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Abstract 

 
Stochastic compartmental (e.g., SIR) models have proven useful for studying the epidemics of 

childhood diseases while taking into account the variability of the epidemic dynamics. Here, we 

use the multi-step generalized differential transform method (MSGDTM) to approximate the 

numerical solution of the SIR model and numerical simulations are presented graphically. 

 

Keywords: Fractional differential equations; Caputo fractional derivative; multi-step  

generalized differential transform; SIR model 

 

MSC 2010 No.: 74H15 

 

 

1. Introduction 

 
Over the past one hundred years, mathematics has been used to understand and predict the spread 

of diseases, relating important public-health questions to basic transmission parameters. From 

prehistory to the present day, diseases have been a source of fear and superstition. A 

comprehensive picture of disease dynamics requires a variety of mathematical tools, from model 

creation to solving differential equations to statistical analysis. Although mathematics has so far 

done quite well in dealing with epidemiology, there is no denying that there are certain factors 

1

Freihat and Handam: Solution of the SIR models of epidemics using MSGDTM

Published by Digital Commons @PVAMU, 2014

http://pvamu.edu/aam
mailto:asadfreihat@yahoo.com
mailto:ali.handam@windowslive.com


AAM: Intern. J., Vol. 9, Issue 2 (December 2014)                                                                                                  623                                                                                                              

          

   

which still lack proper mathematization. Epidemic models are used to understand the spread of 

infectious diseases in populations (Kermack and McKendrick, 1927), (Roumagnac et al., 2006). 

The practical use of epidemic models relies heavily on the realism put into the models. This does 

not mean that a reasonable model could include all possible effects but rather incorporate the 

mechanisms in the simplest possible fashion so as to maintain the major components that 

influence disease propagation. Great care should, however, exercised in using epidemic models 

to predict real phenomena (Shulgin et al., 1998). Eventhough, the SIR model is a standard 

compartmental model used to describe many of aspects of epidemiological diseases (Hethcote, 
2000), (Lu et al., 2002), (Piccolo and Billings, 2005), (Smith, 1983) such as the dynamics of 

measles, chickenpox, mumps, or rubella (Olsen et al., 1988), (Anderson and May, 1991).  
 

On another hand, Fractional calculus has been used to model physical and engineering processes, 

which are found to be best described by fractional differential equations. It is worth noting that 

the standard mathematical models of integer-order derivatives, including nonlinear models, do 

not work adequately in many cases. In recent years, fractional calculus has played a very 

important role in various fields such as mechanics, electricity, chemistry, biology, economics, 

notably control theory, and signal and image processing see for example (Miller and Ross, 

1993), (Ertürk et al., 2011), (Lin, 2007).  

 

In this paper, we use the multi-step generalized differential transform method to approximate the 

numerical solution of the SIR model and we compare our numerical results with a nonstandard 

numerical method and the fourth order Runge-Kutta method. 

 

2. Model description 

 
The Kermak-McKendrick model (Kermack and McKendrick, 1927) is one of the earliest 

triumphs in mathematical epidemiology (Brauer, 2006). We assume the population consists of 

three types of individuals, denoted by the letters ,S  ,I  and R  (which is why this is called an 

SIR model). All these are functions of time. 

 

( )S t  is the number of susceptible, who do not have the disease but could get it. 

 

( )I t  is the number of infectives, who have the disease and can transmit it to others. 

 

( )R t  is the number of removed, who cannot get the disease or transmit it: either they have a 

natural immunity, or they have recovered from the disease and are immune from getting it again, 

or they have been placed in isolation, or they have died.  

 

The mathematical model does not distinguish between these possibilities. Schematically, the 

individual goes through consecutive states ,I S R  and is given by the following system of 

ordinary differential equations 

 

 1

( )
= ,

dS t
PSI

dt
                                                          (2.1) 

2
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 1 2

( )
= ,

dI t
PSI P I

dt
                                                      (2.2) 

 

 2

( )
= .

dR t
P I

dt
                                                           (2.3) 

 

2 > 0P  is called the removal rate and 1 > 0P  is called the infection rate. 

 

3. Fractional Calculus 
 
There are several prespectives of the derivatives in fractional calculus, e.g., the Riemann-

Liouville, Grünwald-Letnikov, Caputo, and Generalized Functions news. Riemann-Liouville 

fractional derivative is mostly used by mathematicians but this approach is not suitable for real 

world physical problems since it requires the definition of fractional order initial conditions, 

which have no physically meaningful explanation yet. Caputo introduces an alternative 

approach, which has the advantage of defining integer order initial conditions for fractional order 

differential equations. 

 

Definition 3.1. 

 

A function  ( ) ( > 0)f x x  is said to be in the space C  ( )  if it can be written as 

1( ) = ( )pf x x f x  for some >p   where 1( )f x  is continuous in [0, ) , and it is said to be in 

the space 
mC  if 

( ) , .mf C m   

 

Definition 3.2. 

 
The Riemann–Liouville integral operator of order   with 0a  is defined as  

11
( )( ) = ( ) ( ) , > ,

( )

x

a

a

J f x x t f t dt x a 




                              (3.1) 

 
0( )( ) = ( ).aJ f x f x                                                             (3.2) 

 

Properties of the operator can be found in Caputo (1967), Miller and Ross (1993) and Podlubny 

(1999). Here, we only need the following: For ,f C  , > 0,   0,a   ,c R  > 1  , we 

have 

 

( )( ) = ( )( ) = ( )( ),a a a a aJ J f x J J f x J f x     
                          (3.3) 
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= ( , 1),
( )

a x a

x

x
J x B

 
   





 


                                          (3.4) 

 

where ( , 1)B     is the incomplete beta function which is defined as 

 

 
1

0
( , 1) = (1 ) ,B t t dt


 

                                               (3.5) 

 

 
= 0

[ ( )]
= ( ) .

( 1)

k
cx ac

a

k

c x a
J e e x a

k

 



 


  
                                      (3.6) 

 

The Riemann–Liouville derivative has certain disadvantages when trying to model real-world 

phenomena with fractional differential equations. Therefore, we shall introduce a modified 

fractional differential operator 
aD

 proposed by Caputo in his work on the theory of 

viscoelasticity. 

 

Definition 3.3. 

 

The Caputo fractional derivative of ( )f x  of order > 0  with 0a   is defined as 

 

 

( )
( )

1

1 ( )
( )( ) = ( )( ) = ,

( ) ( )

m
x

m m

a a ma

f t
D f x J f x dt

m x t

 





                    (3.7) 

 

for 1< ,m m   ,m  ,x a  
1.

mf C  

 

The Caputo fractional derivative was investigated by many authors, for 1< ,m m   

( ) mf x C  and 1;    we have 

 

 

1
( )

= 0

( )
( )( ) = ( ) = ( ) ( ) .

!

km
m m k

a a

k

x a
J D f x J D f x f x f a

k

 
 

                  (3.8) 

 

For the mathematical properties of fractional derivatives and integrals one may consult the 

mentioned references. 

 

 

4. Multi-step Generalized Differential Transform Method (MSGDTM) 
 
Although the generalized differential transform method (GDTM) is used to provide approximate 

4
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solutions for nonlinear problems in terms of convergent series with easily computable 

components, it has been shown that the approximated solutions obtained are not valid for large t  

for some systems ( Ertürk et al., 2008), (Momani and Odibat, 2008), (Odibat et al., 2008), 

(Odibat and Momani, 2008). Therefore we use the MSGDTM, which offers accurate solutions 

over a longer time frame compared to the standard generalized differential transform method 

[(Ertürk et al., 2011), (Freihat and Momani, 2012), (Freihat and AL-Smadi, 2013), (Momani et 

al., 2014), (Odibat et al., 2010), (Zeb et al., 2013)]. 

 

For this purpose, we consider the following initial value problem for systems of the fractional 

differential equations 

 

1
1 1 1 2( ) = ( , , , , ),nD y t f t y y y



  

                                               2
2 1 1 2( ) = ( , , , , ),nD y t f t y y y



                                        (4.1)                                     

  

   

1 1 2( ) = ( , , , , ),n
n nD y t f t y y y



  

 

subject to the initial conditions 

 

                                                 0( ) = , =1,2, ,i iy t c i n ,                                            (4.2) 

 

where iD


  is the Caputo fractional derivative of order ,i  where 0 < 1,i   for 

=1,2, , .i n  Let 0[ , ]t T  be an interval over which we wish to determine the solution of the 

initial value problem (4.1)-(4.2). In actual applications of the GDTM, the 
thK -order 

approximate solution of the initial value problem (4.1)-(4.2) may be expressed by the finite series 

 

 0 0

= 0

( ) = ( )( ) , [ , ],
K

k
i

i i

i

y t Y k t t t t T


                                         (4.3) 

 

where ( )iY k  satisfies the recurrence relation 

 

 1 2

(( 1) 1)
( 1) = ( , , , , ),

( 1)

i
i i n

i

k
Y k F k Y Y Y

k





  


 
                           (4.4) 

 

(0) =i iY c  and 1 2( , , , , )i nF k Y Y Y  are the differential transforms of the functions 

1 2( , , , , )i nf t y y y  for =1,2, , .i n  The basic steps of the GDTM can be found in [Chongxin 

and Junjie, 2010), (Momani and Odibat, 2008), (Odibat et al., 2008)]. 
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Assume that the interval 0[ , ]t T  is divided into M  subintervals 1[ , ],m mt t  1,2, ,m M  of 

equal step size 0( ) /h T t M   by using the nodes 0 .mt t mh   The main ideas of the 

MSGDTM are as follows: 

 

First, we apply the GDTM to the initial value problem (4.1)-(4.2) over the interval 0 1[ , ];t t  to 

obtain the approximate solution ,1( ),iy t  0 1[ , ],t t t  using the initial condition 0( ) = ,i iy t c  for 

=1,2, , .i n  For 2m   and at each subinterval 1[ , ],m mt t  we use the initial condition 

, 1 , 1 1( ) = ( )i m m i m my t y t    and apply the GDTM to the initial value problem (4.1)-(4.2) over the 

interval 1[ , ].m mt t  The process is repeated and generates a sequence of approximate solutions 

, ( ),i my t  =1,2, , ,m M  for =1,2, , .i n  Finally, the MSGDTM assumes the following 

solution 

 

 

 
 

 

,1 0 1

,2 1 2

, 1

( ), , ,

( ), , ,
( ) =

( ), , .

i

i

i

i M M M

y t t t t

y t t t t
y t

y t t t t

 





 

                                                 (4.5) 

 

The new algorithm, MSGDTM, is simple for computational performance for all values of h . As 

we will see in the next section, the main advantage of the new algorithm is that the obtained 

solution converges for wide time regions. 

 

5. Solving the fractional-order SIR models of epidemics using the MSGDTM algorithm 

 

To demonstrate the effectiveness of this scheme, we consider the fractional-order SIR models of 

epidemics. This example is researched because approximate numerical solutions are available for 

them using other numerical schemes. This allows one to compare the results obtained using this 

scheme with solutions obtained using other schemes. 

 

Now we introduce the fractional-order disease model of the system described by (5.1)-(5.3). In 

this system, the integer-order derivatives are replaced by the fractional-order derivatives, as 

follows 

 

 1
1( ) = ,D S t PSI


                                                        (5.1) 

 

 2
1 2( ) = ,D I t PSI P I


                                                    (5.2) 

 

 3
2( ) = ,D R t P I


                                                         (5.3) 

 

6
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where ( , , )S I R  are the state variables, 1P  and 2P  are nonnegative constants, ,i  =1,2,3i , 

are parameters describing the order of the fractional time-derivatives in the Caputo sense. The 

general response expression contains parameters describing the order of the fractional derivatives 

that can be varied to obtain various responses. Obviously, the classical integer-order SIR models 

of epidemics can be viewed as a special case from the fractional-order system by setting 

1 2 3= = =1,    1 = 0.001P  and 2 = 0.072P  for the fractional case, the parameter   is 

allowed to vary. In other words, the ultimate behavior of the fractional system response must 

converge to the response of the integer order version of the equation. 

 

Applying the MSGDTM Algorithm to (5.1)-(5.3) gives 

 

 

1
1

=01

2
1 2

=02

3
2

3

( 1)
( 1) = ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) = ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) = ( ),

( ( 1) 1)

k

l

k

l

k
S k P S l I k l

k

k
I k P S l I k l P I k

k

k
R k P I k

k













    
        

     
     

     
  


  



               (5.4) 

 

where ( ), ( )S k I k  and ( )R k  are the differential transforms of ( ), ( )S t I t  and ( )R t  

respectively. The differential transform of the initial conditions are given by 

1 2(0) = , (0) =S c I c  and 3(0) = .R c  In view of the differential inverse transform, the 

differential transform series solution for the system (5.1)-(5.3) can be obtained as 

 

 

1

= 0

2

= 0

3

= 0

( ) = ( ) ,

( ) = ( ) ,

( ) = ( ) .

N
n

n

N
n

n

N
n

n

s t S n t

i t I n t

r t R n t























                                                     (5.5) 

 

According to the multi-step generalized differential transform method, the series solution for the 

system (5.1)-(5.3) is 
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1

1

1

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( ) =

( )( ) , [ , ],

K
n

n

K
n

n

K
n

M M M M

n

S n t t t

S n t t t t t
s t

S n t t t t t







 







 





 








                          (5.6) 

 

 

2

2

2

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( ) =

( )( ) , [ , ],

K
n

n

K
n

n

K
n

M M M M

n

I n t t t

I n t t t t t
i t

I n t t t t t







 







 





 








                          (5.7) 

 

and 

 

 

3

3

3

1 1

= 0

2 1 1 2

= 0

1 1

= 0

( ) , [0, ],

( )( ) , [ , ],
( ) =

( )( ) , [ , ],

K
n

n

K
n

n

K
n

M M M M

n

R n t t t

R n t t t t t
r t

R n t t t t t







 







 





 








                         (5.8) 

 

where ( ), ( )i iS n I n   and ( )iR n  for =1,2, ,i M satisfy the following recurrence relations 
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1
1

=01

2
1 2

=02

3
1

3

( 1)
( 1) = ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) = ( ) ( ) ( ) ,

( ( 1) 1)

( 1)
( 1) = ( ),

( ( 1) 1)

k

i i i

l

k

i i i i

l

i i

k
S k P S l I k l

k

k
I k P S l I k l P I k

k

k
R k P I k

k













    
        

     
     

     
  


  



              (5.9) 

 

such that 

 

1 1 1(0) = ( ) = ( ),i i i i iS s t s t   1 1 1(0) = ( ) = ( )i i i i iI i t i t     

 

and 

 

1 1 1(0) = ( ) = ( )i i i i iR r t r t   . 

 

Finally, we start with 0 1 0 2(0) = , (0)S c I c  and 0 3(0)R c  and using the recurrence relation 

given in (5.9), we obtain the multi-step solution given in (5.6)-(5.8). 

 

6. Nonnegative Solutions 

 

Let 
3 = ( ( ), ( ), ( ))TR S t I t R t

 For the proof of the theorem about non-negative solutions we will 

need the following Lemma 

 

Lemma 6.1. Generalized Mean Value Theorem (Lin, 2007) 
 
Let  

 

( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b   for 0 < 1.    

 

Then we have, 

 

 
1

( ) = ( ) ( )( )
( )

f x f a D f x a 


 


, 

 

with 0 < ,x  for all ( , ].x a b  
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Remark 6.2. (Zeb et al., 2013)  

 

Suppose ( ) [ , ]f x C a b  and ( ) [ , ]D f x C a b   for 0 < 1.   It is clear from the above 

Lemma that if ( ) 0,D f x   for all (0, ),x b  then the function f  is non-decreasing, and if 

( ) 0,D f x   for all (0, ),x b  then the function f  is non-increasing. 

 

Theorem 6.3. 

 
There is a unique solution for the initial value problem given by (5.1)-(5.3), and the solution 

remains in 
3R
. 

 

Proof: 

 
The existence and uniqueness of the solution of (5.1)-(5.3), in (0, )  can be obtained from 

((Lin, 2007), Theorem 3.1 and Remark 3.2). We need to show that the domain 
3R
 is positively 

invariant. Since 1
=0| = 0,SD S


 2

=0| = 0ID I


 and 3
=0 2| = 0.RD R P I


  On each hyper-plane 

bounding the nonnegative orthant, the vector field points into 
3.R

 

 

7. Numerical Results 

 
The MSGDTM is coded in the computer algebra package Mathematica. The Mathematica 

environment variable digits controlling the number of significant digits are set to 20  in all the 

calculations. The time range studied in this work is [0,50]  days with time step = 0.05,t  and 

we get GDTM series solution of order 10K   at each subinterval. We take the initial condition 

for the SIR model as (0) = 620, (0) =10S I , (0) = 70R  .  

 

Figure 1  shows the phase portrait for the classical SIR model using the fourth-order Runge–

Kutta method ( 4RK ). Figure 2  shows the phase portrait for the classical SIR model using the 

multi-step generalized differential transform method. From the graphical results in Figure 1  and 

Figure 2 , it can be seen the results obtained using the multi-step generalized differential 

transform method match the results of the 4RK  very well, implying that the multi-step 

generalized differential transform method can predict the behavior of these variables accurately 

for the region under consideration. Figures 3 6  show the phase portraits for the fractional SIR 

models of epidemic systems using the multi-step generalized differential transform method. 

From the numerical results in Figures 3 6  it is clear that the approximate solutions depend 

continuously on the time-fractional derivative ,i  =1,2,3.i  The effective dimension   of 

equations (5.1)-(5.3) is defined as the sum of orders 1 2 3 = .      Also in Figure 6  we 

can see that the numerical results exist in the fractional-order SIR model of epidemic systems 

with order as low as 0.3. 
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              Figure 1: Phase plot of  S t ,  I t  and  R t  versus time, 1 2 3 1,      

(RK4 solution) 

 

 
Figure 2: Phase plot of  S t ,  I t  and  R t  versus time, with 1 2 3 1,       

(MSGDTM solution) 
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Figure 3: Phase plot of  S t ,  I t  and  R t  versus time, with 1 2 3 0.8,    

(MSGDTM solution) 

 

 
Figure 4: Phase plot of  S t ,  I t  and  R t  versus time, with 1 2 3 0.6,    

(MSGDTM solution) 
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Figure 5: Phase plot of  S t ,  I t  and  R t  versus time, with 1 2 3 0.4,    

(MSGDTM solution) 

 

 

8. Conclusions 
 
The analytical approximations to the solutions of the epidemic models are reliable and confirm 

the power and ability of the MSGDTM as an easy method for computing the solution of 

nonlinear problems. In this paper, a fractional order differential SIR model is studied and its 

approximate solution is presented using a MSGDTM. The approximate solutions obtained by 

MSGDTM are highly accurate and valid for a long time. The reliability of the method and the 

reduction in the size of computational domain give this method a wider applicability. Finally, the 

recent appearance of nonlinear fractional differential equations as models in some fields such as 

science and engineering makes it necessary to investigate the method of solutions for such 

equations. and we hope that this work is a step in this direction. 
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