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Abstract 

 
By using the WTC method and symbolic computation, we apply the Painlevé test for a (2+1)-

dimensional variable-coefficient Kortweg-de Vries (KdV) equation, and the considered equation 

is found to possess the Painlevé property without any parametric constraints. The auto-Bǎcklund 

transformation and several types of exact solutions are obtained by using the Painlevé truncated 

expansion method. Finally, the Hirota’s bilinear form is presented and multi-soliton solutions are 

also constructed. 

 

Keywords:  (2+1)-dimensional variable-coefficient KdV equation; Painlevé property; Hirota’s bilinear 

form; soliton solution; symbolic computation 
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1. Introduction 
 

Due to the potential applications of soliton theory in mathematics, physics, biology, 

communications and astrophysics, the studies on the nonlinear evolution equations (NLEEs) 
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have attracted researchers’ attention. Many scientists have concentrated their researches on sorts 

of exact solutions and remarkable properties of NLEEs, which attributes to have a better 

understanding for those nonlinear mechanism [Ablowitz and Satsuma (1978), Yan (1996), Peng (2005)]. 

Up to now, various powerful methods have been presented to obtain the exact solutions for the 

NLEEs, such as the inverse scattering transformation [Ablowitz and Clarkson (1991)], the 

Darboux transformation [Matveev and Salle (1991)], the Bǎcklund transformations [Rogers and 

Shadwick (1982)], the Hirota’s bilinear method [Hirota (2004).], the Painlevé analysis [Weiss, Tabor 

and Carnevale (1983)], homotopy perturbation method[Ganji and Rafei (2006)], tanh function method 

[Ma and Fuchssteiner (1996), Wazwaz (2005)], sine-cosine method [Abdou (2007)], the 

homogenous balance method [Fan and Zhang (1998)], variational iteration method [Tang and Liang 

(2006), Peng (2006)], exp-function method [He and Wu (2006)], Jacobi elliptic function expansion 

method [Chen et al. (2005)], F-expansion method [Abdou (2007)], the sub-ODE method [Li and 

Wang (2007)], and so on. 

 

Considering that coefficient functions are able to reflect the slowly-varying inhomogeneities, 

nonuniformities of boundaries, and external forces, recently nonlinear equations with variable 

coefficients have attracted considerable attention in the literature. Although the variable 

coefficients increase the difficulty of our investigation, many researchers have investigated the 

integrable property and exact solutions of the variable-coefficient nonlinear evolution equations 

[Deng (2006), Xu (2009), Lü et al. (2010), Kraenkel et al. (2011)]. It is easily found that solitons 

can be compressed and their dynamics effectively controlled through these variable parameters. 

 

The Kortweg-de Vries equation is one of the most important systems in mathematical physics 

and many physical situations are governed by variable-coefficient KdV equation. To our 

knowledge, the study of the (1+1)-dimensional variable-coefficient KdV equation with different 

form has been paid attention by some authors, and the authors have obtained the integrable 

property and exact solutions of these equations [Fan (2011), Yan (2008), Zhu et al. (2010)]. 

Furthermore, there are some researches about the applications and numerous interesting 

properties of the (2+1)-dimensional variable-coefficient KdV equation. For example, Emmanuel 

Yomba et al. constructed the exact solutions of the following equation: 

 

( 6 ) ( ) ( ) 0,t x xxx x x yyu uu u e t u n t u                                      (1) 

 

by means of the tanh function method, the homogenous balance method and other methods 

[Yomba (2004), Moussa and M. El-Shiekh (2011)]. Very recently, Peng et al. [ Peng (2010)] 

derived a new (2+1)-dimensional KdV equation with variable coefficients via the Lax pair 

generating technique, the equation is given as follows: 

 

4 ( , )(4 2 ) ( , )(6 ) 0,t y y x xxy x xxxu a y t uu u dxu u b y t uu u                        (2) 

 

where a(y, t) and b(y, t) are two arbitrary functions of indicated variables. To our knowledge, 

equation (2) was considered for special choices with 4),(),(  tybtya . Therefore, in this 

paper, we will study the Painlevé property and analytic solutions of (2) in the general form. The 

rest of this paper is arranged as follows. In Section 2, we perform the Painlevé analysis of (2). It 

is proven that equation (2) possesses the Painlevé property without any parametric constraints. In 
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Section 3, several types of exact solutions will be constructed in terms of the Auto-Bǎcklund 

transformation. In Section 4, the Hirota’s bilinear form of (2) will be presented, and the multi-

soliton solutions will be derived for equation (2) with a special choice of parameters. Finally, our 

conclusions and discussions will be given in Section 5. 

 

2.  Painlevé analysis 
 

The integrable classes of KdV equations intrigue researchers for the past few decades due to 

their rich variety of solutions. The Painlevé analysis is one of the powerful methods for 

identifying the integrable properties of nonlinear partial differential equations. In this section we 

apply the Painlevé test for integrability to (2), using the well-known WTC method and symbolic 

computation [Xu and Li (2003), (2004), Qu et al. (2010)]. In order to apply the Painlevé analysis, 

we introduce the transformation xy vu  , and equation (2) reduces to the following coupled 

system: 

 

.

,0)6)(,()24)(,(4

xy

xxxxxxyxyt

vu

uuutybuvuuutyau




                       (3) 

 

Equations (3) is said to possess the Painlevé property if its solutions are “single-valued” about 

arbitrary non-characteristic, movable singularity manifolds. In other words, all solutions of (3) 

can be expressed as Laurent series, 

 

,),,(,),,(
00











 
j

j

j

j

j

j vtyxvutyxu                                  (4) 

 

with sufficient number of arbitrary functions among jj vu ,  in addition to , and  , jj vu ,  are 

analytic functions of x, y, t. Moreover, the leading orders  ,  should be negative integers. 

 

First, find the leading order and coefficients. To reach this aim, we insert 

 
  00 ),,(,),,( vtyxvutyxu                                          (5) 

 

into equations (3). Upon balancing the dominant terms, we obtain, 
 

.2,2,2 0

2

0 yxx vu                                          (6) 

 

Next, in order to find the resonances that are powers at which the arbitrary coefficients enter into 

the Laurent series (4), we substitute, 

 
j

j

j

j uvtyxvuutyxu   22

0

22

0 ),,(,),,(                          (7) 

 

into equations (3). Inserting equations (6) and vanishing the coefficients of ),( 35  jj   yields, 
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.0
)2()2(

),(8)6)(4)(1(),()16149(),( 23






























j

j

xy

xxy

v

u

jj

tyajjjtybjjjtya




           (8) 

 

The eigenvalues of the above matrix gives the following resonance equation for the exponent j: 

 

.0)),(),(()1)(6)(4)(2(  xyx tybtyajjjj                             (9) 

 

 

Thus the resonances occur at 6,4,2,1j . As usual, the resonance 1j  corresponds to the 

arbitrariness of the singular manifold ),,( tyx . 

 

In order to check the existence of a sufficient number of arbitrary functions at the resonance 

values, the truncated Laurent expansions 
 








 
6

1

22
6

1

22 2~),,(,2~),,(
j

j

j

j

j

j vtyxvutyxu                (10) 

 

 

are substituted into equations (3). To simplify the calculations, we make use of the Kruskal 

ansatz ),(),,( tyxtyx   , and   is an arbitrary function of y and t. Then the coefficients 

functions ju  and jv  in equations (10) will be functions of y, and t, too. 

 

Equating the coefficients of ),( 24   to zero, we obtain a linear system with respect to 1u  and 

1v , 

 

,0),(11),(15),(4

,0

111

11





utyautybvtya

uv

y

y




                                      (11) 

 

from which we have, 
 

.011  vu                                                                  (12) 

 

Setting the coefficients of ),( 13    to zero, we obtain a linear system with respect to 2u  and 2v , 

 

.0

,08),(3),(12)4328)(,(

1

2

1221

2

1112





y

tyyy

u

utybutybvuuuvutya 
    (13) 

 

Solving it, we get, 
 

,
),(

),(2),(32 22

2
tya

utyautyb
v

yt  
                                          (14) 
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where 2u is an arbitrary function which corresponds to the resonance 2j . 

 

Collecting the coefficients of ),( 02    and using the values of 1100 ,,, vuvu  and ,2v  we have, 

 

.0),(2),(),(2),(3

,0

3323

332





vtyautyautyautyb

vuu

yy

yy




                           (15) 

 

Solving the above equations with respect to 3u , 3v  yields, 

 

                                                    .,0 233 yuvu                                                           (16) 

 

In this way by proceeding further and collecting the coefficients of ),( 1   , ),( 20   and 

),( 3 , one can obtain other coefficients of Laurent series (4), 

 

,44 yuv   

,
)(9

566 4222

5

y

yyt

ab

auuauu
u




  

,
)(9

6623 22244

5

y

yyytyyy

ab

uauuaubu
v








  

                        

2 2 2 2

6 2 2 2 4 4

2 3 2 2

6 6 2 2 2 2

2

2 2 2 2 4

2

4 2 2 2 2 2 2

2 2 2 2

6

[6 6 6 5 5

36 36 6 6

6 6 6 6 5

5 6 6 6

72 ] / [36( 2

y y y yt y y yy y y

y y y yy y y

y t y yt t yy y t yy y

y y yy y yy y y

y y

v a u abu au a u ba u

a u b u a u u au u b

a u bu au b u a u

ab u a u u abu u ba u u

abu a b ab

  

  

  



  

    

   

    

   

   )],y

                            (17) 

 

where ),(),,( tybbtyaa  , and 4u , 6u  are arbitrary functions which correspond to the 

resonances 6,4j . 

 

Up to now, we establish the required number of arbitrary functions corresponding to 2j ,

4j  and 6j  without any additional restrictions on the parameters. Thus we can conclude 

that equations (3) has Painlevé property and hence is expected to be integrable. 

 

 

3. Auto-Bǎcklund transformation and exact solutions 
 

In order to get auto-Bǎcklund transformation, we may truncate the Laurent series (4) at the 

constant terms, namely, 
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,, 21

1

0

2

21

1

0

2 vvvvuuuu                                  (18) 

 

Where )2,1,0(,, jvu jj  are analytic functions of x, y, t. Then substituting (18) into (3) and 

setting the coefficients of ),,( tyx  with different powers to zero yields, 

0 0

0 0 1 1

0,

0,

x y

y x x y

v u

u v v u

 

 

 

   
 

1 1

3 2

0 0 0 0

0,

(3 2 6 6 0,

y x

x y x x x y

u v

u bu au av b a     

 

    
 

 
2

0 1 0 0 0 1 0 1 0

3 2

0 0 0 1 1 0 1

2

0 0 0 0 0 0

9 6 9 6 2 6

3 3 3

3 9 3 2 0,

x x x y x x y x x xy

x x x xx y x y

y x xx x x y

bu u au bu au u au v au

av u av u bu au au

au bu bu u au u

       

     

  

    

    

    

 

 
2 2

0 0 1 1 1 0 1 0 1 0 0 1

0 1 2 0 1 1 2 0 1 2 0

2 2

1 1 0 1 0 1 1

0 0 0

2 4 3 3 3 2 2

2 4 2 6

2 3 2 2

3 3 3

xy x t x x x x x y y

x x x y x x y x

y y x x x xy x xy xx y

xx x x xx xx x xxy

au u bu bu bu u av u au u au u

av u av u av u au u au bu u

au au bu u au au au

b bu bu au

   

     

      

    

      

     

     

    0 0 0 0,xxx y xx xx ybu au au     

 

 

1 2 2 0 1 1 0 1

1 1 0 1 1 1 2

1 1 2 0 0 2 2 0

0 2 1 2 0 2 1 1 1 1

0 1 1

6 6 3 3

6 4 2 2

2 2 4 4

6 4 2 2 4

4 0,

x x x xx xx x xxy xxy

x t xy x y xx x

x xy xxx x y y

x y x x y

xxx t xx y

bu u bu u bu bu au au

bu u u au au au v

au bu av u au u au u

bu u au u av u av u au u

bu u au

   

  

 



 

    

    
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   

 

 

1 1 1 2 1 2 2 1 1

1 2 2 1 1 2

4 2 6 2

4 4 6 0,

t xxy x x x xxx

y y x

u au av u bu u av u bu

au u au u bu u

    

   
 

 

,02464 222222222  vauaubuuauubuu xxxyxxxyxt  

.022  xy vu                                                        (19) 

 

From (19), one can easily obtain, 
 

.2,2,2,2 1

2

100 xyxyxx vuvu                                  (20) 

 

From (18) and (20), we obtain an auto-Bǎcklund transformation as follows, 
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.)(ln2,)(ln2 22 vvuu xyxx                                    (21) 

 

From the last two equations of (19), it is easily seen that ),( 22 vu  is a set of solutions of (3), so 

we may take the trivial vacuum solution 022  vu  as the seed solution, then (21) are reduced 

to, 

 

,)(ln2,)(ln2 xyxx vu                                                 (22) 

 

where   satisfies the following constraint conditions, 

 

     ，0222443 22222  xxyxxxxyxxxxyxyxxxxxxtxxxx aaaabb              (23) 

         ,0452284  txxxxxxyxxxxxxxxxxxxxxyxtxxxxyx abbaa             (24) 

                                                .04  xxtxxxxxxxxxy ba                                                    (25) 

 

Once Equations (23)-(25) are solved, we can get exact solutions of (3) by means of the 

transformation (22). Equations (23)-(25) are homogeneous differential equations, we may 

suppose that the solutions of (23)-(25) are in the form, 
 

)),,(exp()),((1)exp()(1),,( tymnxtylkxfftyx                     (26) 

 

where k, n are constants, l(y, t), m(y, t) are the arbitrary analytic functions, whereas functions 

)(f  may be sine, cosine, hyperbolic sine, hyperbolic cosine and so on. In this section, we only 

consider some special cases. 

 

Case 1.   1)( f  

 

In this case, the solutions of (23)-(25) read, 
 

)),,(exp(11 tymnx                                                      (27) 

 

where the parameters satisfy the condition, 

 

3

24

n

manm
b

yt 
                                                             (28) 

 

Case 2.  )cos()(  f  or )sin()(  f  

 

In this case, we obtain the solutions of (23)-(25) as follows, 
 

)),,(exp()),(cos(12 tymnxtyl                                            (29) 

)),,(exp()),(sin(13 tymnxtyl                                             (30) 

 

where the parameters satisfy the conditions, 
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.
44

,
4

32

y

tyyt

y

t

ln

lmlm
b

ln

l
a


                                               (31) 

 

Case 3.   )cosh()(  f  or )sinh()(  f  

 

Similarly, we can get the solutions of (23)-(25), 

 

)),,(exp()),(cosh(14 tymnxtyl                                           (32) 

)),,(exp()),(sinh(15 tymnxtyl                                            (33) 

 

where the parametric conditions are given by (31).  

 

Inserting equation (27), equation (29), equation (30), equation (32) and equation (33) into 

equation (22), one can obtain five types of exact solutions of (3). For sake of simplicity, we only 

list one solution of (3). Substituting the expression (27) into equation (22), we obtain the 

following solution 

 

)),((sec
2

),(
)),,((sec

2

22
2

tymnxh
tynm

vtymnxh
n

u
y

 ,              (34) 

 

where b satisfies the constraint condition 

 

                                                  
3

24

n

manm
b

yt 
                                                             (35) 

 

4. Hirota’s Bilinear form and Soliton Solutions 
 

As the first step, one should transform (3) into the bilinear forms with the help of dependent 

variable transformation. To this purpose, we consider the standard Painlevé truncated expansion, 

 

00 )(ln2,)(ln2 vfvufu xyxx                                        (36) 

 

for simplicity we may take the seed solutions 000  vu . With the transformation (36), we get 

the following bilinear form of (3), 

 

,0)
33

2
4(

,0)(

43

4





ffbDDD
a

DD
a

DD

ffDDD

xsyyxtx

sxx

                                (37) 

 

where a and b are the functions with respect to x, y and t, s is the auxiliary variable, the well-

known Hirota bilinear operators tyx DDD ,,  are defined by [Hirota (2004)] 
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   .),,(),,()()()( ''' ,,

''''''

ttyyxx

knmk

t

n

y

m

x tyxbtyxattyyxxbaDDD


               (38) 

 

For the simplicity of computation, we will consider equation (2) with a special choice of 

parameters with a(y, t) = 3, b(y, t) = 1. In this case, equation (2) becomes, 
 

.0)6()24(34   xxxxxyxyyt uuuudxuuuuu                               (39) 

 

Accordingly, its bilinear form reads, 
 

                                    
.0)24(

,0)(

43

4





ffDDDDDDD

ffDDD

xsyyxtx

sxx
                                        (40) 

 

The next step is the usual one. Let us represent f by a formal series 
 

                                        
(1) (2) 2 (3) 31 ,f f f f                                                    (41) 

 

where   serves as a parameter. Proceeding as in the Hirota method, we substitute (41) into (40) 

and equate to zero the different powers of  , 

 

                                      
01)24(

01)(:)(

)1(43

)1(4





fDDDDDDD

fDDDo

xsyyxtx

sxx
                                  （42） 

                                     

2 4 (2) 4 (1) (2)

3 4 (2)

3 4 (1) (1)

( ) : 2( ) 1 ( )

2(4 2 ) 1

(4 2 )

x x s x x s

x t x y y s x

x t x y y s x

o D D D f D D D f f

D D D D D D D f

D D D D D D D f f

      

   

     

                           (43) 

                                   

3 4 (3) 4 (1) (2)

3 4 (3)

3 4 (1) (2)

( ) : ( ) 1 ( )

(4 2 ) 1

(4 2 )

x x s x x s

x t x y y s x

x t x y y s x

o D D D f D D D f f

D D D D D D D f

D D D D D D D f f

      

   

     
                                (44) 

 

First we consider one-soliton solution, suppose that 

 

,, )1(

01111

)1( 1 
 tylxkef                                          (45) 

 

where 111 ,, lk  are constants to be determined. Inserting it to (42) leads to the dispersion relation, 

 

.
4

3 3

11

2

1
1

klk 
                                                              (46) 
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We find, in fact, that the right-hand side of (43) is equal to zero and so we can set 0nf  for 

2n . Therefore, the series (41) truncates, then the exact solution to (40) reads, 
 

.
4

3
,1 )1(

0

3

11

2

1
111

1  



 t

klk
ylxkef                              (47)  

 

Applying the transformation (36) yields the one-soliton solution of (39) (for simplicity, we take

1 ) 

 

),
2

(sec
2

)1ln(2)(ln2
)1(

01112
2

11
 


tylxk

h
k

efu xxxx                  (48) 

 

where .
4

3 3

11

2

1
1

klk 
  

 

We now proceed to search for two-soliton solution. Suppose that, 

 

                         1 2(1) ( )

1 0, , ( 1,2),i

i i i if e e k x l y t i
                                       (49) 

 

from (42) one gets, 

 

                                              

2 33
, 1,2.

4

i i i
i

k l k
i


                                                        (50) 

 

Together the values of 1f , solving (43) with respect to 2f  yields, 

 

                                         .
)(

)(
,

2

21

2

21)2( 121221

kk

kk
eef

aa




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
                                             (51) 

 

With the help of Maple, the right-hand side of (44) is reduced to zero. Consequently we can set 

0if  for 3i . Therefore the series (41) truncates, the exact solution for (39) is obtained, 

 

                                           1 2 1 2

2
2 1 2

2

1 2

( )
1 ,

( )

k k
f e e e

k k

      
   


                                       (52) 

 

where  

 
2 3

0

3
, 1,2.

4

ii i i
i i i

k l k
k x l y t i 


      

 

For simplicity one may let 1 , using the transformation (36), the explicit two-soliton solution 

of (39) reads, 
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)(
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21
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xxe
kk

kk
eeu

  




                                  (53) 

 

Generally, the N-soliton solution of (39) can be expressed as, 

 

                                

,
)(

)(
,

4

3

,))exp(ln(2

2

2

)(

0

32

11,0 1

ji

jiajjjj

jjj

xxjii

n

ij jj

n

j j

kk

kk
et

klk
ylxk

au

ji




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


    






                         (54) 

 

where the first   1,0
means a summation over all possible combinations of

1 20,1, 0,1, , 0,1,n      and  

n

ij1
means a summation over all possible pairs ( ij  ). 

 

 

5. Conclusions 
 

In this work we have considered a (2+1)-dimensional variable-coefficient KdV equation. 

Through the Painlevé analysis, the considered equation is found to possess the Painlevé property 

without any parametric constraints. Using the Painlevé truncated expansion method, the auto-

Bǎcklund transformation and five types of exact solutions are obtained. Moreover, the Hirota’s 

bilinear form of the (2+1)-dimensional variable-coefficient KdV equation is constructed. The 

multi-soliton solutions are constructed for the special choice of parameters. The obtained exact 

solutions may be useful for describing the correspond physical phenomena. It is deserved to 

make considerations on obtaining other integrable properties of this equation, such as the Lax 

pair, Bǎcklund transformation, conservation laws, and so on. 
 

 

 

REFERENCES 

 
 

Ablowitz, M .J. and Satsuma, J. (1978). Solitons and rational solutions of nonlinear evolution 

 equations, J. Math. Phys, Vol. 19, pp. 2180-2187. 

Yan, C. T. (1996). A simple transformation for nonlinear waves, Phys. Lett. A, Vol. 224, pp. 77-

 84. 

Peng, Y. Z. (2006). Exact periodic and solitary waves and their interactions for the (2+1)-

 dimensional KdV equation, Phys. Lett. A, Vol. 351, pp. 41-47. 

Ablowitz, M . J. and Clarkson, P. A. (1991). Solitons, Nonlinear Evolution Equations and 

 Inverse Scattering Transform, Cambridge University Press. 

Matveev, V. B. and Salle, M. A. (1991). Darboux Transformation and Soliton, Springer. 

Rogers, C. and Shadwick, W. F. (1982). Bǎcklund transformations, Academic Press. 

Hirota, R. (2004). The Direct Method in Soliton Theory, Cambriage University Press. 

Weiss John, Tabor, M. and Carnevale George. (1983) The Painlevé property for partial 

 differential equations, J. Math. Phys., Vol. 24, pp. 522-526. 

11

Yu and Gui-Qiong: (2+1)-dimensional Variable-Coefficient KdV Equation

Published by Digital Commons @PVAMU, 2014



AAM: Intern. J., Vol. 9, Issue 2 (December 2014)                                                                                                   657                                                                                                              

          

   

Ma, W. X. and Fuchssteiner, B. (1996). Explicit and exact solutions to a Kolmogorov- 

 Petrovskii-Piskunov equation, Int. J. Non-Linear Mech. Vol. 31, pp. 329 − 338. 

Wazwaz, A.M. (2005). The tanh-function method: Solitons and periodic solutions for the Dodd-

 Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations, Chaos Solitons and 

Fractals, Vol. 25, No. 1, pp. 55-63. 

Fan, E.G. (2000). Extended tanh-function method and its applications to nonlinear equations, 

 Phys. Lett. A, Vol. 277, pp. 212-218. 

Ganji, D. D. and Rafei, M. (2006). Solitary wave solutions for a generalized Hirota Satsuma 

 coupled KdV equation by homotopy perturbation method, Phys. Lett. A, Vol. 356, pp. 131-

 137. 

Abdou, M. A. (2007). New solitary wave solutions to the modified Kawahara equation, Phys. 

 Lett. A, Vol. 360, pp. 588-592. 

Fan, E. G. and Zhang, H. Q. (1998). A note on the homogeneous balance method, Phys. Lett. A, 

 Vol. 246, pp. 403-406. 

Wang, M. L. (1995). Solitary wave solutions for variant Boussinesq equations, Phys. Lett, Vol. 

 199, pp. 169-172.  

Tang, X. Y. and Liang, Z. F. (2006). Variable separated solutions for the (3+1)-dimensional 

 Jimbo-Miwa equation, Phys. Lett. A, Vol. 351, pp. 398-402. 

Peng, Y. Z. (2006). The Variable Separation Method and Exact Jacobi Elliptic Function 

 Solutions for the Nizhnik－Novikov－Veselov Equation, Acta Physica Polonica A, Vol. 

 110, pp. 3-9. 

He, H. J. and Wu, H. X. (2006). Exp-function method for nonlinear wave equations, Chaos 

 Solitons and Fractals, Vol. 30, pp. 700-708. 

Chen, Y. Wang, Q. and Li, B.(2005). Elliptic equation rational expansion method and new exact 

 travelling solutions for Whitham roer aup equations, Chaos, Solitons and Fractals, Vol. 

26,  pp. 231-246. 

Abdou, M. A. (2007). The extended F-expansion method and its application for a class of 

 nonlinear evolution equations, Chaos. Solitons and Fractals, Vol. 31, pp. 95-104. 

Li, X. Z. and Wang, M. L. (2007). A sub-ODE method for finding exact solutions of a 

 generalized KdV-MKdV equation with high-order nonlinear terms, Phys. Lett. A, Vol. 361, 

 pp. 115-118.  

Deng, S. F. (2006). Exact Solutions for a Nonisospectral and Variable-Coefficient Kadomtsev–

 Petviashvili Equation, Vol. 23, No. 7, pp. 1662-1665. 

Xu, G. Q. (2009). A note on the Painlevé test for nonlinear variable-coefficient PDEs, Comput. 

 Phys . Commun, Vol. 180, pp.1137-1144.  

Lü, X. Tian, B. Zhang, H. Q. Xu, T. and Li, H. (2010). Integrability study on a generalized 

 (2+1)-dimensional variable-coefficient Gardner model with symbolic computation, Chaos, 

 Vol. 20, 043125. 

Kraenkel, R. A. Nakkeeran, K. and Chow, K. W. (2011). Integrable NLS equation with time- 

 dependent nonlinear coefficient and self-similar attractive BEC, Commun. Nonlinear. Sci. 

 Numer. Simulat, Vol. 16, pp. 86–92. 

Fan, E. G. (2011). The integrability of nonisospectral and variable-coefficient KdV equation with 

  binary Bell polynomials, Phys Lett A, Vol. 375, pp. 493-497. 

Yan, Z. Y. (2008). The modified KdV equation with variable-coefficients: exactuni/bi-variable 

 travelling wave-like solutions, Appl. Math. Comput, Vol. 203, pp. 106-112. 

Zhu, S. H. Gao, Y. T. Yu, X. Sun, Z. Y. Gai, X. L. Meng, D. X. (2010). Painlevé property, 

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 9 [2014], Iss. 2, Art. 13

https://digitalcommons.pvamu.edu/aam/vol9/iss2/13



658                                                                                                                                              

                                                        Z. Yu and X. Gui-Qiong                                                                                                   

 

 

 soliton-like solutions and complexitons for a coupled variable-coefficient modified 

Korteweg–de Vries system in a two-layer fluid model, Appl. Math. Comput, Vol. 217, pp.295–

 307. 

Yomba, E. (2004). Construction of new soliton-like solutions for the (2 + 1) dimensional KdV 

 equation with variable coefficients, Chaos, Solitons and Fractals, Vol. 21, pp. 75–79. 

Moussa, M. H. M. and M. El-Shiekh Rehab. (2011). Direct Reduction and Exact Solutions for 

 Generalized Variable Coefficients 2D KdV Equation under Some Integrability Conditions, 

 Commun. Theor. Phys. Vol. 55, pp. 551–554.  

Peng, Y. Z. (2010). A new (2+1)-dimensional KdV equation and its localized structures, 

 Commun. Theor. Phys, Vol. 54, pp.863-865. 

Xu, G. Q. and Li, Z. B. (2003). A maple package for the Painlevé test of nonelinear partial 

 differential equations, Chin. Phys. Lett, Vol. 20, pp. 975-978. 

Xu, G. Q. and Li, Z. B. (2004). Symbolic computation of the Painlevé test for nonlinear partial 

 differential equations using Maple, Comput. Phys. Commun, Vol. 161, pp. 65-75. 

Qu, Q. X. Tian, B. Liu, W. J. Li, M. Sun, K. (2010). Painlevé integrability and N-soliton solution 

 for the variable-coefficient Zakharov-Kuznetsov equation from plasmas, Nonlinear Dyn, Vol. 

 62, pp. 229-235. 

13

Yu and Gui-Qiong: (2+1)-dimensional Variable-Coefficient KdV Equation

Published by Digital Commons @PVAMU, 2014


	Integrability and Exact Solutions for a (2+1)-dimensional Variable-Coefficient KdV Equation
	Recommended Citation

	The Singular Perturbation in the Analysis of Mode I Fracture

