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Abstract

Dominating sets are widely applied in the design and efficient use of computer networks. They

can be used to decide the placement of limited resources, so that every node has access to the

resource through neighbouring node. The most efficient solution is one that avoids duplication

of access to the resources. This more restricted version of minimum dominating set is called an

private dominating set. A vertex v in a digraph D is called a private out-neighbor of the vertex

u in S (subset of V(D)) if u is the only element in the intersection of in-neighborhood set of

v and S. A subset S of the vertex set V (D) of a digraph D is called a private out-dominating

set of D if every vertex of V − S is a private out-neighbor of some vertex of S. The minimum

cardinality of a private out-dominating set is called the private out-domination number. In this

paper, we investigate the private out-domination number of generalized de Bruijn digraphs. We

estabilsh the bounds of private out-domination number. Finally, we present exact values and sharp

upperbounds of private out-domination number of some classes of generalized de Bruijn digraphs
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1. Introduction

Domination in graphs has been studied extensively recently, since it has many applications. The

book ”Fundamentals of domination in graphs” by (Haynes et al., 1998) is entirely devoted to

this area. Let G = (V, E) be a connected graph. The open neighborhood N(v) of a vertex v in

a graph G consists of the set of vertices adjacent to v, that is, N(v) = {w ∈ V : vw ∈ E} and

the closed neighborhood of v is N [v] = N(v)∪ {v}. A set S ⊆ V (G) is called a dominating set

of G if every vertex of V − S is adjacent to some vertex of S. The minimum cardinality of a

dominating set of G is called the domination number of G and is denoted by γ(G). One variation

of domination in graphs called perfect domination was studied by (Biggs, 1973; Livingston and

Stout, 1990; Bange et al., 1998). A set S ⊆ V (G) is called a perfect dominating set of G if every

vertex of V − S is adjacent to exactly one vertex in S. The minimum cardinality of a perfect

dominating set of G is called the perfect domination number of G.

The concept of domination in undirected graphs is naturally extended to digraphs. In fact,

domination in digraphs comes up more naturally in modeling real world problems.There is a

survey on domination in digraphs written by (Ghosal et al., 1998).

The resource location problem in an interconnection network is one of the facility location

problems. (Ghosal et al., 1998) and (Kikuchi and Shibata, 2003) found thats construction of

the absorbants and the dominating sets corresponds to solving two kinds of resource location

problems. For example, each vertex in an absorbant or a dominating set provides a service (file-

server, and so on) for a network. In this case, every vertex has a direct access to file-servers.

Since each file-server may cost a lot, the number of an absorbant or a dominating set has to be

minimized.

In this paper, we introduce a new notion called private out-domination in digraphs. Our motivation

for studying the private out-domination in digraphs arose from the work involving resource

allocation and placement in parallel computers which was studied by (Livingston and Stout,

1990).

Let D be a digraph with vertex V and arc set A. The out-neighborhood set is defined as N+(u) =

{v : (u, v) ∈ A} and the in-neighborhood set is defined as N−(u) = {v : (v, u) ∈ A)}. The closed

out-neighborhood of u is the set N+[u] = N+(u)∪{u} and the closed in-neighborhood of u is the

set N−[u] = N+(u)∪{u}. For S ⊆ V, the out-neighborhood of S is the set N+(S) =
⋃

s∈S

N+(s)

and the in-neighborhood is the set N−(S) =
⋃

s∈S

N−(s). N+[S] and N−[S] are defined similarly.

A subset S ⊆ V is called a dominating set of D (or out-dominating set) if every vertex of V −S

is out-dominated by some vertex of S. The minimum cardinality of an out-dominating set D is

called the out-domination number of D and is denoted by γ(G). An absorbant of a digraph D

is a set S of vertices of D such that for all v ∈ V − S, N+(v) ∩ S 6= ∅, i.e., N−[S] = V. The

absorbant number of D, dentoed by γa(D), is defined as the minimum cardinality of an absorbant

of D. A set S ⊆ V is called a twin-dominating set of D if it is both a dominating set and an

absorbant set of D and is denoted by γ∗(D). The properties of domination number, absorbant

number and twin domination number in generalized de Bruijn digraphs have been studied by
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(Shan et al., ). (Araki, 2007; Araki, 2008) studied some domination parameters.

A vertex v in D is called a private out-neighbor of a vertex u ∈ S in D if N−[v] ∩ S = {u},
and v is called a private in-neighbor of vertex u ∈ S with respect to S in D if N+[v]∩S = {u}.

The private out-neighbor set of v, P+
n [v, S] with respect to a set S in D is defined as P+

n [v, S] =

N+[v]−N+[S −{v}] and private in-neighbor set of v, P−
n [v, S] with respect to a set S in D is

defined as P−
n [v, S] = N−[v]−N−[S−{v}]. A subset S of V is called a private out-dominating

set of D if every vertex of V − S is a private out-neighbor of some vertex of S. The minimum

cardinality of a private out-dominating set is called the private out-domination number of D. It

is denoted by γ+
p (D). A vertex v in D is called a private in-neighbor of the vertex u with respect

to S in D if N+[v]∩S = {u}. A subset S of V is called a private absorbant of D if every vertex

of V − S is a private in-neighbor of some vertex of S. The minimum cardinality of a private

absorbant is called the private absorbant number of D. It is denoted by γ−
p (D).

The generalized de Bruijn digraph GB(n, d) is defined in by the congruence equations as follows:

V (GB(n, d)) = {0, 1, 2, ..., n− 1}

A(GB(n, d)) = {(x, y) : y ≡ dx + i(modn), 0 ≤ x ≤ d − 1}

2. The private out-domination number of generalized de Bruijn digraphs

Let m, n be positive integers, m|n means m divides n. In what follows, we may assume d ≥ 2

and n ≥ d. Now, we find private out-domination number for the generalized de Bruijn digraphs

with d = 1 and n = d.

Proposition 2.1. For any n ≥ 1, γ+
p (GB(n, 1)) = n.

Proof. The result is true since GB(n, 1) is a graph with A(GB(n, d)) = {(x, x) : x = 0, 1, . . . , n−
1}.

Proposition 2.2. For any n ≥ 1, γ+
p (GB(n, d)) = 1, when n = d.

Proof. The result is true since GB(n, d) is a symmetric complete graph.

Lemma 2.3. γ+
p (GB(n, d)) ≥

⌈

n
d+1

⌉

Proof. Let S be a private out-dominating set of GB(n, d). Then |S| + d|S| ≥ n and equality

holds when S ∩ N+(S) = ∅. So γ+
P (GB(n, d)) = |S| ≥

⌈

n
d+1

⌉

.

Lemma 2.4. (Shibata et al., 1994) Every arc of GB(n, d) is a loop or a double arc if and only

if d = 1, n − 1 or n.

The private out-domination number of the following digraph GB(4, 3) is 2, which is not satisfying

the following theorem.

Example 2.5. Consider the graph GB(4, 3).
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Fig. 1: The digraph GB(4, 3).

V (GB(4, 3)) = {0, 1, 2, 3} and A(GB(4, 3)) = {(0, 0), (0, 1), (0, 2), (1, 3), (1, 0),
(1, 1), (2, 2), (2, 3), (2, 0), (3, 1), (3, 2), (3, 3)}.

The set S = {0, 2} is a minimum private out-dominating set.

An interesting problem is how the private out-domination number reaches its maximum in some

generalized de Bruijn digraphs. We consider GB(n, d) for the special case n = d + 1.

Theorem 2.6. If n = d + 1 and n 6= 4, then

γ+
p (GB(n, d)) =

{

1, d is even

n d is odd.

Proof. We divide the proof into two cases.

Case 1: d is even. Define S = {d
2
}. P+

n

(

d
2
, S

)

= N+(d
2
) =

{

d2

2
(mod (d + 1)), d2

2
+ 1(mod (d + 1)),

. . . , d2

2
+ d − 1(mod (d + 1))

}

. By assumption that d is even, we see that d2

2
≡ d

2
+1(mod (d+

1)). It follows that P+
n

[

d
2
, S

]

= {0, 1, 2, . . . , d−1}, and thus S = {d
2
} is an private out-dominating

set of GB(d + 1, d).

Case 2: d is odd.

Define S = {v}, for any v ∈ V. Clearly N+(v) = P+
n (v, S) and by Lemma 2.4, {v} ⊆ P+

n (v, S).

Since n = d + 1, there is a vertex w in V − S which is not a private out-neighbor of any vertex

of S. Define S = {u, v}, for any two distinct vertices u, v ∈ V. By Lemma 2.4, {u} ⊆ N+(u).

Since n = d + 1, there is a vertex x ∈ V (GB(n, d)) but x /∈ N+(u) and also {v} ⊆ N+(v).

Since n = d + 1, there is a vertex y ∈ V (GB(n, d)) but y /∈ N+(v).

Suppose that x = y. Then N+(u) contains all the vertices of GB(d + 1, d) other than x and

N+(v) contains all the vertices of GB(d+1, d) other than y. Since x = y, N+(u) = N+(v). We

get P+
n (u, S) = ∅ and P+

n (v, S) = ∅. Therefore P+
n (z, S) = ∅, for all z ∈ S. This shows that

every vertex of V − S is not a private in-neighbor of any vertex of S.

Suppose not, x ∈ N+(v), then there exists a vertex w ∈ N+(u) and w /∈ N+(v). Clearly

N+(u)−N+(v) = {w} and N+(v)−N+(u) = {x}. Also P+
n (u, S) = {w} and P+

n (v, S) = {x}.

4
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Since n 6= 4, all other vertices in V − S − {w, x} are not private out-neighbors of any vertex of

S.

Now, define S = {v1, v2, . . . , vk}, 3 ≤ k < n. Since n = d + 1 and by Lemma 2.4, the open

out-neighborhood of any vertex v of S does not contain a vertex of V (GB(n, d)) other than v.

Let xi be the vertex of V (GB(n, d)), which is not in N+(vi), for i = 1, 2, . . . , k.

If x1 = x2 = · · · = xk, k < n, then x1 is not a private out-neighbor of any vertex of S. Suppose

that xr 6= xs for some r, s = 0, 1, . . . , k. Then N+(vs) ∪ N+(vr) = V (GB(n, d)) and for any

vertex vk ∈ S, k 6= r, s, we get P+
n [vk, S] = ∅. Clearly P+

n [vr, S] = {xs} and P+
n [vs, S] = {xr}.

Since n 6= 4, all other vertices in V − S − {vr, vs} are not private out-neighbors of any vertex

of S and hence the result follows.

For d = 2, by giving a method to determine private out-dominating sets of GB(n, d), we present

some sufficient conditions for the private out-domination number of GB(n, d) to be the lower

bound
⌈

n
d+1

⌉

.

Theorem 2.7. γ+
p (GB(n, d)) =

⌈

n
d+1

⌉

, where d = 2.

Proof. Define n ≡ r(mod (3)).

Case 1: Suppose that r = 0.

Then construct S =

n

3
−1
⋃

i=0

{n
3

+ i}. Now, we show that P+
n (v, S) ∩ S = ∅, for every v ∈ S.

P+
n (n

3
, S) = {2n

3
, 2n

3
+1}, P+

n (n
3
+1, S) = {2n

3
+2, 2n

3
+3}, . . . , P+

n (n
3
+n

6
, S) = {0, 1}, . . . , P+

n (2n
3
−

1, S) = {n
3

− 2, n
3

− 1}.
Since n is congruent to 0 mod (n) and 0 mod (3), we have,

P+
n

(n

3
+ k, S

)

=

{

0, 1, . . . ,
n

3
− 1,

2n

3
, . . . , n

}

for every k = 0, . . . , n
3
− 1. As desired, we have P+

n (v, S) ∩ S = ∅, for every v ∈ S.

Suppose that P+
n (v, S) ∩ P+

n (u, S) 6= ∅, for some u, v ∈ S and u 6= v. Then 1 ≤ |P+
n (v, S) ∩

P+
n (u, S)| ≤ 2.

Suppose that |P+
n (v, S) ∩ P+

n (u, S)| = 1. Then |P+
n (v, S) ∪ P+

n (u, S)| = 3. Let the common

vertex be z, z ∈ P+
n (v, S) ∩P+

n (u, S). Hence z is not a private out-neighbor of any vertex of S.

Hence z ∈ S, which is a contradiction.

Suppose not, |P+
n (v, S) ∩ P+

n (u, S)| = 2. Then P+
n (v, S) = P+

n (u, S). This implies that u = v,

which is a contradiction.

Since n is congruent to 0 mod (n) as well as 0 mod (3), we have,

(

⋃

v∈S

P+
n (v, S)

)

∪ S =

{0, 1, . . . , n
3
− 1, 2n

3
, . . . , n− 1} ∪ {n

3
, . . . , 2n−1

3
} = {0, 1, 2, . . . , n− 1} = V and so S is a private

out-dominating set of GB(n, d). Therefore, γ+
p (GB(n, d)) ≤ |S| = n

3
=

⌈

n
d+1

⌉

.

Case 2: Suppose that r = 1.
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Then construct S =

n−1

3
⋃

i=0

{

n−1
3

+ i
}

. Define S∗ = S −{n−1
3

, 2(n−1)
3

}. By a similar argument as in

Case 1, we can prove that P+
n (v, S∗)∩S∗ = ∅, for every v ∈ S∗. Clearly P+

n (n−1
3

, S) = {2n+1
3

},

since 2n−2
3

∈ S, P+
n (2(n−1)

3
, S) = {n−4

3
}, since n−1

3
∈ S, P+

n (n−1
3

+1, S∗) = {2n+1
3

+1, 2n+1
3

+2},

P+
n (n−1

3
+ 2, S∗) = {2n+1

3
+ 3, 2n+1

3
+ 4}, . . . ,

P+
n (n−1

3
+ n+2

6
, S∗) = {0, 1}, . . . ,P+

n (2n−5
3

, S∗) = {n−10
3

, n−7
3
}.

Therefore, for every k = 1, . . . , n−1
3

− 1, P+
n

(

n−1
3

+ k, S∗
)

=
{

2n+6k−2
3

(mod n),
2n+6k+1

3
(mod n)

}

=
{

2n+4
3

, 2n+7
3

, . . . , n − 1, 0, 1, . . . , n−10
3

, n−7
3

}

. Since n is congruent to 0 mod (n)

as well as 1 mod (3), we have,

(

⋃

v∈S

P+
n (v, S∗)

)

∪ S∗ ∪ {n−1
3

, 2n+1
3

} ∪ {2(n−1)
3

, n−4
3
} = {2n+4

3
,

2n+7
3

, . . . , n−1, 0, 1, . . . , n−10
3

, n−7
3
}∪{n+2

3
, . . . , 2n−5

3
}∪{n−1

3
, 2n+1

3
}∪{2(n−1)

3
, n−4

3
}−{0, 1, 2, . . . , n−

1} = V and thus S is a private out-dominating set of γ+
p (GB(n, d)). Therefore γ+

P (GB(n, d)) ≤
|S| = n+2

3
=

⌈

n
d+1

⌉

.

Case 3: Suppose that r = 2.

Then construct S =

n−2

3
⋃

i=0

{

n−2
3

+ i
}

. By a similar argument as in Case 1, we can prove that

P+
n (v, S∗)∩S∗ = ∅, for every v ∈ S∗. Clearly P+

n (n−2
3

, S) = {2n−1
3

}, since 2n−4
3

∈ S, P+
n (n−2

3
+

1, S∗) = {2n+2
3

,
2n+5

3
}, P+

n (n−2
3

+ 2, S∗) = {2n+8
3

, 2n+11
3

}, . . . , P+
n (n−2

3
+ n+4

6
, S∗) = {0, 1}, . . . , P+

n (2n−4
3

, S∗) =

{n−8
3

, n−5
3
}. Therefore, for every k = 1, . . . , n−2

3
− 1, P+

n (n−2
3

+ k, S∗) = {2n−4+6k
3

(mod n),
2n+6k−1

3
(mod n)} = {0, 1, . . . , n−5

3
, 2n−5

3
, . . . , n − 1}. Since n is congruent to 0 mod (n) as

well as 2 mod (3), we have,

(

⋃

v∈S

P+
n (v, S∗)

)

∪ S∗ ∪ {n−2
3

, 2n−1
3

} = {2n+2
3

, 2n+5
3

, . . . , n −

1, 0, 1, . . . , n−8
3

, n−5
3
} ∪ {n+1

3
, . . . , 2n−4

3
} ∪ {n−2

3
, 2n−1

3
} = {0, 1, 2, . . . , n − 1} = V and thus S is

a private out-dominating set of

γ+
p (GB(n, d)). Therefore γ+

p (GB(n, d)) ≤ |S| = n+1
3

=
⌈

n
d+1

⌉

. By Lemma 2.3, the theorem

follows.

We consider GB(n, d) for the special case d|n.

Theorem 2.8. γ+
p (GB(n, d)) ≤ n

d
, when d|n.

Proof. Define S = {0, 1, 2, . . . , (n
d
− 1)}. Then |S| = n

d
.

Case 1: Suppose that n
d

< d.

Define S∗ = S − {0}. For each element in S∗ in order, the private out-neighbor set contains

d consecutive integers in order. So P+
n (v, S∗), for every v ∈ S∗ contains all elements of

V (GB(n, d)) other than S∗ ∪ {0} ∪ P+
n (0, S). As desired, we have P+

n (v, S) ∩ S∗ = ∅, for

every v ∈ S∗.

Suppose that P+
n (v, S∗)∩P+

n (u, S∗) 6= ∅, for some u, v ∈ S∗ and u 6= v. Then 1 ≤ |P+
n (v, S∗)∩

P+
n (u, S∗)| ≤ d − 1.

Let k = |P+
n (v, S∗)∩P+

n (u, S∗)|, 1 ≤ k ≤ d− 1. Then |P+
n (v, S)∪P+

n (u, S)| = 2d− k, so there

6
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exists at least one vertex z ∈ P+
n (v, S∗) ∩ P+

n (u, S∗) that is not a private out-neighbor of any

vertex of S∗. Hence z ∈ S∗, which is a contradiction.

Clearly,

P+
n (0, S) =

{n

d
,
n

d
+ 1, . . . , d − 1

}

,

P+
n (1, S∗) = {d, d + 1, . . . , 2d − 1},

P+
n (2, S∗) = {2d, 2d + 1, . . . , 3d − 1}, . . . ,

P+
n

(n

d
− 1, S∗

)

= {n − d, n − d + 1, . . . , n − 1}.

Since n is congruent to 0 mod (n) as well as 0 mod (d), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪ S ∪

{n
d
, n

d
+ 1, . . . , d − 1} = {d, d + 1, . . . , n − 1} ∪ {0, 1, . . . , n

d
− 1} ∪ {n

d
, n

d
+ 1, . . . , d − 1} = V

and hence S is a private out-dominating set of GB(n, d) and γ+
p (GB(n, d)) ≤ |S| = n

d
.

Now we explain the steps given in the proof of the above

Theorem Case 1 by giving an example. Consider the graph GB(12, 4). Here S = {0, 1, 2}.

Table 1: The vertices of GB(12, 4) and their corresponding out-neighbors.

(i) (ii)

0 1 2 3 0 3 6 9

4 5 6 7 1 4 7 10

8 9 10 11 2 5 8 11

The set of elements in every row in Table 1(i) is exactly the out neighborhood of each vertex in

the same row of Table 1(ii).

Case 2: Suppose that n
d

= kd, where k is a positive integer.

Define S∗ = S − {0, 1, 2, . . . , k − 1}. By a similar argument as in Case 1, we can prove that

P+
n (v, S∗) ∩ S∗ = ∅, for every v ∈ S∗. Clearly P+

n (v, S) = ∅, for every v = 0 to k − 1. Clearly,

P+
n

( n

d2
, S∗

)

=
{n

d
,
n

d
+ 1, . . . ,

n

d
+ d − 1

}

,

P+
n

( n

d2
+ 1, S∗

)

=
{n

d
+ d,

n

d
+ d + 1, . . . ,

n

d
+ 2d − 1

}

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

P+
n

(n

d
− 1, S∗

)

= {n − d, n − d + 1, . . . , n − 1}.

Since n is congruent to 0 mod (n) and 0 mod (d), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪ S = {n
d
, n

d
+

1, . . . , n− 1} ∪ {0, 1, . . . , n
d
− 1} = V and hence S is a private out-dominating set of GB(n, d).

Therefore γ+
p (GB(n, d)) ≤ |S| = n

d
.

Now we explain the steps given in the proof of the above

Theorem Case 2 by giving an example. Consider the graph GB(32, 4). Here S = {0, 1, 2, 3, 4, 5, 6, 7}.
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Table 2: The vertices of GB(32, 4) and their corresponding out-neighbors.

(i) (ii)

0 1 2 3 0 8 16 24

4 5 6 7 1 9 17 25

8 9 10 11 2 10 18 26

12 13 14 15 3 11 19 27

16 17 18 19 4 12 20 28

20 21 22 23 5 13 21 29

24 25 26 27 6 14 22 30

28 29 30 31 7 15 23 31

The set of elements in every row in Table 2(i) is exactly the out-neighborhood of each vertex in

the same row of Table 2(ii).

Case 3: Suppose that n
d

> d.

Then define m =
⌈

n
d2

⌉

and

S∗ = S − {0, 1, 2, . . . , m − 1}. By a similar argument as in Case 1, we can prove that P+
n (v, S∗)∩

S∗ = ∅, for every v ∈ S∗. Clearly P+
n (v, S) = ∅, for every v = 0 to m− 2.

Since n is congruent to 0 mod (n) as well as 0 mod (d), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪ S =

{n
d
+d, n

d
+d+1, . . . , n−1, n

d
, n

d
+1, . . . , n

d
+d−1}∪{0, 1, . . . , n

d
−1} = V and hence S is a private

out-dominating set of GB(n, d) and γ+
p (GB(n, d)) ≤ |S| = n

d
. Therefore, γ+

p (GB(n, d)) ≤ n
d
.

Now we explain the steps given in the proof of the above

Theorem Case 3 by giving an example. Consider the graph GB(20, 4). Here S = {0, 1, 2, 3, 4}.

Table 3: The vertices of GB(20, 4) and their corresponding out-neighbors.

(i) (ii)

0 1 2 3 0 5 10 15

4 5 6 7 1 6 11 16

8 9 10 11 2 7 12 17

12 13 14 15 3 8 13 18

16 17 18 19 4 9 14 19

The set of elements in every row in Table 3(i) is exactly the out-neighborhood of each vertex in

the same row of Table 3(ii).

For 2 ≤ d ≤ 4, by giving a method to determine private out-dominating sets of GB(n, d).

Theorem 2.9. For d = 2, 4 if (d + 1)|n and 2 does not divide n, then γ+
p (GB(n, d)) = n

d+1
.

Proof. Case 1: Suppose that d = 2.

By Theorem, γ+
p (GB(n, d)) =

⌈

n
d+1

⌉

. As (d + 1)|n,
⌈

n
d+1

⌉

= n
d+1

.

Case 2: Suppose that d = 4.
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Then V (GB(n, 4)) =

n

5
−1
⋃

i=0

{5i, 5i + 1, 5i + 2, 5i + 3, 5i + 4}. Let S = {5i +2|i = 0, 1, . . . , n
5
− 1}.

For every v ∈ V , P+
n (v, S) = {20i + 8, 20i + 9, 20i + 10, 20i + 11}. The numbers 20i + 8 =

5(4i+1)+3(mod n), 20i+9 = 5(4i+1)+4(mod n), 20i+10 = 5(4i+2)(mod n), 20i+11 =

5(4i + 2) + 1(mod n) are not equal to 5j + 2 for 0 ≤ j ≤ n
5
− 1. Therefore P+

n (v, S)
⋂

S = ∅,
for all v ∈ S.

Suppose that P+
n (u, S)

⋂

P+
n (v, S) 6= ∅, for some u, v ∈ S. Then 1 ≤ |P+

n (u, S)
⋂

P+
n (v, S)| ≤ 3.

Suppose that |P+
n (u, S)

⋂

P+
n (v, S)| = 1. Then P+

n (u, S)
⋂

P+
n (v, S) consists of seven consecu-

tive integers, so there exist atleast one z ∈ P+
n (u, S)

⋂

P+
n (v, S) that is not a private out-neighbor

of any vertex of S. Hence z ∈ S, which is a contradiction.

Suppose not, |P+
n (u, S)

⋂

P+
n (v, S)| = 2. Then P+

n (u, S)
⋂

P+
n (v, S) consists of six consecutive

integers, so there exist atleast two vertices x, y ∈ P+
n (u, S)

⋂

P+
n (v, S) are not private out-

neighbors of any vertex of S. Hence x, y ∈ S, which is a contradiction.

Suppose not, |P+
n (u, S)

⋂

P+
n (v, S)| = 3. Then P+

n (u, S)
⋂

P+
n (v, S) consists of five consecutive

integers, so there exist atleast three vertices x, y, z ∈ P+
n (u, S)

⋂

P+
n (v, S) are not private out-

neighbors of any vertex of S. Hence x, y, z ∈ S, which is a contradiction.

Suppose not, |P+
n (u, S)

⋂

P+
n (v, S)| = 4. Then P+

n (u, S) = P+
n (v, S) = 4 This implies that

u = v, which is a contradiction.

Therefore S is a private out-dominating set. That is, γ+
p (GB(n, 4)) ≤ |S| = n

d+1
. By Lemma 2.3,

the theorem follows.

Theorem 2.10. For d = 3, γ+
p (GB(n, 3)) ≤

⌈

n
4

⌉

+ 1.

Proof. Define n − 4 ≡ r(mod 8) and k =
⌈

n−4
8

⌉

.

Case 1: Suppose that r = 0.

Then construct a set as S =

n

4
⋃

i=0

{k+i} and S∗ = S−{n−4
8

, 3n−4
8

}. Now, we show that P+
n (v, S∗)∩

S∗ = ∅, for every v ∈ S∗. Any vertex in S∗ is of the form n−4
8

+j, j = 1, 2, . . . , n
4
−1. P+

n (n−4
8

+

j, S∗) = {3(n−4
8

+ j)(mod n), (3(n−4
8

+ j)+1)(mod n), (3(n−4
8

+ j)+2)(mod n)}. The numbers

3(n−4
8

+j)(mod n), (3(n−4
8

+j)+1)(mod n) and (3(n−4
8

+j)+2)(mod n) are not equal to n−4
8

+i,

j = 1, 2, . . . , n
4
− 1 and i = 1, 2, . . . , n

4
− 1. Suppose not. If 3(n−4

8
+ j) + 2 ≡ (n−4

8
+ i)(mod n),

then by simple calculation we get 2(n−4
8

)+3j− i−1 ≡ 0(mod n), the maximum value of 3j− i

is 3n
4
−4. Which is a contradiction to the fact 2(n−4

8
)+3j−k−1 ≤ n

4
+3n

4
−3−2 = n−5 < n.

Similarly we can prove the other two terms are not equal to any number in S∗. Therefore

P+
n (v, S∗) = ∅, for every v ∈ S∗. Next we prove that P+

n (v, S∗) ∩ P+
n (u, S∗) = ∅, for every

u, v ∈ S∗ and u 6= v.

Suppose not. Then there exists two vertices u, v ∈ S such that P+
n (v, S∗)∩P+

n (u, S∗) 6= ∅. Also

1 ≤ |P+
n (v, S∗) ∩ P+

n (u, S∗)| ≤ 3.
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Suppose that |P+
n (v, S∗)∩P+

n (u, S∗)| = 1. Then |P+
n (v, S∗)∪P+

n (u, S)| = 5. Note that P+
n (v, S∗)∪

P+
n (u, S∗) contains five consecutive integers. Then z ∈ P+

n (v, S∗) ∩ P+
n (u, S∗) is not a private

out-neighbor of any vertex of S and so z ∈ S∗, which is a contradiction.

Suppose not, |P+
n (v, S∗) ∩ P+

n (u, S∗)| = 2. Then |P+
n (v, S∗) ∪ P+

n (u, S∗)| = 4. Note that

P+
n (v, S∗)∪P+

n (u, S∗) contains four consecutive integers. Then P+
n (v, S∗)∩P+

n (u, S∗) = {x, y}.

Both x and y are not private out-neighbor of any vertex of S∗ and so z ∈ S∗, which is a

contradiction.

Suppose not, |P+
n (v, S) ∩ P+

n (u, S)| = 3. Then |P+
n (v, S) ∪ P+

n (u, S)| = 3. This implies that

P+
n (v, S) = P+

n (u, S). Therefore u = v, which is a contradiction to the fact that P+
n (v, S∗)∩S∗ =

∅, for every v ∈ S∗.

Clearly P+
n (3n+4

8
, S) = {n−12

8
}, since n−4

8
, n+4

8
∈ S and P+

n (n−4
8

, S) = {3n+4
8

}, since 3n−12
8

, 3n−4
8

∈

S. Since n is congruent to 0 mod (n) as well as 0 mod (4), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪S∗ ∪

{n−4
8

, 3n+4
8

, 3n−4
8

, n−12
8

} = {n−20
8

, . . . , 3n−20
8

} ∪ {n+4
8

, . . . , 3n−12
8

} ∪ {n−4
8

, 3n+4
8

, 3n−4
8

, n−12
8

} = V

and so S is a private out-dominating set of GB(n, 3).

Therefore, γ+
p (GB(n, 3)) ≤ |S| = 3n−4

8
=

⌈

n
4

⌉

+ 1.

Case 2: Suppose that r 6= 0.

Then construct a set as S =
dn

4
e−1
⋃

i=0

{k + i} and S∗ = S −
{⌈

n−4
8

⌉

,
⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1
}

. By a

similar argument as in Case 1. we can prove that P+
n (v, S∗) ∩ S∗ = ∅, for every v ∈ S∗ and

P+
n (v, S∗) ∩ P+

n (u, S∗) = ∅, for every u, v ∈ S∗ and u 6= v.

Let x and y be variable bounds whose values are as defined as follows:

Table 4: The private out-neighborhood of
⌈

n−4
8

⌉

and
⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1 in S

which depends the value of r

r 1 2 3 4 5 6 7

x 0 0 0 0 1 1 1

y not defined 0 1 2 0 1 2

Clearly P+
n

(⌈

n−4
8

⌉

, S
)

=
2
⋃

i=x

{(

3
⌈

n−4
8

⌉

+ i
)

(mod n)
}

and P+
n

(⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1,

S) =
y
⋃

i=0

{(

3
(⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1
)

+ i
)

(mod n)
}

.

Since n is congruent to 0 mod (n) as well as r mod (4), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪ S∗ ∪
{⌈

n−4
8

⌉

,
⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1
}

∪ P+
n

(⌈

n−4
8

⌉

, S
)

∪ P+
n

(⌈

n−4
8

⌉

+
⌈

n
4

⌉

− 1, S
)

= V and so S is a

private out-dominating set of GB(n, 3) and γ+
p (GB(n, 3)) ≤ |S| = dn

4
e.

Therefore, γ+
p (GB(n, 3)) ≤ dn

4
e + 1.
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Example 2.11. The upper bound is sharp for the digraph GB(12, 3)

Fig. 2: The digraph GB(12, 3).

V (GB(12, 3)) = {0, 1, 2, . . . , 11}

A(GB(12, 3)) = {(0, 0), (0, 1), (0, 2), (1, 3), (1, 4), (1, 5), (2, 6), (2, 7),

(2, 8), (3, 9), (3, 10), (3, 11), (4, 0), (4, 1), (4, 2),

(5, 3), (5, 4), (5, 5), (6, 6), (6, 7), (6, 8), (7, 9), (7, 10),

(7, 11), (8, 0), (8, 1), (8, 2), (9, 3), (9, 4), (9, 5), (10, 6),

(10, 7), (10, 8), (11, 9), (11, 10), (11, 11)}

S = {1, 2, 3, 4} is a minimum private out-dominating set.

Theorem 2.12. If n = dk + 1 and d = 4, then γ+
p (GB(n, 4)) ≤

⌈

n
5

⌉

+ 1.

Proof. Define n ≡ r(mod 60).

Case 1: Suppose that r = 9.

Then define l = n−9
60

. Construct the sets S =
dn

5
e

⋃

i=0

{4l+i} and S∗ = S−{4l, 4l+dn
5
e}. Any vertex in

S∗ is of the form n−9
15

+j, j = 1, 2, . . . , dn
5
e−1. P+

n (n−9+15j

15
, S∗) = {4n−36+60j

15
(mod n), 4n−21+60j

15
(mod n),

4n−6+60j

15
(mod n), 4n+9+60j

15
(mod n)}. The numbers 4n−36+60j

15
(mod n),

4n−21+60j

15
(mod n), 4n−6+60j

15
(mod n) and 4n+9+60j

15
(mod n) are not equal to n−9

15
+i, i = 1, 2, . . . , dn

5
e−

1. Suppose not. If 4n+9+60j

15
≡ (n−9

15
+i)(mod n), then by simple calculation we get n+6

5
+4j−i ≡

0(mod n), the maximum value of 4j − i is 4dn
5
e − 4. Which is a contradiction to the fact

n+6
5

+ 4j − i = n+6
5

+ 4n
5

+ 1 − 4 = n − 9
5

< n.

Similarly we can prove the other three terms are not equal to any number in S∗. Therefore

P+
n (v, S∗)∩S∗ = ∅, for every v ∈ S∗. Next we prove that P+

n (v, S∗)∩P+
n (u, S∗) = ∅, for every
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u, v ∈ S∗ and u 6= v.

Suppose not, there exists two vertices u, v ∈ S such that P+
n (v, S∗) ∩ P+

n (u, S∗) 6= ∅, then

1 ≤ |P+
n (v, S∗) ∩ P+

n (u, S∗)| ≤ 4.

Suppose that |P+
n (v, S∗)∩P+

n (u, S∗)| = k, k = 1, 2, 3, 4. Then |P+
n (v, S∗)∪P+

n (u, S∗)| = 2d−k.

Note that P+
n (v, S∗) ∪ P ∗

n(u, S∗) contains 2d − k consecutive integers. Then there exists at least

one vertex z ∈ P+
n (v, S∗) ∩ P+

n (u, S∗) is not a private out-neighbor of any vertex of S and then

z ∈ S. This is a contradiction.

Clearly P+
n (n−19

15
, S) = {4n+9

15
(mod n)}, since 4n−36

15
(mod n), 4n−16

15
(mod n),

4n−6
15

(mod n) ∈ S and P+
n [(n−9

15
+dn

5
e, S)] = {4n−36

15
+4dn

5
e(mod n)}, 4n−36

15
+4dn

5
e+ i(mod n) ∈

S, for i = 1, 2, 3. Since n is congruent to 0 mod (n) as well as r mod (60), we have,
(

⋃

v∈S∗

P+
n (v, S∗)

)

∪S∗∪{n−9
15

, 4n+9
15

, n−9
15

+dn
5
e, 4n−36

15
+4dn

5
e}(mod n) = {4n+24

15
, 4n+39

15
, . . . , 4n−66

15
+

4dn
5
e, 4n−51

15
+ 4dn

5
e}(mod n)∪ {n+6

15
, n+21

15
, . . . , n−9

15
+ dn

5
e− 1} ∪ {n−9

15
, 4n+9

15
, n−9

15
+ dn

5
e, 4n−36

15
+

4dn
5
e}(mod n) = V and so S is a private out-dominating set of GB(n, 4).

Therefore γ+
p (GB(n, 4)) ≤ |S| = dn

5
e + 1.

Case 2: Suppose that r ≡ 0(mod 5).

Then define l = n−5
20

. Construct the set S =
dn

5
e−1
⋃

i=0

{8l + 2 + i}. By a similar argument as in

Case 1, we can prove that P+
n (v, S) ∩ S = ∅, for every v ∈ S and P+

n (v, S) ∩ P+
n (u, S) = ∅,

for every u, v ∈ S and u 6= v. Since n is congruent to 0 mod (n) as well as r mod (60), we

have,

(

⋃

v∈S∗

P+
n (v, S)

)

∪ S{0, 1, 2, . . . , n − 1} = V and so S is a private out-dominating set of

GB(n, 4).

Therefore, γ+
p (GB(n, 4)) ≤ |S| = dn

5
e.

Case 3: Suppose that r 6= 9 and 5 does not divide r.

Then define j = n−1
20

, m = dn−1
20

e and k = bn−13
60

c. Construct the sets S =
dn

5
e−1
⋃

i=0

{m + k + i} and

S∗ = S − {m + k, m + k + dn
5
e − 1}. By a similar argument as in Case 1, we can prove that

P+
n (v, S∗) ∩ S∗ = ∅, for every v ∈ S∗ and P+

n (v, S∗) ∩ P+
n (u, S∗) = ∅, for every u, v ∈ S∗ and

u 6= v.

Let x and y be variable bounds whose values are as defined as follows:

Table 5: The private out-neighborhood of m + k and m + k + dn
5
e − 1

in S which depends the value of r

r 1 13 17 21 29 33 37 41 49 53 57

x 3 0 1 2 0 1 2 3 1 2 3

y not defined 1 1 1 2 2 2 2 3 3 3
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Clearly, P+
n (m+k, S) =

3
⋃

i=x

{(4(m+k)+ i)(mod n)} and P+
n (m+k+dn

5
e−1, S) =

y
⋃

i=0

{(4(m+

k + dn
5
e − 1) + i)(mod n)}.

Since n is congruent to 0 mod (n) as well as r mod (60), we have,

(

⋃

v∈S∗

P+
n (v, S∗)

)

∪ S∗ ∪

{m+k, m+k+dn
5
e−1}∪P+

n (m+k, S)∪P+
n (m+k+dn

5
e−1, S) = V and so S is a private out-

dominating set of GB(n, 4) and γ+
p (GB(n, 4)) ≤ |S| = dn

5
e.

Therefore, γ+
p (GB(n, 4)) ≤ dn

5
e + 1.

Example 2.13. The upper bound is sharp. Consider the digraph GB(9, 4).

Fig. 3: The digraph GB(9, 4).

V (GB(9, 4)) = {0, 1, 2, . . . , 8}

A(GB(9, 4)) = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (1, 6), (1, 7),

(2, 8), (2, 0), (2, 1), (2, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 7), (4, 8), (4, 0), (4, 1), (5, 2), (5, 3), (5, 4), (5, 5),

(6, 6), (6, 7), (6, 8), (6, 0), (7, 1), (7, 2), (7, 3), (7, 4),

(8, 5), (8, 6), (8, 7), (8, 8)}

S = {0, 1, 2} is a minimum private out-dominating set.

3. Conclusion

In this paper, we established the bounds for the private out-domination number of generalized

de Bruijn digraphs. We gave technique for constructing private out-dominating set for some

class of generalized de Bruijn digraphs (d divides n, d = 2, d = 3 and n = 4k + 1, d = 4).

There are some other class of generalized de bruijn digraphs having private out-dominating sets
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(n = 5k +1, 6k +1). It is interesting to characterize the extremal graphs achieving its bounds in

some theorems.

Our future work will evaluate the efficiency of this technique in reality. Further more, it is also

interesting to study the existence of private out-domination number of generalized Kautz digraphs.

We conclude this paper with the following open problem.

Open Problem 1. Find the private out-dominating sets for the generalized de Bruijn digraphs,

when n = dk ± r, r = 0, 1, 2, ..., d − 1.
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