 5 ) —ety %(Bte‘2 +e? —g? —tze‘z)

., te?
+e (2—t)+1—t+7(1—t)} =

where exp(u) =e¢". Therefore, every solution of (2.29) is oscillatory by Theorem 2.2.

3. Conclusion

An even order trinomial functional differential equation with a damping term is considered. The
oscillatory behavior of solutions of this equation is discussed. In proving our results, we employ
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Riccati type transformations and integral averaging technique. Some examples are also
constructed to illustrate our theoretical findings.
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