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Abstract 

 
In this paper, a semiparametric method is proposed for estimating regression function in the 

partially linear autoregressive time series model. Here, we consider a combination of parametric 

forms and nonlinear functions, in which the errors are independent. Semiparametric and 

nonparametric curve estimation provides a useful tool for exploring and understanding the 

structure of a nonlinear time series data set to make for a more efficient study in the partially 

linear autoregressive model. The unknown parameters are estimated using the conditional 

nonlinear least squares method, and the nonparametric adjustment is also estimated by defining 

and minimizing the local L2-fitting criterion with respect to the nonparametric adjustment and, 

with smooth-kernel method, these estimates are corrected. Then, the autoregression function 

estimators, which can be calculated with the sample and simulation data, are obtained. In this 

case, some strong and weak consistency and simulatedresults for the semiparametric estimation 

in this model are presented. The root mean square error and the average square error criterions 

are also applied to verify the efficiency of the suggested model.  
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1. Introduction 
 

The nonlinear autoregressive models are the most popular models for the nonlinear time series 

analysis. Over the past two decades, there has been a growing interest in the time series literature for 

nonlinear models [Tong (1990)]. Several authors have constructed nonlinear time series models shown to 

be useful in some applications. Haggen and Ozaki (1981) propose the exponential autoregressive model 

to apply in the modeling of sound vibration. Cai and Masry (2000) propose an additive nonlinear ARX 

time series model to consider the estimation and identification of components, both endogenous and 

exogenous. Chen and Tsay (1993) propose a class of nonlinear additive autoregressive models with 

exogenous variable for nonlinear time series analysis. Farnoosh and Mortazavi (2011) propose the first-

order nonlinear autoregressive model with dependent errors to estimate the yearly amount of deposits in 

an Iranian Bank. 

 

In time series analysis with the focus on autoregressive models, one faces, in particular, three 

problems: model identification, i.e., lag selection, model estimation and prediction. Many 

methods have been proposed to cope with these problems. For nonlinear models, there are results 

showing the strong (or weak) consistency and asymptotic normality of the estimators. 

Semiparametric and nonparametric curve estimation provides a useful tool for exploring and 

understanding the structure of a nonlinear time data set, especially when classic time series 

models are inappropriate. Auestad and Tjostheim (1990) applied a multivariate kernel smoothing 

method to estimate the conditional mean and conditional variance of a nonlinear autoregression. 
 

Our interest is the estimation of parameters in a nonlinear time series model which is usually 

performed by conditional least squares. Achievement of nice asymptotic properties of these 

estimators is not automatic because of the diverse possibilities in the choice of the model. Results 

for conditional least squares estimators are proved in Klimko and Nelson (1978) in a general set 

up. In this paper, we intend to propose a combination of parametric forms and nonlinear 

functions to make a more efficient study in the following partially linear autoregressive model 

 

                                     (    )                      | |                                                (   ) 
 

At first, we suppose that f(.) has a parametric framework, namely parametric model as 

 

                                                             ( ) * (   )    +                                                                      (   ) 
 

where  (   ) is a known smooth function of x, and  𝜖   is a parametric space. Both   and β 

are unknown parameters. 

 

We suggest a semiparametric form  (   ) ( )  for the unknown autoregression function 

f(.), where  ( ) is a nonparametric adjustment. This model is a simple generalization of the first-

order nonlinear autoregressive model of Jones (1978) and Zhuoxi et al. (2009), and is a time 

series counterpart of the generalized additive model of Hastie and Tibshirani (1990) in regression 

analysis that was introduced by Gao (1998), Gao and Yee (2000). 

 

The goal of this paper is to extend the work of Zhuoxi et al. (2009) in the semiparametric 

estimation for the nonlinear autoregressive model. There are a number of practical motivations 

behind it; these include the search for population biology models and the Mackey-Glass system 
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[see Glass and Mackey (1988))]. In addition, the recent development in partially linear 

(semiparametric) regression (see Heckman (1986); Hardle et al. (1997)) has established a solid 

foundation for studying model (1.1). 

 

We want to estimate f(x) and  ( ) under the following form 

 

                                                               ( )   ( ) (   )                                                                  (   ) 
 

Hence, we use a combination of parametric method and nonparametric adjustment. The 

parameters and nonparametric adjustment are estimated, using a conditional nonlinear least 

squares method and then, with the smooth-kernel method, these estimates are corrected, so it will 

be considered as 

 

                                                             ̂( )   (   ̂) ̂( )                                                                    (   ) 
 

The contents of this paper are organized as follows. In section 2, a conditional nonlinear least 

squares method is presented to estimating parameters   and β. Also, in this section, the 

semiparametric estimator is introduced by a natural consideration of the local L2-fitting criterion 

for the partially linear autoregressive time series model. The strong and weak consistencies of 

the semiparametric estimations are investigated in section 3. The performance of this method is 

assessed by simulation in section 4. Finally, section 5 illustrates an application of this model to 

predict annual ring width (ARW), of Kelardasht site in the north of Iran, from 1974 to 2008. 
 

2.  Semiparametric estimation in the partially linear autoregressive time 

series model 
 

We consider the following model 

 

                                                 (    )                      | |                                  (   ) 
 

where {  } is a sequence of independent and identically-distributed (i.i.d) random variables with 

mean zero and variance   . Also,    and    are independent for each t and β is unknown 

parameter.We want to estimate the regression function f(x) that can be formed as  (   ), where 

 (   ) is afunction of x with     as an unknown parameter of the model. For the model 

(2.1),    and β should be well estimated withconditional nonlinear least squares errors method as 

follows  

  

                                           (   )  ∑{(          (      ))
 

}                                         (   )  

 

   

 

 

and 

 

                                            ( ̂  ̂)          (   )     | |                                                  (   ) 
 

In fact,  ̂ and  ̂ are the common conditional least squares estimators based on   ,           

3
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for n successive observations from the model.  

 

Now, we estimate  ( ) in  ( )   (   ̂) ( ) by using a similar idea of Hjort and Jones (1996),  

Zhuoxi et al. (2009) and Farnoosh and Mortazavi (2011).  

  

 We define the local L2-fitting criterion asthe following form 

 

                                  (   )  ∑  (
      

  
)* (    )   (      ̂) +

 
 

   
                             (   ) 

 

where f(.) is an unknown autoregression function with sample size n, k is a kernel and    is 

band- width. So we obtain the estimator  ̂( ) of  ( ) by minimizing theabove criterion with 

respect to  ( ). Therefore, we get a nonparametric estimator with smooth kernel method of 

 ( ) as 

 

 ̂( )  
∑ [ (

      
  

) (      ̂) (    )]
 
   

∑ [ (
      
  

)  (      ̂)]
 
   

                                                 (   ) 

 

then the estimator of f(x) could be 

 

                                                            ̂( )   (   ̂) ̂( )                                                                    (   ) 
 

Unfortunately, the formula  ̂( ) contains the unknown functionf(x), therefore by using 

  

                (    )                
 

and with regard to the fact the errors of model are small values, we have 

 

       ∑  (
      

  
) (      ̂) (    )  ∑  (

      

  
)  (      ̂)(    ̂    ) 

 

   

 

   
 

 

Therefore, one can obtain 

   

                                   ̃( )  
∑ [ (

      
  

)  (      ̂)(    ̂    )]
 
   

∑ [ (
      
  

)  (      ̂)]
 
   

                                (   ) 

 

Finally, the autoregression function estimators which can be calculated with the sample and 

simulation data, are 

 

                                                             ̃( )   (   ̂) ̃( )                                                                   (   ) 
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3.  The assumptions and properties of asymptotic behaviors 
 

In this section, some properties and the asymptotic behaviors of theestimator are investigated.  

The assumptions A1-A10 are considered as follows  

 

(A1)  f(.) is Lipschitz continuous and all moments of    are finite and the density function of 

errors is Lipschitz and bounded total variation, also, the sequence *  +  is stationary 

ergodic sequence of integrable random variable. See Hayashi (2000) and Taniguchi and 

Kakizawa (2000).  

 

(A2)  
  

   
 
   

       
 

   

           
 exist and are continuous, for all       

 

where i,j,k =1,..., m. 

 

(A3)   (  |              )   (  |                )             
 

where k is a constant. 

 

(A4)  We define 

 

        (     )      (  |         )              (    )  
 

and the following matrices 

 

              (
  (       )

   
 
  (       )

   
)                                        

 

             (  
 (     )(

  (       )

   
 
  (       )

   
))                 

 

We will assume throughout that B and D are positive definite and finite.  

 

(A5) The sequence (  )   is α-mixing (Yu (1973)). The sufficient conditions are 

introduced. See Rosenblatt (1971), Bradley (2007), Masry and Tjostheim (1995) and 

Robinson (1983).  

 

(A6)     and    have the same distribution π(.), such that the density φ(.) of π(.) exists, 

bounded, continuous and strictly positive in aneighborhood of the point x. 

 

(A7)  ( ) and  (   ) are bounded and continuous with respect to x, away from 0 in a 

neighborhood of the point x.Set  (    )     ( )  

 

(A8)  (   ) has continuous derivative with respect to  and the derivative at the point    is 

uniformly bounded with respect to x. 
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(A9) The kernel k:      is a compactly symmetric bounded function, such that  ( )  
  for x in a set of positive Lebesgue measures.  

 

(A10)       
      where      

 

If we accept assumptions (A1)-(A10), we have the following lemma and theorems: 

 

Lemma 3.1. 

 

Under the conditions (A1)-(A10), We have the following results when    . 

 

  ( )      ∑  (
      

  
)  (    ) (      ̂ )

 
   ( ) ( )   ( ) 

 

   
 

 

   ( )        ∑  (
      

  
)   (      ̂ )

 
   ( )   

 ( ) 
 

   
                      

 

where    ( )  is defined as in (A7) and φ(x) is the density of    or      which is bounded, 

continuous and strictly positive in aneighborhood of the point x. 

 

Proof ( ):  

 

It can be calculated as 

 

    
 
 ∑  (

      

  
)  (    ) (      ̂ )                      

 

   
 

                                            
 
 *∑  (

      

  
) ( (      ̂ )   (       ))  (    )

 

   
+         

                                         
 
 ∑  (

      

  
)  (       ) (    )        

 

   
 

 

Using (A1)-(A4), and strong consistency of the conditional least squares method Klimko and 

Nelson(1978), and (A7)-(A9), we have 

 

                    |( (      ̂ )   (       )) (    )|   ((    
   )   )         

 

Since, f(x) and k(x) are bounded and continuous with respect to x, one can claim: there exists 

     such that 

 

                
 
 |∑  (

      

  
) ( (      ̂ )   (       ))  (    )
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 ∑   | (      ̂ )   (       )|

 

   
| 

                    
 
       ((    

   )   )   ((    
 )  

 
  )      

 

Thus,      a.s. as      
 

Due to the sequence *  +    is α-mixing, then 

 

       
 
 ∑  (

      

  
)  (       ) (    )   

 
  { (

    

  
)  (     ) (  )}

 

   

 
    

 

as      

According to (A6)-(A7), we can show (Put u=
   

  
 also,∫  ( )    *   ( )+) 

 

  
 
  { (

    

  
)  (     ) (  )}                              

            
 

  
∫ (

   

  
)  (    ) ( ) ( )          

                                ∫ ( ) (        ) (     ) (     )    

               ( ) ( )   ( )∫ ( )                             

 

Therefore, 

            
    ∑  (

      

  
)  (    ) (      ̂ )

 
   ( ) ( )   ( ) 

 

   
  

 

as      
 

Proof (b):  
 

Since,  (   ) is bounded and continuous with respect to x, ta ai  

 

        ∑  (
      

  
)   (      ̂ )                                           

 

   
 

                                                  
 
 *∑  (

      

  
) ( (      ̂ )   (       )) (      ̂ )

 

   
+ 

                                                       
 
 ∑  (

      

  
)  (       ) (      ̂ )        
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Using (A8)-(A10), there exists   
   , such that 

 

|  |   
 
 
 ∑   

 | (      ̂ )   (       )|                             
 

   
 

                                 
 
     

   ((    
   )   )                                                   

   ((    
 )  

 
  )                                   

Thus,      a.s. as      
 

According to (A5), the sequence *  +    is α-mixing, therefore 

 

               
 
 
 ∑  (

      

  
)  (       ) (      ̂ )   

 
  { (

    

  
)   (     )}

 
   

 

   
 

 

According to (A6)-(A7),we can show (Put   
   

  
,also, ∫  ( )    *   ( )+) 

 

     
 
  { (

    

  
)   (     )}                                

                    
 

  
∫ (

   

  
)   (    ) ( ) ( )    

                         ∫ ( )  (        ) (     )    

 

Finally, 

        
    ∑  (

      

  
)  (       ) (      ̂ )

 
   ( )   

 ( ) 
 

   
  

 

as      
 

Therefore, the proof is complete.  
 

Theorem 3.2. 

 

If we accept the assumptions (A1)-(A10) and  ̂( ) be the introduced estimator in (2.6), then 

 

  ̂( )
 
  ( )  as      
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Proof: 

 

Substituting Lemma 3.1 in (2.6) and using the strong consistency of  ̂  and  ̂   we canprove 

Theorem 3.2.  

 

Theorem 3.3. 
 

If we accept the assumptions (A1)-(A10) and  ̃( )  be the defined autoregression function 

estimator in(2.8), then  ̃( )   ̂( )
 
    as      

 

Proof:  

 

One may obtain the equality 

 

 ̃( )   ̂( )   (   ̂ )
∑ [ (

      
  

)    (      ̂ )]
 
   

∑ [ (
      
  

) (      ̂ )]
 
   

  

 

On the other hand, we have 

 

  
 
 ∑ [ (

      

  
)    (      ̂ )]

 

   
                    

                                     
 
 ∑ [ (

      

  
)   ( (      ̂ )   (       ))]

 

   
 

                                               
 
 ∑ [ (

      

  
)    (       )]        

 

   
 

 

To complete the proof, it is known that 

 

        |  |   ((    )
   ) 

 

a.s., as      it is enough to show   
 
   and   

 
  , as      

 

It follows that 

 

                    |  
 

 ∑ * (
      

  
)   ( (      ̂ )   (       ))+

 
   |           

    
 
 ∑ [   |  || (      ̂ )   (       )|]

 

   
                    

                                    
 
    ((    )

 
 ) ((    

   )
 
 )    ((         

 )   )                               
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which implies      a.s., as      
 

Since 

 

  *  
 
 ∑ [ (

      

  
)     (       )]

 

   
+               

 

and 

 

   *  
 
 ∑ [ (

      

  
)     (       )]

 

   
+

 

                                                             

     
 
  ,∑ [ (

      

  
)     (       )]

 

   
-

 

                             

       
 
  ,∑ [  (

      

  
)   

   (       )]
 

   
-                              

                                            
 
 ∑  [ (

      

  
)     (       ) (

      

  
)     (       )]

 

       
 

   
 
       

   (
 

 
 
 

)                                                                         

 

where      is a constant, we get   
 
           By the strong consistency of  ̂  and  ̂  

and lemma 3.1, we complete the proof.  
 

4.  Simulation Study 
 

We investigate the appropriateness of semiparametric method by estimating parameters and 

regression function in the following model 

 

             (    )                     
 

tith      (  (     )
 ) where *  + is a sequence of independent identically-distributed (i.i.d) 

random variables. We generate the data with sample sizes n=400,600,800 using the following 

nonlinear functions 

 

  ( )      (   
 )   

 

and assume 

  

  (   )      (  
 )  
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   ( )      (   )        ( )   
 

and assume 

  

 

  (   )       (   )   
 

Finally, we compute the average square error (ASE) for the efficiency of the proposed estimation 

method 

 

    
 

 
∑ { ̃(  )   (  )}

 
 

 

   
 

 

The square root of the ASE is denoted by RMSE (Root Mean Square Error).  

 

Tables 1 and 2 show the descriptive statistics indices for simulation data and errors in the above 

mentioned models 1 and 2, respectively. The Kolmogorov-Smirnov statistic is obtained to test 

the normality of the errors of model. The test statistic and p-value confirm the normality of the 

residuals. Also, the RMSE estimation for the above mentioned models 1 and 2 are provided in

Tables 3 and 4.  

 

Figures 1 and 2 show the curves of f(x) and its semiparametric estimator under the two types of 

the above mentioned models with selected bandwidth and different sample sizes. The red and 

blue lines are the regression function f(x) and the semiparametric estimator respectively. Also, 

Figures 3 and 4 show the autocorrelation function (ACF) errors of the model with f(x) and its 

semiparametric estimator under the two types of above mentioned models with selected 

bandwidth and different sample sizes.  

 

These two figures, show that the ACF errors of the model are almost uncorrelated. The 

simulation results show that the semiparametric estiamator of the autoregression function 

performs well. 

 

Table 1. Descriptive statisticsfor the simulation data and errors of the model  ( )      
 
 

var N Min Max Mean std K-

Smirnov 

P-value 

data 400 0.69 4.05 1.3178 0.88613 6.021 0.0000101 

data 600 0.69 4.05 1.3104 0.87522 7.37 0.0000071 

data 800 0.69 4.05 1.2392 0.77338 8.47 0.000048 

error 400 0.4016 0.49 0.06 0.1511 1.128 0.157 

error 600 -0.44 0.75 0.0592 0.1754 1.353 0.0865 

error 800 -0.73 0.84 0.06 0.1911 1.421 0.0721 
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Figure 1.  ( )      
 
, n=600, RMSE=0.0725. 

 

Table 2. Descriptive statisticsfor the simulation data and errors of the model  ( )               ( ) 
var N Min Max Mean std K-Smirnov P-value 

data 400 0.11 1.05 0.4093 0.2525 3.061 0.000146 

data 600 0.11 1.05 0.4089 0.2523 3.748 0.000105 

data 800 0.11 1.05 0.4087 0.2519 4.32 0.000091 

error 400 -0.13 0.12 -0.004 0.04715 1.1755 0.126 

error 600 -0.15 0.152 -0.002 0.03412 0.888 0.41 

error 800 -0.121 0.17 -0.003 0.04431 1.238 0.092 

 

Table 3. RMSE for estimating the model  ( )      
 
 

n  ̂  ̂  ̂ RMSE 

400 4.769153 0.523312  0.09 0.0806 

600 5.2131 0.495932 0.112 0.0725 

800 5.1771 0.472340 0.135 0.0643 

 

Table 4. RMSE for estimating the model  ( )              ( ) 
n  ̂   ̂   ̂  ̂ RMSE 

400 7.86 4.2137 0.3754 0.13219 0.0265 

600 7.85 4.1943 0.3901 0.10538 0.0249 

800 6.6987 4.1131 0.1077 0.1325 0.0142 
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Figure 2.   ( )               ( ), n=600, RMSE=0.0249 

 

 

 
Figure 3. ACF of errors of the model  ( )      

 
, n=600 

 

 

13

Farnoosh et al.: A Semiparametric Estimation for Regression Functions

Published by Digital Commons @PVAMU, 2014



586                                                                                                                                                    R. Farnoosh et al.                                                                                                                                                             

 

 
Figure 4. ACF of errors of the model  ( )              ( )  n=600 

 
Figure 5. Exact values of ARW for three species (Pinus Eldarica) of Kelardasht site 

(The north of Iran) 

 

 

5.  Empirical Application 
 

In this research, three normal Pinus eldarica trees were randomly selected from a plantation at 

Garagpas-Kelardasht site, which is located in the western part of the Mazandaran province in the 

north of Iran. These treeshave grown for over 35 years in this site. TbaPinus eldarica Medw is 

mixed with some Pinus sylvestris, Pinus nigra and Picea abies at the Garagpas-Kelardasht 

site. The Pinus eldarica trees were cut for this studyin January 2009. To illustrate the suitability 
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of our methodology to the ARWdata, we use an additive functional autoregressive model to 

forecast the ARW of kelardasht site in the north of Iran, from 1974 to 2008. The following 

functional-autoregressive model is proposed as empirical model 

 

            (    )                     
 

where {  } is a sequence of i.i.d random variables with mean zero and variance   . Also, 

   and      are independent for each t and   is constant. Using the presented semiparametric 

method, we estimate the regression function.  

  

Table 5, respectively, shows the observed-estimated value for the ARW data of kelardasht site in 

the north of Iran, from 1974 to 2008. The descriptive statistics of the ARW of pine wood are

shown in Table 6. There are significant differences between the growth andring width (radius) 

of a tree in a year. The ARW values were increasing by increasing age of tree (radial axis). The 

mean of the ARW of three trees was 3.74 mm.  

 

The RMSE and ASE values of the regression function for the functional autoregressive models 

are shown in Table 7. Figure 5 shows the curves of the observations (the ARW data in threetrees 

of Pinus Elderica) from 1974 to 2008. Figure 6 shows the curves of the observations (the mean 

of ARW data) and its semiparametric estimator with selected bandwidth. 

 

The red and blue lines are the curves of the observations and the semiparametric 

predictor, respectively. Figure 7 shows the ACF errors of the proposed empirical model. The 

errors of themodel are almost uncorrelated. We see that the presented semiparametric method 

for a functional autoregressive model is more efficient.  
 

Table 5. The observed - forcasted mean -values for the ARW data of kelardasht site in the north of 

Iran, from 1974 to 2008  

Time Exact-value Forecasted-value  Time Exact-value Forecasted-value 
1974 3.17 3.21  1992 3.74 4.21 

1975 4.43 4.39  1993 3.82 3.13 

1976 5.91 6.30  1994 3.51 4.07 

1977 7.75 7.73  1995 3.51 3.62 

1978 5.30 3.52  1996 3.14 3.34 

1979 5.68 3.90  1997 3.41 3.74 

1980 4.14 4.91  1998 2.72 2.47 

1981 6.71 5.39  1999 2.18 2.71 

1982 5.18 5.83  2000 2.07 2.97 

1983 6.12 8.34  2001 2.00 2.57 

1984 6.03 6.66  2002 2.28 2.96 

1985 4.59 4.87  2003 1.61 2.33 

1986 4.43 4.47  2004 2.21 2.53 

1987 4.36 6.33  2005 1.77 2.02 

1988 5.03 4.47  2006 1.15 1.56 

1989 3.80 6.64  2007 1.65 1.67 

1990 3.45 3.51  2008 1.08 1.12 

1991 3.18 3.02        
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Table 6. The centeral tendency and dispersion of mean -values for the ARW data of kelardasht site in the north of 

Iran, from 1974 to 2008 

n mean std min max sum 

35 3.7463 1.66 1.08 7.75 131.12 

 

Table 7. RMSE for estimating regression function for the ARW data of kelardasht site in the north of Iran, from 

1974 to 2008 

n ASE  ̂  ̂  ̂  ̂ RMSE 

35 1.0113 1.23 0.8011 2.79 2.021 1.0056 

 

 
Figure 6. Exact and estimated mean values of ARW of Kelardasht site (The north of Iran) 

 

 
Figure 7. ACF errors of the empirical model 
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6.  Summary  
 

The partially linear autoregressive model is currently used in a variety of fields, including 

econometric studies, finance, wood industry science, biometrics, engineering, genetics, ecology 

and biology. This paper proposed a combination of parametric forms and  nonlinear functions, in 

which the errors are independent. Theerrors and observations are also independent for each t. 

Since the parametric methods are not very efficient to estimate the regression functions, semipar-  

ametric methodsare used.  

 

At first, we suppose that the regression function f(.) has a parametric framework, that can be 

formed as  (   )  where  (   ) is a function of x with     as an unknown parameter of the 

model. Therefore, we suggested a semiparametric form  (   ) ( )  for the unknown 

autoregression function f(.), where  ( ) is a nonparametric adjustment. The unknown parameters 

are estimated using the conditional nonlinear least squares method and by defining and 

minimizing the local L2-fitting criterion with respect to  ( ), the nonparametric adjustment is 

also estimated and then, with smooth-kernel method, these estimates are corrected. So, the 

estimator of f(x) can be obtained. Because the formula  ̂( ) contains the unknown function

f(x), and with regard to the fact the errors of the model are small values, we can obtain  ̃( ) euea

 estimator of ( )  
 

In order to investigate the efficiency of the semiparametric method in our model, we consider an 

empirical application. Hereby, three normal Pinus eldarica trees were randomly selectedfrom a 

plantation at Garagpas-Kelardasht site, which is located in the western part of the Mazandaran 

province in the north of Iran. These trees have grown over 35 years in this site. The Pinus 

eldarica trees were cut for this studyin January 2009. The ARW Pinus eldarica was predicted by 

an additive functional autoregressive model, from 1974 to2008. The results are shown in Tables 

(5-7) and Figures (5-7) which indicate that the presented semiparametric method for a 

functional autoregressive model is more efficient.  

  

Table 5, respectively, shows the observed-estimated value for the ARW data of kelardasht site in 

the north of Iran. In Table 6, the descriptive statistics of the ARW of pine wood isshown.  We 

see that there are significant differences between the growth andring width (radius) of a tree in a 

year, so much so that the ARW values were increasing by increasing age of tree (radial axis). 

The RMSE and ASE criterions are also applied to verify the efficiency of the suggested model. 

The RMSE and ASE values of the regression function for the functional autoregressive models 

are shown in Table 7. As we can see, it supports the  iaeiefficiency of the suggested model. 

 

The curves of the ARW data in threetrees of Pinus Elderica are shown in Figure 5. The curves of 

the mean of ARW data and its semiparametric estimator with selected bandwidth are also shown 

in Figure 6. Also, Figure 7 shows the ACF errors of the proposed empirical model which 

indicates that the errors of themodel are almost uncorrelated. The results of the study show that 

the semiparametric estiamator of the autoregression function performs well. 
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7. Coaalsumoa 
 

The simulation results show that the semiparametric estiamator of the autoregression function 

performs well. Furthermore, the method is applied for annual ring width prediction to show that 

the partially linear autoregressive model is an efficient model for prediction of  annual ring 

width. The autocorrelation function errors of the proposed empirical model with selected 

bandwidth and different sample sizes are almost uncorrelated. We see that the presented 

semiparametric method for a functional autoregressive model has proved to be more efficient. 
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