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Abstract

We investigate the temporal and spatial evolution of the spread of an infectious disease by

performing a long-wavelength analysis of a classical model for the geographic spread of a rabies

epidemic in a population of foxes subject to idealized boundary conditions. We consider two-

dimensional and three-dimensional landscapes consisting of an infinite horizontal strip bounded

by two walls a finite distance apart and a horizontal region bounded above and below by horizontal

walls, respectively. A nonlinear partial differential evolution Equation for the leading order of

infectives is derived. The Equation captures the space and time variations of the spread of the

disease in the weakly super critical region.

Keywords: Population dynamics, Nonlinear boundary value problem, Perturbation analysis, Asymp-

totic analysis, Pattern formation, Evolution Equations, Landau Equation

MSC 2010 No.: 92D25, 34B15, 34E10, 15B35

1. Introduction

In recent years we have observed an increasing interest in the understanding of the spatial or

geographic spread of epidemics and their interaction with landscape (Lambin et al., 2010; Ostfeld

et al., 2005). In deterministic models, the spatial variations are usually incorporated into the

equations for the time evolution of the species by the inclusion of diffusion terms. The latter
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pertain to the diffusion of the pathogens and not the species. In the majority of these models,

the space region is always assumed amorphous making them free of any characteristic length

scale. In order to describe the method, we consider a classical model involving the geographic

spread of a rabies epidemic in a population of foxes. We complement the model by a well-

defined, though idealized, set of boundary conditions. This model is considered for the sake of

illustration only and the method applies also to other epidemiology models and other types of

boundary conditions.

For simplicity, we consider a geographic region consisting of a horizontal strip of infinite hor-

izontal extent bounded by two horizontal boundaries that are a distance H apart. We will also

consider its extension to the three-dimensional region bounded from above and from below by

horizontal boundaries. Many types of boundary conditions can be prescribed at the horizontal

boundaries. For instance, new susceptible species can be introduced into the host population with

a prescribed recruitment rate by imposing a Newton law of cooling type boundary conditions.

And the region may be kept open in the horizontal direction so that periodic boundary conditions

may be imposed. Furthermore, the presence of specific boundaries will introduce a characteristic

length scale, namely H, and corresponding diffusion time scale based on H, tTD = H2/D,

where D is the diffusion coefficient. The model will then be characterized by two time scales

which are tTD and the time scale based on the contagious time of the disease. For the sake of a

simple illustration of the method, we assume that the value of H is such that the two time scales

are of the same order of magnitude. The prediction of stationary and time-dependent patterns in

biological systems is a subject of high interest to biologists (Murray, 1983; Murray, 2003).

Recent work on spatial epidemiology has focused primarily on the numerical simulation of Turing

patterns. For instance, (Liu and Jin, 2007; Sun et al., 2007) have investigated a spatial SI model

with either constant or nonlinear incidence rates and were able to numerically isolate a variety

of patterns such as stripes and spots. (Haque, 2012) puts forth very complex stationary and

time-dependent Turing patterns obtained through the a numerical simulation of the Beddington-

DeAngelis predator-prey model. These studies have considered the emergence of Turing patterns

from random perturbations of the uniform state and, with the investigations being of numerical

nature, they adopted a rectangular region with zero flux boundary conditions. Moreover, the

question of stability of these patterns has not been addressed.

We proceed in a different way in this paper, the emphasis of which is on the application of

the long wavelength expansion to population modeling. We couple the system of Equations

with well defined, though idealized, boundary conditions. This allows us to investigate both

the existence and stability of both two- and three-dimensional time-dependent or transients

or stationary solutions through the derivation of reduced evolution Equations. The software

MAPLE has been used to help with the resulting tedious algebra. These Equations are both

simpler than the original set of Equations and are able to capture the full dynamics in a small

region above threshold conditions. Evolution Equations have been used successfully in predicting

both steady and time-dependent nonlinear thermal convection patterns, in the study of thin film

instabilities and in the study of waves in reaction-diffusion systems (Proctor, 1981; Knobloch,

1986). The study of this simple model has the benefit of isolating certain interesting features of
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the interactions between landscape, through imposed boundary conditions, and the geographical

spread of a disease. The technique can be extended to the analysis of more complex models

where landscape induced patterns may evolve.

2. Model formulation and analysis

We consider a population of size N which is divided into two sub-groups, susceptibles S and

infectives I and N = S + I with the assumption that infectives have no immunity against

reinfection when they recover. The variables S and N depend on both space and time and

their dynamic evolution is well described by the reaction-diffusion epidemic model put forth by

(Murray, 1993, p.651),

∂Ŝ

∂t̂
= −r Î Ŝ + D∇2Ŝ, (1)

∂Î

∂t̂
= r Î Ŝ − q Î + D∇2Î , (2)

where D is the diffusion of the pathogen associated with the susceptible species which is assumed

equal to that associated with the infected species, r is quantifies the transmission efficiency of the

disease from infected to susceptible and 1/q is a measure of the life expectancy of an infected.

The system of Equations is made dimensionless by considering the following scalings,

I =
Î

S0
, S =

Ŝ

S0
, x =

x̂

H
, t = r S0 t̂, (3)

where S0 is some reference value of the susceptible species and where we have set the expression
√

D/r S2
0 H2 = 1 for mathematical simplicity. Thus, the resulting dimensionless system is

described by

∂S

∂t
= −I S + ∇2S, (4)

∂I

∂t
= I S − λ I + ∇2I, (5)

where S(x, z, t) ≥ 0 and I(x, z, t) ≥ 0 are the population densities of susceptible and infected

individuals at the physical location (x, z) and time t, respectively. The system is characterized

by a single dimensionless control parameter, namely λ = q/r S0. The parameter λ represents the

reciprocal of the reproduction rate. We complement Equations (1) with boundary conditions that

correspond to a region consisting of an infinite strip which, for convenience, we take it to be

horizontal. The region is then described by

Ω = {(x, z)| −∞ < x < ∞, 0 ≤ z ≤ 1}. (6)

In order to illustrate the method as simply as possible, we consider the following boundary

conditions at the horizontal boundaries, cf. schematic diagram in Figure 1. We remind the reader

that the set of Equations (1)-(2) admits traveling wave solutions with speed ≈
√

r(S + I)D in

the unbounded region {(x, y)| −∞ < x, y < ∞} provided r (S + I)/q > 1 (Noble, 1974). In the

3
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470 Layachi Hadji

Fig. 1: A schematic diagram of a population model with idealized boundaries.

following, we show that by imposing spatial boundaries, the set of Equations (3)-(4) also admits

stable stationary patterns, although the competition between these two types of patterns is not

considered.

We impose non-homogeneous Dirichlet conditions on S and Neumann conditions for I ,

S = 1,
∂I

∂z
= 0, at z = 0, 1. (7)

Other types, such as mixed boundary conditions, can also be used, though they may lead to more

tedious calculations. The condition on S is equivalent to the feeding of susceptibles through the

boundaries. The system of Equations (4)-(5) with boundary conditions, Equations (7), admits the

base state solution, SB = 1 and IB = 0 for any value of λ. We introduce the perturbations φ and

θ to the base state as I = 0 + φ and S = 1 + θ into the system of Equations (4)-(5) to obtain

∂θ

∂t
= −(1 + θ)φ + ∇2θ, (8)

∂φ

∂t
= θ φ + (1 − λ)φ + ∇2 φ, (9)

subject to the following homogeneous boundary conditions

θ = 0,
∂φ

∂z
= 0, at z = 0, 1. (10)

2.1 Stability threshold conditions

We consider normal modes of the form

[θ, φ] = [Θ(z), Φ(z)] exp (ı αx + σ t), (11)

into the linearized system Equations (8)-(9) to obtain,

d2Θ

dz2
− (α2 + σ)Θ + Φ = 0, (12)

d2Φ

dz2
− (α2 + σ + λ − 1)Φ = 0. (13)

4
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The marginal state is characterized by σ having zero imaginary part and zero real part. This is

easily observed by multiplying both sides of Equation (13) by the complex conjugate of φ and

then taking the average to find

σ =
− < |Φ′|2 > −(α2 + λ − 1) < |Φ|2 >

< |Φ|2 >
, (14)

where < . > and |.| denote the average in the z−direction and magnitude, respectively. Thus,

with σ = 0, the solution to Equation (13) is given by yields

Φ = C1 cosh (mz) + C2 sinh (mz), (15)

where C1 and C2 are arbitrary constants of integration and m =
√

(α2 + λ − 1). The application

of the boundary conditions, Equations (10), then yields the eigenvalue relation m2 = 0 or λ = 1−
α2. Therefore, the instability threshold is then given by λc = 1 and it occurs at zero wavenumber

(Busse and Riahi, 1980) or alternatively in terms of the reproduction number R = 1/λ, we have

R = 1/(1 − α2) and RC = 1. Hence, the supercritical instability region is given by either λ < 1

or R > 1.

2.2 Nonlinear evolution Equation

In this section we derive a single nonlinear evolution Equation which captures asymptotically the

time and space variations beyond the base state. The derivation is carried out using perturbation

techniques that are based on the fact that the base state is unstable to perturbations to the

population densities having zero wavenumber. Thus a long wavelength approximation can be

applied to Equations (8)-(9). We introduce the small perturbation parameter ε, 0 < ε � 1 and

the order unity parameter µ > 0 which measures the deviation from the threshold value for

linear instability, namely λ = 1− ε2 µ (note that in terms of the reproduction parameter, we have

R = 1+ ε2 µ). At the onset of instability, the characteristic horizontal dimension is much greater

than the vertical dimension and so we scale the horizontal gradients and the slow time as

∂

∂x
=

√
ε

∂

∂X
,

∂

∂z
=

∂

∂Z
, τ = ε3 t, (16)

to obtain the following scaled system

ε3 θτ = −φ − φ θ + D2θ + ε2 θXX, (17)

ε3 φτ = φ + φ θ − (1 − ε2 µ)φ + D2φ + φXX, (18)

where subscript stands for partial derivative and D = ∂/∂Z. To proceed with the derivation of the

evolution Equation, the variables in Equations (17)-(18) and corresponding boundary conditions,

Equations (10) are expanded in powers of ε as follows,

φ =

∞
∑

n=1

εn φ(n), θ =

∞
∑

n=1

εn θ(n), (19)

5
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which yields a hierarchy of boundary value problems of different orders in ε that are solved in

a successive manner. At O
(

1
)

, we obtain the leading order problem,

D2φ(1) = 0, (20)

D2θ(1) = φ(1), (21)

∂φ(1)

∂Z
= θ(1) = 0, (22)

the solution of which is given by

φ(1) = f(x, τ ), and θ(1) =
1

2
(Z2 − Z) f(x, τ ). (23)

Equating terms of order ε2 in Eqs. (17)-(18) leads to the following problems

D2φ(2) = −φ(1) θ(1) − φ(1)
XX, (24)

D2θ(2) = φ(1) θ(1) − θ(1)
XX + φ(2), (25)

the solutions of which are given by

φ(2) = −f2

24
(Z4 − 2Z3) − fXX

2
Z2 + E, (26)

θ(2) =
Q

12
(Z4 − 2Z3 + Z) − f2

720
(Z6 − 3Z5 + 2Z)−

fXX

24
(Z4 − Z) +

E

2
(Z2 − Z), (27)

where Q = (f2−fXX)/2 and where E(X) is determined by imposing the orthogonality condition

< θ(2) θ(1) >= 0. Thus, we have

E(X) =
793

7728
fXX +

139

3903
f2. (28)

Finally, application of the orthogonality condition at the order ε3 yields the sought evolution

Equation,

∂f

∂τ
= − 17

168
fXXXX − 1

56
fXX + µf − 181

13787
f3 +

319

1512
f fXX +

272

1319
(fX)2. (29)

Upon introducing the following scalings and transformations in Equation (29),

ζ = e X, η =
168

17 e4
τ, f =

√
98718

36

√
µ F, µ =

3

3808
δ2, (30)

we obtained the sought evolution Equation in canonical form,

Fη = −Fζζζζ − 2Fζζ + δ2 (F − F 3) + a δF Fζζ + b δ (Fζ)
2, (31)

where δ is the bifurcation parameter or the externally imposed control parameter, a =
√

5093/152

and b =
√

2881/90.

2.3 Analysis of the two-dimensional evolution Equation

The trivial solution F = 0 is rejected because any state that bifurcates from it would have to be

a periodic function of ζ yielding non-positive, and thus non-physical, values of infectives. We

6
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investigate the stability of the uniform solution, F = 1, by deriving a Landau Equation for the

amplitude of a small perturbation (Drazin and Reid, 2004). We let F = 1 + v(x, t) in Equation

(31) to obtain

∂v

∂η
= −vζζζζ − 2vζζ − 2δ2 v − 3δ2 v2 − δ2 v3 + a δ vζζ + a δ v vζζ + b δ (vζ)

2. (32)

The analysis of the linearized version of the above equation yields the dispersion relation,

σ = −[(k2 − 2 − a δ

2
)2] + (

2 − a δ

2
)2 − 2 δ2. (33)

Thus instabilities corresponding to the fastest growing unstable wavenumber occur whenever

either δ >
2

a − 2
√

2
= ξ or δ <

2

a + 2
√

2
= `. (34)

Next we examine the effects of the nonlinear terms in the evolution equation, Equation (32), by

considering the slow time T = γ3 η and the expansions

δ = ` − γ δ1 − γ2 δ2 + . . . , v =
∑

n=1

γn v(n). (35)

At the order O
(

γ
)

we obtain

L(v1) ≡ −v(1)
ζζζζ + (a ` − 2) (v(1))ζζ − 2 `2 v(1) = 0, (36)

the solution of which is given by

v(1) = A(η) cos (ω ζ), (37)

where ω2 =
√

2 `. Proceeding to the order O
(

γ2
)

we have

L(v(2)) = 4 ` δ1 v(1) − 3 `2 (v(1))2 − a δ1 (v(1))ζζ + a ` v(1) (v(1))ζζ + b ` (v(1)
ζ)

2. (38)

Upon setting δ1 = 0 to remove all the secular terms, Equation (38) reduces to

L(v(2)) = −3 `2 (v(1))2 + a ` v(1) (v(1))ζζ + b ` (v(1)
ζ)

2. (39)

and upon evaluating the right hand side of Equation (39), we obtain

L(v(2)) = ω4 A2 (
b

2
√

2
− 3

4
− a

2
√

2
) − (

b

2
√

2
+

3

4
+

a

2
√

2
) cos (ω ζ), (40)

whose solution is given by

v(2) = (
b

2
√

2
− 3

4
− a

2
√

2
)A2 − (

b

18
√

2
+

1

12
+

a

18
√

2
) cos (ω ζ)A2. (41)

Finally, we multiply both sides of the order O
(

γ3
)

of Equation (32) by v(1) and average over a

period 2π/ω in the ζ variable to obtain the Landau Equation for the amplitude A,

dA
dη

= (a ω2 − 8 `)A + ν A3, (42)

where the Landau constant ν is given by

−(
b

2
√

2
−3

4
− a

2
√

2
)(6 `2+ω2 a `)+(5a ω2 `) (

b

36
√

2
+

1

24
+

a

36
√

2
)−(

b

9
√

2
−1

6
− a

9
√

2
) b `ω2. (43)
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The evaluation of these constants yield

a ω2 − 8 ` = −14
√

2

463
≈ −0.043184, and ν ≈ 2.48027. (44)

Hence the Landau equation for the amplitude A is given by

dA
dη

= (−.043184 δ2 + 2.48027A2)A. (45)

The equilibrium solution Aeq =
√

(8` − aω2)δ2/ν which bifurcates from the uniform solution

F = 1 is thus unstable since the Landau constant, namely 2.48027, is positive (Drazin and

Reid, 2004). Hence F = 1 is the only two-dimensional solution and is stable in the range

` < δ < ξ. However, the numerical solution of the PDE (Equation(32)) from some prescribed

initial conditions will yield the transient solutions that are expected to describe the evolution of

the spread of the disease. In the next section, we investigate the possibility of three dimensional

solutions that bifurcate from the uniform solution F = 1.

3. Three-dimensional solutions and their stability

The extension of this theory to regions in R3, i.e. Ω = {(x, y, z)| − ∞ < x < ∞, −∞ < y <

∞, 0 ≤ z ≤ 1}, is straightforward. This may model the spread of epidemics or other diffusing

species or contaminants in a region in space that may be spatially confined in one direction. Thus,

we scale the variable y in the same way we have scaled x and start the analysis by considering

the three-dimensional version of Equation (32) given by

∂v

∂η
= −∇4v + (aδ − 2)∇2v − 2 δ2 v − 3 δ2v2 − δ2 v3 + a δ v ∇2v + b δ |∇v|2. (46)

We consider periodic solutions that tessellate the whole two-dimensional plane R2, namely pat-

terns in the form of either squares and hexagons, the description of which appear in Chandrasekhar

text (Chandrasekhar, 1961). Furthermore, we omit the display of the results pertaining to the

square patterns for the following reasons. They were found to be unstable and the results are

straightforward extensions of the one-dimensional case carried out in the previous section to R2.

In order to derive the amplitude equation for the time evolution of the hexagonal form solution,

it is sufficient to consider the scalings, (Matthews, 1988). v = γ v(1) + γ2 v(2) + . . .; η = γ2 T

and δ = ` − γ δ1 + . . . with δ1 > 0. The linear part is defined by

L[v(1)] = −∇4v + (a ` − 2)∇2v − 2 `2 v, (47)

which admits the solution with hexagonal form (Chandrasekhar, 1961),

v(1)(ζ, ρ) = A [cos (ω ρ) + 2 cos (
√

3 ω ζ/2) cos (ω ρ/2)] = AH(ζ, ρ). (48)

The planform function H in Equation (48) satisfies ∇2H = −ω2 H and yields the dispersion

relation, ω4 + (a` − 2)ω2 + 2`2 = 0. Proceeding to the next order in γ, we collect all terms

problem. Upon collecting all terms that are of order γ2, we obtain

dv(1)

dT
= (4 ` + a ω2) δ1 v(1) − (3 `2 + a `ω2) (v(1))2 + b ` |∇ v(1)|2. (49)

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 9 [2014], Iss. 2, Art. 2

https://digitalcommons.pvamu.edu/aam/vol9/iss2/2



AAM: Intern. J., Vol. 9, Issue 2 (December 2014) 475

Upon multiplying both sides of Equation (49) by v(1) and averaging over a periodic box of period

2π/ω in both the ζ and ρ variables, we obtain an equation for the time evolution of the amplitude

A,

dA
dT

=
8π2

√
3

ω2
(4 ` + a ω2) δ1 A + [

14 b `
√

3 π2

3
− 8

√
3 π2

ω2
(3 `2 + a `ω2)]A2. (50)

It is convenient to express the coefficients in Equation (50) numerically. We have

dA
dT

= 1178.4 δ1 A− 146.3A2 (51)

The equilibrium solution, Aeq ≈ 8.05 δ1 is found to be stable since the Landau constant, namely

the value -146.3, is negative. Thus, supercritical positive solution in the form of hexagons exist

and are stable. At the other end of the stability region, δ > ξ, we let δ = ξ + γ δ1, with δ1 > 0.

Upon repeating the previous calculations, we obtain the following amplitude equation,

dA
dT

= −334.38 δ1 A− 340.73A2 . (52)

The stability analysis shows that the equilibrium solution, Aeq = 0.98 δ1 is stable.

4. Results and Discussion

When reverting to the original variables and parameter λ, we have found that there exists a stable

uniform solution, namely

f =

√
98718

36

√
µF = (

√
98718

36
) · ( 3

3808
) ·

√
1 − λ

ε
· (1), 0 < ε � 1 (53)

which yields the following expressions for the population density of infectives and corresponding

space-dependent population density for the susceptibles,

I ≈ 0.25
√

1 − λ, S ≈ 1 + 0.125 (z2 − z)
√

1 − λ. (54)

These are plotted in Figure (2). The dependence of I on z is such that the minimum occurs at

the midpoint between the two boundaries. Furthermore, both I and S vary as ∼
√

R − 1 for a

small deviation of R from unity.

These solutions are found to be stable in the range, 1 − 8 ε2 ξ2/3808 < λ < 1 − 8 ε2 `2/3808.

These solutions satisfy the O
(

ε
)

dimensionless system of Equations Equations (4)-(5). The other

space-dependent solutions which bifurcate from the uniform solution, Equation (46), and which

are depicted schematically in Figure (3), are now described. For δ < `, where δ = ` − γ δ1, and

δ1 = O
(

1
)

, we have

f =

√
98718

36

√
µF − γ v(1), (55)

=

√
98718

36

√
µ (` − γ δ1) + γ v(1), (56)

≈ 0.058 + γ δ1 (−0.25 + 8.05H(
√

3 ε/34 x,
√

3 ε/34 y)), (57)
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Fig. 2: Plots of the population density of susceptibles, S, versus the variable z for some

super-critical parameter values (left) and of the population density of infectives, I , as function

of the reproduction number R (right), respectively.

which, in terms of original variables, yields the following periodic solutions

I ≈ ε [0.058 + (γ δ1) (−0.25 + 8.05H(
√

3 ε/34 x,
√

3 ε/34 y))], (58)

S ≈ 1 + ε (z2 − z)[0.058 + (γ δ1) (−0.25 + 8.05H(
√

3 ε/34 x,
√

3 ε/34 y))]/2, (59)

whose region of stability is 1− (3/3808) `2 ε2 < λ < 1. And proceeding in a similar fashion, we

find that at the other end, we have

I ≈ ε [0.17 + (γ δ1) (0.25 − 0.98H(
√

3 ε/34 x,
√

3 ε/34 y))], (60)

S ≈ 1 + ε (z2 − z)[0.17 + (γ δ1) (0.25 − 0.98H(
√

3 ε/34 x,
√

3 ε/34 y))]/2. (61)

that is table in the range 1 − (3/3808) ξ2 ε2 > λ.

Fig. 3: Plot of the endemic state described by Equation (57) for parameter values δ1 = 1,

ε = γ = 0.01 (left) and its projection onto the x − y plane (right).

5. Conclusion

We have considered a model for the spread of a disease which includes spatial diffusion in order

to capture the effect of landscape. In the infinite domain, the model predicts stable traveling wave
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solutions (Murray, 1993). However, by complementing the model with horizontal boundaries, we

were able to show the existence and stability of stable periodic structures. We have considered

an approach that is based on the fact that the base state is unstable to disturbances of infinitely

long wavelength. Thus, the nonlinear solutions and their stability are amenable to analysis by

using long wavelength asymptotics which reduces the full mathematical problem into a single

evolution equation. The latter describes the time and space development of the leading order

quantity of infectives. The weakly non-linear solutions and their stability are determined through

the analysis of the evolution equation, Equation (46), which describes the space and time evolution

of infectives.

With HL = 0.058 + (γ δ1) (−0.25 + 8.05H(
√

3 ε/34 x,
√

3 ε/34 y)), p = 8/3808 and HR =

0.17 + (γ δ1) (0.25 − 0.98H(
√

3 ε/34 x,
√

3 ε/34 y)) and for 0 < ε � 1, we have summarized

the findings in the following table.

Table 1. Summary of the steady stable patterns as function of the reproduction number R.

R Infectives (I) Susceptibles (S)

R ≤ 1 0 1

1 + p ε2 `2 < R < 1 + p ε2 ξ2 0.25
√

(R − 1)/R 1 + 0.125 (z2 − z)
√

(R − 1)/R

1 < R < 1 + p `2 ε2 εHL 1 + ε (z2 − z)HL/2

R > 1 + p ξ2 ε2 εHR 1 + ε(z2 − z)HR/2

These steady patterns in the non-linear regime beyond the critical value of the reproduction

number R owe their existence to the constant feeding into the geographical region through the

boundary conditions for S. The analysis of this simple model shows, although qualitatively, how

the landscape influences the spread of a disease through self-organization. And by opting for

the parallel-planes geometry, we were able to quantify those patterns and get a glimpse of what

more realistic geographical boundaries can induce. The numerical simulations of the full three-

dimensional evolution equation, Equation (31), will reveal other types of time dependent patterns,

the stability of which need also to be carried out numerically.
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