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Abstract

In this paper, we derive generating functions for the Laguerre-Gould Hopper polynomials in

terms of the generalized Lauricella function by using series rearrangement techniques. Further,

we derive the summation formulae for that polynomials by using different analytical means on

its generating function or by using certain operational techniques. Also, generating functions

and summation formulae for the polynomials related to Laguerre-Gould Hopper polynomials are

obtained as applications of main results.
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1. Introduction and preliminaries

Very recently (Khan and Al-Gonah, 2012) introduced the Laguerre-Gould Hopper polynomials

(LGHP in the following) LH
(m,s)
n (x, y, z) and studied their properties. These polynomials are

449
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450 S. Khan and A. A. Al-Gonah

defined as:

LH
(m,s)
n (x, y, z) = n!

[ n
s
]

∑

k=0

zkmLn−sk(x, y)

k!(n− sk)!
, (1.1)

where the symbol
[

n
s

]

denotes the greatest integer less than or equal n
s

and mLn(x, y) are the

2-variable generalized Laguerre polynomials (2VgLP) defined by the series definition (Dattoli

et al., 1999):

mLn(x, y) = n!

[ n
m

]
∑

r=0

xryn−mr

(r!)2(n −mr)!
(1.2)

and by the operational definition

mLn(x, y) = exp

(

D−1
x

∂m

∂ym

)

{

yn
}

, (1.3)

where D−1
x denotes the inverse of the derivative operator Dx := ∂

∂x
and is defined in such a way

that

D−n
x

{

f(x)
}

=
1

(n− 1)!

∫ x

0

(x− ξ)n−1f(ξ)dξ, (1.4)

so that for f(x) = 1, we have

D−n
x

{

1
}

=
xn

n!
. (1.5)

The polynomials LH
(m,s)
n (x, y, z) are defined by the following generating function:

exp(yt+ zts)C0(−xt
m) =

∞
∑

n=0

LH
(m,s)
n (x, y, z)

tn

n!
, (1.6)

where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi functions Cn(x) are

defined as (Andrews, 1985):

Cn(x) =

∞
∑

r=0

(−1)rxr

r!(n+ r)!
. (1.7)

Also, we recall that the generalized Bessel function or the Bessel-Wright function is defined by

(Srivastava and Manocha, 1984)

J (m)
n (x) =

∞
∑

k=0

(−1)kxk

k!(n+mk)!
, (1.8)

which for x→ −x yields (Dattoli et al., 2006, p.33)

Wn(x;m) =
∞

∑

k=0

xk

k!(n+mk)!
(n ∈ N0 := N ∪ {0};m ∈ N) (1.9)

and for m = 1, reduces to the nth order Tricomi functions (1.7). The associated Laguerre

polynomials Lαn(x) are defined by the series (Abramowitz and Stegun, 1992)

Lαn(x) =
n

∑

k=0

(−1)k (n + α)! xk

(n− k)!(α+ k)!k!
, α = 0, 1, 2, ... . (1.10)

2
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Also, the LGHP LH
(m,s)
n (x, y, z) are defined by the following operational rules:

LH
(m,s)
n (x, y, z) = exp

(

z
∂s

∂ys

)

{

mLn(x, y)
}

, (1.11a)

LH
(m,s)
n (x, y, z) = exp

(

D−1
x

∂m

∂ym

)

{

H(s)
n (y, z)

}

, (1.11b)

where H
(s)
n (x, y) are the higher-order Hermite polynomials, some times called the Kampé de

Fériet or the Gould-Hopper polynomials (GHP) defined by (Gould and Hopper, 1962, p.58), see

also (Dattoli et al., 2000a)

gsn(x, y) = H(s)
n (x, y) = n!

[ n
s
]

∑

k=0

ykxn−sk

k!(n− sk)!
. (1.12)

The polynomials H
(s)
n (x, y) are specified by the generating function

exp(xt+ yts) =
∞

∑

n=0

H(s)
n (x, y)

tn

n!
(1.13)

and by the operational definition

H(s)
n (x, y) = exp

(

y
∂s

∂xs

)

{

xn
}

. (1.14)

(Gould and Hopper, 1962) used the notation gsn(x, y) for these polynomials, but due to their link

with the Hermite polynomials the notation H
(s)
n (x, y) was used in most of the works. We also

follow the notation H
(s)
n (x, y) in this paper. We note the following special cases:

1Ln(−x, y) = Ln(x, y), (1.15)

H(2)
n (x, y) = Hn(x, y), (1.16a)

H(s)
n (x, 0) = Hn(x, 0) = xn, (1.16b)

where Ln(x, y) denotes the 2-variable Laguerre polynomials (2VLP) (Dattoli and Torre, 1998)

and Hn(x, y) denotes the 2-variable Hermite-Kampé de Fériet polynomials

(2VHKdFP) (Appell and de Fériet, 1926) respectively. Also, we note that

Hn

(

x,−
1

2

)

= Hen(x), (1.17)

where Hen(x) denotes the classical Hermite polynomials (Andrews, 1985). Further, we have

LH
(1,2)
n (−x, y, z) = LHn(x, y, z), (1.18)

LH
(1,2)
n

(

−x, y,−
1

2

)

= LHn

(

x, y,−
1

2

)

= LH
∗
n(x, y) (1.19)

and

LH
(1,1)
n (−x, y, z) = Ln(x, y + z), (1.20)

3
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452 S. Khan and A. A. Al-Gonah

where LHn(x, y, z) denotes the 3-variable Laguerre-Hermite polynomials (3VLHP) (Dattoli et al.,

2000a) and LH
∗
n(x, y) denotes the 2-variable Laguerre-Hermite polynomials (2VLHP) (Dattoli

et al., 2000b), respectively. The study of the properties of multi-variable generalized special

functions has provided new means of analysis for the solution of large classes of partial differential

equations often encountered in physical problems. The relevance of the special functions in

physics is well established. Most of the special functions of mathematical physics as well as

their generalizations have been suggested by physical problems. We know that the 2VHKdFP

Hn(x, y) are solutions of the heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2
Hn(x, y), (1.21a)

with the initial condition

Hn(x, 0) = xn. (1.21b)

Also, the 2VLP Ln(x, y) are natural solutions of the equation

∂

∂y
Ln(x, y) = −

(

∂

∂x
x
∂

∂x

)

Ln(x, y), (1.22a)

with the initial condition

Ln(x, 0) =
(−x)n

n!
, (1.22b)

which is a kind of heat diffusion equation of Fokker-Plank type and is used to study the beam

life-time due to quantum fluctuation in storage rings (Wrüullich, 1992). In reference (Dattoli,

2004), it has been shown that the summation formulae of special functions, often encountered in

applications ranging from electromagnetic processes to combinatorics, can be written in terms of

Hermite polynomials of more than one variable. The work of this paper is motivated by the results

on generating functions for the extended generalized Hermite polynomials due to (Greubel, 2006)

and the recently derived summation formulae for Hermite and the Gould-Hopper polynomials by

(Khan et al., 2008) and (Khan and Al-Saad, 2011). Throughout this work, we use the Pochhammer

symbol (λ)n , defined by (Srivastava and Manocha, 1984, p.21)

(λ)n =

{

1, if n = 0

λ(λ + 1) · · · (λ+ n− 1), if n ∈ 1, 2, 3, · · · ,
(1.23)

also, we note that

(λ)m+n = (λ)m(λ+m)n, (1.24)

(n −mk)! =
(−1)mk n!

(−n)mk
, 0 ≤ k ≤

[ n

m

]

(1.25)

and

(n−M)! =
(−1)Mn!

(−n)M
, 0 ≤M ≤ n, (1.26)

where M is defined by M = m1k1 +m2k2 + · · ·+mjkj, m1, m2, ..., mj ∈ N ; k1, k2, ..., kj ∈ N0.

We recall that, the Kampé de Fériet function of two variables is defined by (Srivastava and

Manocha, 1984, p.63)

F p:q;k
l:m;n

[

(ap): (bq);(ck);

(αl):(βm);(γn);x, y
]

=
∞

∑

r,s=0

∏p
j=1(aj)r+s

∏q
j=1(bj)r

∏k
j=1(cj)s

∏l

j=1(αj)r+s
∏m

j=1(βj)r
∏n

j=1(γj)s

xr

r!

ys

s!
. (1.27)

4
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A further generalization of the Kampé de Fériet function (1.27) is the generalized Lauricella

function of several variables, which is defined as (Srivastava and Manocha, 1984, p.64):

F
A:B′;B′′;...;B(n)

C:D′;D′′;...;D(n) (z1, z2, ..., zn)

≡ F
A:B′;B′′;...;B(n)

C:D′;D′′;...;D(n)

(

[(a):θ′,θ′′,...,θ(n)]:[(b′):φ′];[(b′′):φ′′];...;[(b(n)):φ(n)];

[(c):ψ′,ψ′′,...,ψ(n)]:[(d′):δ′];[(d′′):δ′′];...;[(d(n)):δ(n)];
z1, z2, ..., zn

)

=

∞
∑

m1,m2,...,mn=0

Ω(m1, m2, ..., mn)
zm1
1

m1!

zm2
2

m2!
· · ·

zmn
n

mn!
, (1.28)

where

Ω(m1, m2, ..., mn)

:=

∏A
j=1(aj)m1θ

′

j+m2θ
′′

j +···+mnθ
(n)
j

∏B′

j=1(b
′
j)m1φ

′

j

∏B′′

j=1(b
′′
j )m2φ

′′

j
...

∏B(n)

j=1 (b
(n)
j )

mnφ
(n)
j

∏C

j=1(cj)m1ψ
′

j+m2ψ
′′

j +···+mnψ
(n)
j

∏D′

j=1(d
′
j)m1δ

′

j

∏D′′

j=1(d
′′
j )m2δ

′′

j
...

∏D(n)

j=1 (d
(n)
j )

mnδ
(n)
j

and the coefficients

θ
(k)
j , j = 1, 2, ..., A; φ

(k)
j , j = 1, 2, ..., B(k); ψ

(k)
j , j = 1, 2, ..., C ; δ

(k)
j , j = 1, 2, ..., D(k);

for all k ∈
{

1, 2, ..., n
}

are real and positive, (a) abbreviates the array of A parameters a1, a2, ..., aA,

(b(k)) abbreviates the array of B(k) parameters b
(k)
j , j = 1, 2, ..., B(k); for all k ∈

{

1, 2, ..., n
}

with similar interpretations for (c) and (d(k)), k = 1, 2, ..., n; et cetera. Note that, when the

coefficients in equation (1.28) equal to 1, the generalized Lauricella function (1.28) reduces to a

direct multivariable extension of the Kampé de Fériet function (1.27). Taking coefficients equal

to 1 in definition (1.28) and for n = 3, we have the Kampé de Fériet function of three variables

F p:q1;q2;q3
l:s1;s2;s3

(z1, z2, z3) ≡ F p:q1;q2;q3
l:s1;s2;s3

(

(ap):(b′q1);(b′′q2);[(b′′′q3
);

(cl):(d′s1);(d′′s2);(d′′′s3
); z1, z2, z3

)

=
∞

∑

m1,m2,m3=0

∏p
j=1(aj)m1+m2+m3

∏q1
j=1(b

′
j)m1

∏q2
j=1(b

′′
j )m2

∏q3
j=1(b

′′′
j )m3

∏l
j=1(cj)m1+m2+m3

∏s1
j=1(d

′
j)m1

∏s2
j=1(d

′′
j )m2

∏s3
j=1(d

′′′
j )m3

×
zm1
1

m1!

zm2
2

m2!

zm3
3

m3!
. (1.29)

As an illustration, we derive the following explicit representation of the LGHP

LH
(m,s)
n (x, y, z) in terms of the generalized Lauricella function of two variables:

LH
(m,s)
n (x, y, z) = ynF

1:0;0
0:0;1

(

[−n:s,m]:−; −;
−:−;[1:1]; z

(

−1

y

)s

, x

(

−1

y

)m)

. (1.30)

In order to derive representation (1.30), we use series definition (1.2) of the 2VgLP mLn(x, y)

in the r.h.s. of definition (1.1), so that we have

LH
(m,s)
n (x, y, z) = n!

sk+mr≤n
∑

k,r=0

zkxryn−sk−mr

k!(r!)2(n− sk −mr)!
. (1.31)

Now, using equation (1.26) and the elementary factorial property n! = (1)n in the r.h.s. of equation

(1.31) and in view of definition (1.28) (for n = 2), we get representation (1.30). In this paper,

5
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454 S. Khan and A. A. Al-Gonah

we derive the generating functions for the LGHP LH
(m,s)
n (x, y, z) in terms of the generalized

Lauricella function of three variables F
A:B′;B′′;B′′′

C:D′;D′′;D′′′ [.] by using series rearrangement techniques.

Further, we derive the summation formulae for the LGHP by using different analytical means on

the generating function of the LGHP LH
(m,s)
n (x, y, z) or by using certain operational techniques.

2. Generating functions for the Laguerre-Gould Hopper polynomials

First, we prove the following generating function for the LGHP LH
(m,s)
n (x, y, z).

Theorem 2.1. For a suitable bounded sequence {f(n)}∞n=0 , the following generating function

for the LGHP LH
(m,s)
n (x, y, z) holds true:

∞
∑

n=0

f(n) LH
(m,s)
n (x, y, z) tn

=
∞

∑

n,k,r=0

f(n+ sk +mr)
(1)n+sk+mr

(1)r

(yt)n

n!

(zts)k

k!

(xtm)r

r!
. (2.1)

Proof. Denoting the l.h.s. of equation (2.1) by ∆1 and using equation (1.31), we find

∆1 = n!
∞

∑

n=0

sk+mr≤n
∑

k,r=0

f(n)
zkxryn−sk−mrtn

k!(r!)2(n− sk −mr)!
.

Replacing n by n+sk+mr in the above equation and using the lemma (Srivastava and Manocha,

1984, p.102):

∞
∑

n=0

M≤n
∑

k1,k2,...,kr=0

φ(k1, k2, · · · , kr;n) =
∞

∑

n=0

∞
∑

k1,k2,...,kr=0

φ(k1, k2, · · · , kr;n+M), (2.2)

where M is defined by M = m1k1 +m2k2 + · · ·+mjkj, m1, m2, ..., mj ∈ N ; k1, k2, ..., kj ∈ N0,

we find

∆1 =

∞
∑

n,k,r=0

f(n + sk +mr)
(n+ sk +mr)! (yt)n(zts)k(xtm)r

n!k!(r!)2
.

Now, using the elementary factorial property n! = (1)n , we get the r.h.s. of assertion (2.1) of

Theorem 2.1.

Remark 2.1. Taking f(n) =
Qp

j=1(aj)n
Qq

j=1(bj)n

Ql
j=1(cj)n

in assertion (2.1) of Theorem 2.1 and using

definition (1.28) (for n = 3), we deduce the following consequence of Theorem 2.1.

Corollary 2.1. The following generating function for the LGHP LH
(m,s)
n (x, y, z) holds true:

∞
∑

n=0

∏p

j=1(aj)n
∏q

j=1(bj)n
∏l

j=1(cj)n
LH

(m,s)
n (x, y, z) tn

= F
p+1:0;0;0
q+l:0;0;1

(

[(a)p
1:1,s,m],[1:1,s,m]:−;−; −;

[(b)q
1:1,s,m],[(c)l

1:1,s,m]:−;−;[1:1];
yt, zts, xtm

)

, (2.3)

6
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where the notation (a)p1 is used to represent the product
∏p

j=1 aj.

Remark 2.2. Taking f(n) =
Qp

j=1(aj)n
Qq

j=1(bj)n
in assertion (2.1) of Theorem 2.1 and using definition

(1.28) (for n = 3), we deduce the following consequence of Theorem 2.1.

Corollary 2.2. The following generating function for the LGHP LH
(m,s)
n (x, y, z) holds true:

∞
∑

n=0

∏p

j=1(aj)n
∏q

j=1(bj)n
LH

(m,s)
n (x, y, z) tn

= F p+1:0;0;0
q:0;0;1

(

[(a)p
1:1,s,m],[1:1,s,m]:−;−; −;

[(b)q
1:1,s,m]:−;−;[1:1];

yt, zts, xtm
)

. (2.4)

Next, we prove the following bilateral generating function for the LGHP LH
(m,s)
n (x, y, z).

Theorem 2.2. The following bilateral generating function for the LGHP LH
(m,s)
n (x, y, z) holds

true:
∞

∑

n=0

J (s)
n (w) LH

(m,s)
n (x, y, z)

tn

n!
= F 0:0;0;0

1:0;0;1

(

−:−;−; −;
[1:1,s,m]:−;−;[1:1]; yt, zt

s − w, xtm
)

. (2.5)

Proof. Denoting the l.h.s. of equation (2.5) by ∆2 and using definitions (1.8) and (1.31), we find

∆2 =
∞

∑

n,p=0

sk+mr≤n
∑

k,r=0

(−1)pwpzkxryn−sk−mrtn

p!(n+ sp)!k!(r!)2(n− sk −mr)!
.

Replacing n by n+ sk + mr and using equation (2.2) in the resultant equation, we find

∆2 =
∞

∑

n,p,k,r=0

(−1)pwpynzkxrtn+sk+mr

(n+ sk + sp +mr)! p!n! k! (r!)2
.

Now, replacing k by k − p in the above equation and using equation (1.25) (for m = 1) in the

resultant equation, we find

∆2 =
∞

∑

n,k,r=0

(yt)n(zts)k(xtm)r

(1)n+sk+mr (1)rn!k!r!

k
∑

p=0

(−k)p
p!

( w

zts

)p

. (2.6)

Finally, using the expansion (Srivastava and Manocha, 1984)

(1 − x)−λ =
∞

∑

n=0

(λ)n
xn

n!
, (2.7)

and definition (1.28) (for n = 3) in equation (2.6), we get the r.h.s. of assertion (2.5) of Theorem

2.2.

Remark 2.3. Taking w = zts in assertion (2.5) of Theorem 2.2, we deduce the following

consequence of Theorem 2.2.

7
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Corollary 2.3. The following bilateral generating function for the LGHP LH
(m,s)
n (x, y, z) holds

true:
∞

∑

n=0

J (s)
n (zts) LH

(m,s)
n (x, y, z)

tn

n!
= F 0:0;0

1:0;1

(

−:−; −;
[1:1,m]:−;[1:1]; yt, xtm

)

. (2.8)

In the forthcoming section, we establish summation formulae for the LGHP LH
(m,s)
n (x, y, z) by

using series rearrangement techniques and also by making use of the operational techniques.

3. Summation formulae for the Laguerre-Gould Hopper polynomials

First, we prove the following result involving the LGHP LH
(m,s)
n (x, y, z) by using series rear-

rangement techniques:

Theorem 3.1. The following summation formula for the LGHP LH
(m,s)
n (x, y, z) holds true:

LH
(m,s)
k+l (x, w, v) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

H
(s)
n+r(w − y, v − z) LH

(m,s)
k+l−n−r (x, y, z). (3.1)

Proof. Replacing t by t + u in equation (1.6) and using the formula (Srivastava and Manocha,

1984, p.52):
∞

∑

n=0

f(n)
(x + y)n

n!
=

∞
∑

n,m=0

f(n +m)
xn

n!

ym

m!
, (3.2)

in the resultant equation, we find the following generating function for the LGHP LH
(m,s)
n (x, y, z):

exp(y(t+ u) + z(t+ u)s)C0(−x(t+ u)m) =
∞

∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, y, z),

which can be written as

C0(−x(t+ u)m) = exp(−y(t+ u) − z(t+ u)s)
∞

∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, y, z). (3.3)

Replacing y by w and z by v in equation (3.3) and equating the resultant equation to itself, we

find

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, w, v)

= exp((w − y)(t+ u) + (v − z)(t+ u)s)
∞

∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, y, z), (3.4)

which on using the generating function (1.13) in the exponential on the r.h.s., becomes

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, w, v)

8
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=
∞

∑

n=0

(t+ u)n

n!
H(s)
n (w − y, v − z)

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, y, z). (3.5)

Again, using formula (3.2) in the first summation on the r.h.s. of equation (3.5), we have

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, w, v)

=

∞
∑

n,r=0

tnur

n!r!
H

(s)
n+r(w − y, v − z)

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, y, z). (3.6)

Now, replacing k by k − n and l by l − r in the r.h.s. of equation (3.6) and using the lemma

(Srivastava and Manocha, 1984, p.100):

∞
∑

k=0

∞
∑

n=0

A(n, k) =
∞

∑

k=0

k
∑

n=0

A(n, k − n), (3.7)

in the resultant equation, we find

∞
∑

k,l=0

tk

k!

ul

l!
LH

(m,s)
k+l (x, w, v)

=
∞

∑

k,l=0

k,l
∑

n,r=0

tkul H
(s)
n+r(w − y, v − z)

n!r!(k − n)!(l− r)!
LH

(m,s)
k+l−n−r(x, y, z). (3.8)

Finally, on equating the coefficients of like powers of t and u in equation (3.8), we get assertion

(3.1) of Theorem 3.1.

Remark 3.1. Replacing v by z in assertion (3.1) of Theorem 3.1 and using relation (1.16b), we

deduce the following consequence of Theorem 3.1.

Corollary 3.1. The following summation formula for the LGHP LH
(m,s)
n (x, y, z) holds true:

LH
(m,s)
k+l (x, w, z) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

(w − y)n+r
LH

(m,s)
k+l−n−r(x, y, z). (3.9)

Next, we prove the following result involving the product of the LGHP LH
(m,s)
n (x, y, z) by using

series rearrangement techniques:

Theorem 3.2. The following summation formula involving product of the LGHP LH
(m,s)
n (x, y, z)

holds true:

LH
(m,s)
n (x, w, u) LH

(m,s)
r (X,W,U) =

n,r
∑

k,p=0

(

n

k

)(

r

p

)

H
(s)
k (w − y, u− z)

×H(s)
p (W − Y, U − Z) LH

(m,s)
n−k (x, y, z) LH

(m,s)
r−p (X, Y, Z). (3.10)

9
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Proof. Consider the product of the LGHP generating function (1.6) in the following form:

exp(yt+ Y T + zts + ZT s) C0(−xt
m) C0(−XT

m)

=
∞

∑

n=0

∞
∑

r=0

LH
(m,s)
n (x, y, z) LH

(m,s)
r (X, Y, Z)

tn

n!

T r

r!
. (3.11)

Replacing y by w, z by u, Y by W and Z by U in equation (3.11) and equating the resultant

equation to itself, we find

∞
∑

n=0

∞
∑

r=0

LH
(m,s)
n (x, w, u) LH

(m,s)
r (X,W,U)

tn

n!

T r

r!
= exp((w − y)t+ (u− z)ts)

× exp((W − Y )T + (U − Z)T s)
∞

∑

n=0

∞
∑

r=0

LH
(m,s)
n (x, y, z) LH

(m,s)
r (X, Y, Z)

tn

n!

T r

r!
, (3.12)

which on using the generating function (1.13) in the exponentials on the r.h.s., becomes

∞
∑

n=0

∞
∑

r=0

LH
(m,s)
n (x, w, u) LH

(m,s)
r (X,W,U)

tn

n!

T r

r!

=
∞

∑

n,k=0

∞
∑

r,p=0

H
(s)
k (w − y, u− z) LH

(m,s)
n (x, y, z)

tn+k

n!k!
H(s)
p (W − Y, U − Z)

× LH
(m,s)
r (X, Y, Z)

T r+p

r!p!
. (3.13)

Finally, replacing n by n − k, r by r − p and using equation (3.7) in the r.h.s. of the above

equation and then equating the coefficients of like powers t and T , we get assertion (3.10) of

Theorem 3.2.

Remark 3.2. Replacing u by z and U by Z in assertion (3.10) of Theorem 3.2 and using relation

(1.16b), we deduce the following consequence of Theorem 3.2.

Corollary 3.2. The following summation formula involving product of the LGHP LH
(m,s)
n (x, y, z)

holds true:

LH
(m,s)
n (x, w, z) LH

(m,s)
r (X,W,Z) =

n,r
∑

k,p=0

(

n

k

)(

r

p

)

(w − y)k(W − Y )p

× LH
(m,s)
n−k (x, y, z) LH

(m,s)
r−p (X, Y, Z). (3.14)

Further, we prove the following results connecting the LGHP LH
(m,s)
n (x, y, z) with the 2VgLP

mLn(x, y) and the GHP H
(s)
n (x, y) by using operational techniques:

Theorem 3.3. The following summation formula for the LGHP LH
(m,s)
n (x, y, z) holds true:

LH
(m,s)
k+l (z, w, y) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

mLn+r(z, w − x) H
(s)
k+l−n−r (x, y). (3.15)

10
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Proof. We start by a recently derived summation formula for the GHP H
(s)
n (x, y) (Khan and

Al-Saad, 2011, p.1538)

H
(s)
k+l(w, y) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

(w − x)n+rH
(s)
k+l−n−r (x, y). (3.16)

Operating exp
(

D−1
z

∂m

∂wm

)

on both sides of equation (3.16), we have

exp

(

D−1
z

∂m

∂wm

)

H
(s)
k+l(w, y)

=

k,l
∑

n,r=0

(

k

n

)(

l

r

)

H
(s)
k+l−n−r(x, y) exp

(

D−1
z

∂m

∂wm

)

(w − x)n+r . (3.17)

Using the operational definitions (1.11b) and (1.3) in the l.h.s. and r.h.s., respectively of equation

(3.17), we get assertion (3.15) of Theorem 3.3.

Theorem 3.4. The following summation formula for the LGHP LH
(m,s)
n (x, y, z) holds true:

LH
(m,s)
k+l (y, w, z) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

H
(s)
n+r(w − x, z) mLk+l−n−r(y, x). (3.18)

Proof. Replacing s by m and y by D−1
y in equation (3.16) and then using the following link

between the GHP H
(s)
n (x, y) and the 2VgLP mLn(x, y) (Dattoli et al., 1999, p.213):

H(m)
n (y,D−1

x ) = mLn(x, y), (3.19)

in the resultant equation, we find the following summation formula for the 2VgLP mLn(x, y):

mLk+l(y, w) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

(w − x)n+r
mLk+l−n−r(y, x). (3.20)

Now, operating exp
(

z ∂s

∂ws

)

on equation (3.20) and using operational definitions (1.11a) and (1.14)

in the l.h.s. and r.h.s., respectively of the resultant equation, we get assertion (3.18) of Theorem

3.4.

4. Applications

I. Taking p = q = l = 1 in equation (2.3), we get

∞
∑

n=0

(a1)n
(b1)n(c1)n

LH
(m,s)
n (x, y, z) tn = F 2:0;0;0

2:0;0;1

(

[a1:1,s,m],[1:1,s,m]:−;−; −;
[b1:1,s,m],[c1:1,s,m]:−;−;[1:1]; yt, zt

s, xtm
)

. (4.1)

Further, taking b1 = c1 = 1 and replacing a1 by a + 1 in equation (4.1), we get

∞
∑

n=0

(

a + n

n

)

LH
(m,s)
n (x, y, z)

tn

n!
= F

1:0;0;0
1:0;0;1

(

[a+1:1,s,m]:−;−; −;
[1:1,s,m]:−;−;[1:1]; yt, zt

s, xtm
)

. (4.2)
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II. Taking p = q = 1 in equation (2.4), we get

∞
∑

n=0

(a1)n
(b1)n

LH
(m,s)
n (x, y, z) tn = F

2:0;0;0
1:0;0;1

(

[a1:1,s,m],[1:1,s,m]:−;−; −;

[b1:1,s,m]:−;−;[1:1]; yt, zt
s, xtm

)

. (4.3)

Next, taking b1 = 1 and replacing a1 by a in equation (4.3) and using equations (1.24) and (2.7)

in the r.h.s. of the resultant equation, we get

∞
∑

n=0

(a)n LH
(m,s)
n (x, y, z)

tn

n!

= (1 − yt)−a F 1:0;0
0:0;1

(

[a:s,m]:−; −;

−:−;[1:1]; z

(

t

1 − yt

)s

, x

(

t

1 − yt

)m)

, (4.4)

which for a = 1, becomes

∞
∑

n=0

LH
(m,s)
n (x, y, z) tn

= (1 − yt)−1F
1:0;0
0:0;1

(

[1:s,m]:−; −;

−:−;[1:1]; z

(

t

1 − yt

)s

, x

(

t

1 − yt

)m)

. (4.5)

Again, taking s = m in equation (4.4), we get the following generating function for the LGHP

LH
(m,s)
n (x, y, z) in terms of the Kampé de Fériet function of two variables F p:q;k

l:m;n[.] :

∞
∑

n=0

(a)n LH
(m,m)
n (x, y, z)

tn

n!

= (1 − yt)−aFm:0;0
0:0;1

(

∆(m,a):−;−;
−:−; 1; z

(

m

1 − yt

)m

, x

(

m

1 − yt

)m)

, (4.6)

where ∆(m; a) abbreviates the array of m parameters a
m
, a−1
m
, . . . , a−m+1

m
m > 1.

III. Replacing w by −w in equation (2.5) and using definition (1.9), we get

∞
∑

n=0

Wn(w; s) LH
(m,s)
n (x, y, z)

tn

n!
= F 0:0;0;0

1:0;0;1

(

−:−;−; −;
[1:1,s,m]:−;−;[1:1]; yt, zt

s + w, xtm
)

. (4.7)

Again, taking s = m = 1 and replacing x by −x in equation (2.5) and using equations (1.7) and

(1.20) in the l.h.s. of the resultant equation, we get the following bilateral generating function

for the 2VLP Ln(x, y) in terms of the Kampé de Fériet function of three variables:

∞
∑

n=0

Cn(w) Ln(x, y + z)
tn

n!
= F 0:0;0;0

1:0;0;1

(

−:−;−;−;
1:−;−; 1; yt, zt−w,−xt

)

, (4.8)

IV. Taking l = 0 in equation (3.1) and replacing w by w+y, v by v+z in the resultant equation,

we get

LH
(m,s)
k (x, w + y, v + z) =

k
∑

n=0

(

k

n

)

H(s)
n (w, v) LH

(m,s)
k−n (x, y, z), (4.9)
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which on taking v = 0 and using relation (1.16b), yields

LH
(m,s)
k (x, w+ y, z) =

k
∑

n=0

(

k

n

)

wn LH
(m,s)
k−n (x, y, z). (4.10)

Next, taking m = 1, s = 2 and replacing x by −x in equations (3.1), (3.9), (4.9) and (4,10) and

using equation (1.18), we get the following summation formulae for the 3VLHP LHn(x, y, z):

LHk+l(x, w, v) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

Hn+r(w − y, v− z) LHk+l−n−r(x, y, z), (4.11)

LHk+l(x, w, z) =

k,l
∑

n,k=0

(

k

n

)(

l

r

)

(w − y)n+r
LHk+l−n−r (x, y, z), (4.12)

LHk(x, w+ y, v + z) =
k

∑

n=0

(

k

n

)

Hn(w, v) LHk−n(x, y, z), (4.13)

LHk(x, w + y, z) =
k

∑

n=0

(

k

n

)

wn LHk−n(x, y, z). (4.14)

Again, taking z = −1
2

in equations (4.12) and (4.14) and using relation (1.19), we get the

following summation formulae for the 2VLHP LH
∗
n(x, y):

LH
∗
k+l(x, w) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

(w − y)n+r
LH

∗
k+l−n−r(x, y), (4.15)

LH
∗
k(x, w + y) =

k
∑

n=0

(

k

n

)

wk−n LH
∗
n(x, y). (4.16)

Further, taking v = z = −1
2

in equation (4.13) and using relations (1.17) and (1.19), we get

LHk(x, w + y,−1) =
k

∑

n=0

(

k

n

)

Hek−n(w) LH
∗
n(x, y). (4.17)

V. Taking m = 1, s = 2 and replacing x and X by −x and −X, respectively in equations (3.10)

and (3.14) and using relations (1.18) and (1.16a), we get the following summation formulae

involving product of the 3VLHP LHn(x, y, z):

LHn(x, w, u) LHr(X,W,U) =

n,r
∑

k,p=0

(

n

k

)(

r

p

)

Hk(w − y, u− z)

×Hp(W − Y, U − Z) LHn−k(x, y, z) LHr−p(X, Y, Z), (4.18)

LHn(x, w, z) LHr(X,W,Z) =

n,r
∑

k,p=0

(

n

k

)(

r

p

)

(w − y)k(W − Y )p

× LHn−k(x, y, z) LHr−p(X, Y, Z). (4.19)
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Further, taking z = Z = −1
2

in equation (4.19) and using relation (1.19), we get the following

summation formula involving product of the 2VLHP LH
∗
n(x, y):

LH
∗
n(x, w) LH

∗
r (X,W ) =

n,r
∑

k,p=0

(

n

k

)(

r

p

)

(w − y)k(W − Y )p

× LH
∗
n−k(x, y) LH

∗
r−p(X, Y ). (4.20)

VI. Taking l = 0 in equations (3.15) and (3.18), we get

LH
(m,s)
k (z, w, y) =

k
∑

n=0

(

k

n

)

mLn(z, w − x)H
(s)
k−n(x, y) (4.21)

and

LH
(m,s)
k (y, w, z) =

k
∑

n=0

(

k

n

)

H(s)
n (w − x, z) mLk−n(y, x). (4.22)

Next, taking m = 1, s = 2 and replacing z by −z in equations (3.15) and (4.21) and then using

equations (1.18), (1.15) and (1.16a), we get the following summation formulae for the 3VLHP

LHn(x, y, z):

LHk+l(z, w, y) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

Ln+r(z, w − x)Hk+l−n−r(x, y), (4.23)

LHk(z, w, y) =
k

∑

n=0

(

k

n

)

Ln(z, w − x)Hk−n(x, y). (4.24)

Again, taking m = 1, s = 2 and replacing y by −y in equations (3.18) and (4.22) and then using

equations (1.18), (1.15) and (1.16a), we get the following summation formulae for the 3VLHP

LHn(x, y, z):

LHk+l(y, w, z) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

Hn+r(w − x, z) Lk+l−n−r(y, x), (4.25)

LHk(y, w, z) =
k

∑

n=0

(

k

n

)

Hn(w − x, z) Lk−n(y, x). (4.26)

Further, taking y = −1
2

in equations (4.23), (4.24) and z = −1
2

in equations (4.25), (4.26),

respectively and using relations (1.19) and (1.17), we get the following summation formulae for

the 2VLHP LH
∗
n(x, y):

LH
∗
k+l(z, w) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

Ln+r(z, w − x)Hek+l−n−r(x), (4.27)

LH
∗
k(z, w) =

k
∑

n=0

(

k

n

)

Ln(w − x, z)Hek−n(x), (4.28)
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and

LH
∗
k+l(y, w) =

k,l
∑

n,r=0

(

k

n

)(

l

r

)

Hen+r(w − x) Lk+l−n−r(y, x), (4.29)

LH
∗
k(y, w) =

k
∑

n=0

(

k

n

)

Hen(w − x) Lk−n(y, x), (4.30)

respectively.

5. Concluding remarks

In Section 3, we have established the summation formula (3.10), containing the product of the

LGHP LH
(m,s)
n (x, y, z). The formula was proved by using series rearrangement techniques on the

product of the generating functions of the LGHP LH
(m,s)
n (x, y, z). To explore another possibility,

we consider the product of the LGHP LH
(m,s)
n (x, y, z) generating function (1.6) in the following

form:

exp((Y + y)t+ (Z + z)ts) C0(−Xt
m) C0(−xt

m)

=

∞
∑

n=0

∞
∑

r=0

LH
(m,s)
r (X, Y, Z) LH

(m,s)
n (x, y, z)

tn+r

n!r!
. (5.1)

Replacing n by n− r and using equation (3.7) in the r.h.s. of the above equation, we find

exp((Y + y)t+ (Z + z)ts) C0(−Xt
m) C0(−xt

m)

=

∞
∑

n=0

n
∑

r=0

(

n

r

)

LH
(m,s)
r (X, Y, Z) LH

(m,s)
n−r (x, y, z)

tn

n!
, (5.2)

which on shifting the exponential to the r.h.s. and using the generating function (1.12), becomes

C0(−Xt
m) C0(−xt

m) =

∞
∑

n=0

∞
∑

k=0

n
∑

r=0

(

n

r

)

H
(s)
k (−(Y + y),−(Z + z))

×LH
(m,s)
r (X, Y, Z) LH

(m,s)
n−r (x, y, z)

tn+k

n!k!
. (5.3)

Again, replacing n by n− k and using equation (3.7) in the r.h.s. of the above equation, we get

C0(−Xt
m) C0(−xt

m) =
∞

∑

n=0

n
∑

k=0

n−k
∑

r=0

(

n

k

)(

n− k

r

)

×H
(s)
k (−(Y + y),−(Z + z)) LH

(m,s)
r (X, Y, Z) LH

(m,s)
n−k−r(x, y, z)

tn

n!
. (5.4)

Taking m = 1, s = 2 and replacing X and x by −X and −x, respectively, in equation (5.4) and

using relations (1.16a) and (1.18), we find

C0(Xt) C0(xt) =
∞

∑

n=0

n
∑

k=0

n−k
∑

r=0

(

n

k

)(

n− k

r

)

15

Khan and Al-Gonah: Certain Results for the Laguerre-Gould Hopper Polynomials

Published by Digital Commons @PVAMU, 2014



464 S. Khan and A. A. Al-Gonah

×Hk(−(Y + y),−(Z + z)) LHr(X, Y, Z) LHn−k−r(x, y, z)
tn

n!
. (5.5)

Now, using the following generating function for the 2-variable Legendre polynomials Rn(x, y)

(Dattoli et al., 2001):

C0(−yt) C0(xt) =
∞

∑

n=0

Rn(x, y)
tn

(n!)2
(5.6)

in the l.h.s. of equation (5.5) and then equating the coefficients of like powers of t in the resultant

equation, we get the following summation formula for Rn(x, y):

Rn(X,−x) = n!
n

∑

k=0

n−k
∑

r=0

(

n

k

)(

n− k

r

)

Hk(−(Y + y),−(Z + z))

× LHr(X, Y, Z) LHn−k−r(x, y, z), (5.7)

which on using the following link between the 2-variable Legendre polynomials Rn(x, y) and

the classical Legendre polynomials Pn(x) (Andrews, 1985):

Rn

(

1 − x

2
,
1 + x

2

)

= Pn(x), (5.8)

yields the following summation formula for Pn(x):

Pn(x) = n!
n

∑

k=0

n−k
∑

r=0

(

n

k

)(

n− k

r

)

Hk(−(Y + y),−(Z + z))

×LHr

(

1 − x

2
, Y, Z

)

LHn−k−r

(

−1 − x

2
, y, z

)

. (5.9)

6. Conclusion

In this paper, we have established some generating functions for the Laguerre-Gould Hopper

polynomials by using series rearrangement techniques. Also, some summation formulae for that

polynomials are derived by using certain operational techniques and by using different analytical

means on its generating function. Further, many generating functions and summation formulae

for the polynomials related to Laguerre-Gould Hopper polynomials are obtained as applications

of main results. The approach presented in this paper is general and can be extended to establish

other properties of special polynomials.
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