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Abstract

In this paper we study an impulsive fractional evolution equation with nonlinear boundary

conditions. Sufficient conditions for the existence and uniqueness of solutions are established. To

illustrate our results, an example is presented.
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1. Introduction

During the last decades, the theory of fractional differential equations has attracted many authors

since it is much richer than the theory of differential equations of integer order (Atangana and

Secer, 2013), (Balachandran et al., 2011), (Benchohra et al., 2008), (Bonila et al., 2007), (Fu,

2013), (Kosmatov, 2009), (Mirshafaei and Toroqi, 2012), (Wu and Baleanu, 2013). This fractional

theory has many applications in physics, chemistry, biology, blood flow problems, signal and

image processing, biophysics, aerodynamics, see for instance (Atangana and Alabaraoye, 2013),
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(Baneanu et al., 2012), (Bonila et al., 2007), (He, 1999), (He, 1998), (Luchko et al., 2010), (Samko

et al., 1993) and the reference therein. Moreover, the fractional impulsive differential equations

have played a very important role in modern applied mathematical models of real processes

arising in phenomena studied in physics, population dynamics, optimal control, etc. (Ahmed,

2007), (Lakshmikantham et al., 1989), (Samolenko and Perestyuk, 1995). This impulsive theory

has been addressed by several researchers: in (Benchohra and Slimani, 2009), Benchohra et al.

established sufficient conditions for the existence of solutions for some initial value problems for

impulsive fractional differential equations involving the Caputo fractional derivative. In (Wang

et al., 2010), J.R. Wang et al. studied nonlocal impulsive problems for fractional differential

equations with time-varying generating operators in Banach spaces. In (Zhang et al., 2012),

the authors investigated the existence of solutions for nonlinear impulsive fractional differential

equations of order α ∈ (2, 3] with nonlocal boundary conditions.

(Ergoren and Kilicman, 2012) established some sufficient conditions for the existence results for

impulsive nonlinear fractional differential equations with closed boundary conditions. Balachan-

dran et al. (Balachandran et al., 2011) discussed the existence of solutions of first order nonlinear

impulsive fractional integro-differential equations in Banach spaces, while Mallika Arjunane et

al. (Arjunana et al., 2012) investigated the study of existence results for impulsive differential

equations with nonlocal conditions via measures of non-compactness. In (Dahmani and Belarbi,

2013), the authors studied an impulsive problem using a bounded linear operator and some

lipschitzian functions. Other research papers related to the fractional impulsive problems can be

found in (Ahmad and Sivasundaram, 2009), (Dabas and Gautam, 2013), (Mahto et al., 2013),

(Nieto and ORegan, 2009).

In this paper, we are concerned with the existence of solutions for the following nonlinear

impulsive fractional differential equation with nonlinear boundary conditions:






Dαx (t) = f (t, x (t) , x (α1 (t)) , ..., x (αn (t))) , t 6= ti, t ∈ J, 0 < α < 1,

∆x|t=ti = Ii(x(ti))), i = 1, 2, ..., m,

x (0) = g (x (s0) , ..., x (sr)) ,

(1.1)

where Dα is the Caputo derivative, J = [0, b] , 0 = s0 < s1 < ... < sr = b, and 0 < t1 < t2 <

... < ti < ... < tm < tm+1 = b are constants for r, m ∈ N∗, and ∆x|t=ti = x(t+i ) − x
(

t−i
)

,

such that x(t+i ) and x
(

t−i
)

represent the right-hand limit and left-hand limit of x(t) at t = ti

respectively, f is an impulsive Carathéodory function, (αk)k=1,...n ∈ C1(J, J), g and (Ii)i=1,...m

are appropriate functions that will be specified later.

The rest of the paper is organized as follows: In Section 2, some preliminaries are presented.

Section 3 is devoted to the study of the existence and the uniqueness of solutions for the impulsive

fractional problem (1.1). At the end, an illustrative example is discussed and a conclusion is given.

2. Preliminaries

In this section, we introduce some preliminary facts which are used throughout this paper (Goreno

and Mainardi, 1997), (Kilbas et al., 2006), (Podlubny, 1999), (Samko et al., 1993).

2
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Definition 1: A real valued function f(t), t > 0 is said to be in the space Cµ, µ ∈ R if there

exists a real number p > µ such that f(t) = tpf1(t), where f1(t) ∈ C([0,∞)).

Definition 2: A function f(t), t > 0 is said to be in the space Cn
µ , n ∈ N, if f (n) ∈ Cµ.

Definition 3: The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function

f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) = 1
Γ(α)

∫ t

0
(t − τ )α−1f(τ )dτ ; α > 0, t > 0,

J0f(t) = f(t).
(2.1)

Definition 4: The fractional derivative of f ∈ Cn
−1 in the sense of Caputo is defined as:

Dαf(t) =

{

1
Γ(n−α)

∫ t

0
(t − τ )n−α−1f (n)(τ )dτ, n − 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(2.2)

In order to define solutions of (1.1), we will consider the following Banach space:

Let

PC (J, R) =

{

x : J → R, is continuous at t 6= ti, x is left continuous at t = ti,

and has right hand limits at ti, i = 1, 2, ...., m

}

, (2.3)

endowed with the norm ‖x‖PC = supt∈J |x (t)| .

We also give the following auxiliary result (Kilbas et al., 2006):

Lemma 1: For α > 0, the general solution of the problem Dαx (t) = 0 is given by

x (t) = c0 + c1t + c2t
2 + ... + cn−1t

n−1,

where ci are arbitrary real constants for i = 0, 1, 2, ..., n, n − 1 = [α].

We also prove the following lemma:

Lemma 2: Let 0 < α < 1 and let F (t, κ) ∈ PCn+1(J, R). A solution of the problem






















Dαx (t) = F, (t, κ) ; t ∈ J� {t1, ..., tm} , 0 < α < 1,

∆x|t=ti = Ii(x(ti)), i = 1, 2, ..., m,

x (0) = g (x (s0) , ..., x (sr))

(2.4)

is given by

x (t) =



























g (x (s0) , ..., x (sr)) + 1
Γ(α)

∫ t

0
(t − τ )α−1F (τ, κ) dτ, t ∈ [0, t1] ,

g (x (s0) , ..., x (sr)) + 1
Γ(α)

∑i
j=1

∫ tj

tj−1
(tj − τ )α−1F (τ, κ) dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1F (τ, κ) dτ +

∑i
j=1 Ij(x(tj)), t ∈ [ti, ti+1] , i = 1, ...m.

(2.5)

3
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Proof: Assume x satisfies (2.4).

If t ∈ [0, t1], then Dαx (t) = F (t, κ). Hence by Lemma 5, it holds

x (t) = g (x (s0) , ..., x (sr)) +
1

Γ(α)

∫ t

0

(t − τ )α−1F (τ, κ) dτ.

If t ∈ [t1, t2], then using Lemma 5 again, we get

x (t) = x
(

t+1
)

+
1

Γ(α)

∫ t

t1

(t − τ )α−1F (τ, κ) dτ

= ∆x |t=t1 +x
(

t−1
)

+
1

Γ(α)

∫ t

t1

(t − τ )α−1F (τ, κ) dτ

= I1

(

x
(

t−1
))

+ g (x (s0) , ..., x (sr)) +
1

Γ(α)

∫ t1

0

(t1 − τ )α−1F (τ, κ) dτ

+
1

Γ(α)

∫ t

t1

(t − τ )α−1F (τ, κ) dτ.

If t ∈ [t2, t3], then by the same lemma, we have

x (t) = x
(

t+2
)

+
1

Γ(α)

∫ t

t2

(t − τ )α−1F (τ, κ) dτ

= ∆x |t=t2 +x
(

t−2
)

+
1

Γ(α)

∫ t

t2

(t − τ )α−1F (τ, κ) dτ

= I2

(

x
(

t−2
))

+ I1

(

x
(

t−1
))

+ g (x (s0) , ..., x (sr)) +
1

Γ(α)

∫ t1

0

(t1 − τ )α−1F (τ, κ) dτ

+
1

Γ(α)

∫ t2

t1

(t2 − τ )α−1F (τ, κ) dτ +
1

Γ(α)

∫ t

t2

(t − τ )α−1F (τ, κ) dτ.

By repeating the same procedure for t ∈ [ti, ti+1], i = 1, ..m, we obtain the second quantity in

(2.5). The proof of Lemma 6 is complete .

To end this section, we give the following assumptions:

(H1) : The nonlinear function f : J×PCn+1(J, R) → PC(J, R) is an hυ− impulsive Carathéodory

function and there exist constants β,=, and (θk)k=1,..n such that for each k = 1, 2, ..., n

‖f (t, x, x1, ..., xn) − f (t, y, y1, ..., yn)‖
≤ β [‖x − y‖ + ‖x1 − y1‖ + ... + ‖xn − yn‖] ; x, y, xk, yk ∈ PC(J, R), k = 1, ..n,

‖xk − yk‖ ≤ θk ‖x − y‖ ; x, y, xk, yk ∈ PC(J, R),

and = := max
t∈J

‖hυ (t)‖ .

(H2) : The functions Ii : PC(J, R) → PC(J, R) are continuous for every i = 1, ...m and there

exist constants ($i)i=1,...m, such that

‖ Ii(x) − Ii(y) ‖≤ $i ‖ x − y ‖; ‖Ii(0)‖ ≤ ω; x, y ∈ PC(J, R), i = 1, ..m,

4
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(H3) : The function g : PCr+1 (J, R) → PC(J, R) is continuous and there exist two positive

constants % and %̂, such that for each, x, y ∈ PC(J, R), sl ∈ J, l = 0, ..., r we have

‖ [g(x (s0) , ..., x (sr)] − [g(y (s0) , ..., y (sr)] ‖≤ % ‖ x− y ‖,
‖ [g(x (s0) , ..., x (sr)] ‖≤ %̂.

(H4) : There exists a positive constant ρ such that

(m + 1) γ [β (n + 1) ρ + =] + ρ

m
∑

i=1

$i + mω + %̂ ≤ ρ; γ =
bα

Γ (α + 1)
.

3. Main Results

In this section, we will derive some existence and uniqueness results concerning the solution for

the system (1.1) under the assumptions (Hj)j=1,4:

Theorem 1: If the hypotheses (Hj)j=1,4 and

0 ≤ Λ := (m + 1) γβ

(

1 +
n
∑

k=1

θk

)

+
m
∑

i=1

$i + % < 1 (3.1)

are satisfied, then the problem (1.1) has a unique solution on J .

Proof: The hypothesis (H4) allows us to consider the set Bρ = {x ∈ PC(J, R) : ‖x‖ ≤ ρ} .

On Bρ we define an operator T : PC(J, Bρ) → PC(J, Bρ) by

Tx(t) = 1
Γ(α)

∑

0<ti<t

∫ ti

ti−1
(ti − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+
∑

0<ti<t

Ii(x(ti)) + g (x (s0) , ..., x (sr)) .

(3.2)

We shall prove that the operator T has a unique fixed point. The proof will be given in two steps:

Step1: We show that TBρ ⊂ Bρ. Let x ∈ Bρ, then we have:

‖Tx (t)‖ ≤ 1

Γ(α)

∑

0<ti<t

∫ ti

ti−1

(ti − τ )α−1 ‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ )))‖ dτ (3.3)

+
1

Γ(α)

∫ t

ti

(t − τ )α−1 ‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ )))‖ dτ

+
∑

0<ti<t

‖Ii(x(ti))‖ + ‖g (x (s0) , ..., x (sr))‖ .

5
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Consequently,

‖Tx (t)‖ ≤ 1

Γ(α)

∑

0<ti<t

∫ ti

ti−1

[(ti − τ )α−1

‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) − f (τ, 0, 0, ..., 0)‖ dτ ] (3.4)

+
1

Γ(α)

∑

0<ti<t

∫ ti

ti−1

(ti − τ )α−1 ‖f (τ, 0, 0, ..., 0)‖ dτ

+
1

Γ(α)

∫ t

ti

[(t − τ )α−1,

‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) − f (τ, 0, 0, ..., 0)‖ dτ ]

+
1

Γ(α)

∫ t

ti

(t − τ )α−1 ‖f (τ, 0, 0, ..., 0)‖ dτ

+
∑

0<ti<t

‖Ii(x(ti)) − Ii(0)‖ +
∑

0<ti<t

‖Ii(0)‖ + ‖g (x (s0) , ..., x (sr))‖ .

By (H2) and (H3) , and using the fact that f is an hυ− impulsive carathéodory function, we can

write

‖Tx (t)‖ ≤ (m + 1) γβ (n + 1) ρ + (m + 1) γ ‖hυ (t)‖ + ρ

m
∑

i=1

$i + mω + %̂. (3.5)

Since ‖hυ (t)‖ ≤ =, t ∈ J, then we obtain

‖Tx (t)‖ ≤ (m + 1) γ [β (n + 1) ρ + =] + ρ

m
∑

i=1

$i + mω + %̂. (3.6)

And, by (H4) , we have

‖Tx (t)‖ ≤ ρ, (3.7)

which implies that TBρ ⊂ Bρ.

Step2: Now we prove that T is a contraction mapping on Bρ : let x and y ∈ Bρ, then for any

6
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422 S. Belarbi & Z. Dahmani

t ∈ J, we have

‖Tx (t)− Ty (t)‖ ≤ ‖[ 1

Γ(α)

∑

0<ti<t

∫ ti

ti−1

(ti − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+
1

Γ(α)

∫ t

ti

(t − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ (3.8)

+
∑

0<ti<t

Ii(x(ti)) + g (x (s0) , ..., x (sr))]

− [
1

Γ(α)

∑

0<ti<t

∫ ti

ti−1

(ti − τ )α−1f (τ, y (τ ) , y (α1 (τ )) , ..., y (αn (τ ))) dτ

+
1

Γ(α)

∫ t

ti

(t − τ )α−1f (τ, y (τ ) , y (α1 (τ )) , ..., y (αn (τ ))) dτ

+
∑

0<ti<t

Ii(y(ti)) + g (y (s0) , ..., y (sr))]‖.

Hence,

‖Tx (t)− Ty (t)‖ ≤ (m + 1) γ

[

β

(

‖x − y‖+
n
∑

k=1

θk ‖x − y‖
)]

+

(

m
∑

i=1

$i + %

)

‖x− y‖ .

(3.9)

Then by (3.1) , we have

‖Tx (t)− Ty (t)‖ ≤ Λ ‖x − y‖ . (3.10)

By (3.1), we can state that T is a contraction mapping on Bρ. Combining the Steps1-2, together

with the Banach fixed point theorem, we conclude that there exists a unique fixed point x ∈
PC(J, Bρ) such that (Tx) = x. Theorem 7 is thus proved.

Using the Krasnoselskii’s fixed point theorem in (Krasnoselskii, 1964), we prove the following

result.

Theorem 2: Suppose that the hypotheses (Hj)j=1,4 are satisfied. If

(m + 1) γβ

(

1 +
n
∑

k=1

θk

)

+ % < 1, (3.11)

then the problem (1.1) has a solution on J .

7
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Proof: On Bρ, we define the operators R and S by the following expression


































Rx (t) = 1
Γ(α)

∑

0<ti<t

∫ ti

ti−1
(ti − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+g (x (s0) , ..., x (sr))

(3.12)

and

Sx (t) =
∑

0<ti<t

Ii(x(ti)). (3.13)

Let x, y ∈ Bρ. Then, for any t ∈ J, we have

‖Rx (t) + Sy (t)‖ ≤ ‖Rx (t)‖ + ‖Sx (t)‖ . (3.14)

That is,

‖Rx (t) + Sy (t)‖ ≤ 1
Γ(α)

∑

0<ti<t

∫ ti

ti−1
(ti − τ )α−1 ‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ )))‖ dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1 ‖f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ )))‖ dτ

+
∑

0<ti<t

‖Ii(y(ti))‖ + ‖g (x (s0) , ..., x (sr))‖ .

.

(3.15)

By (H1, H2) and (H3) , it follows that

‖Rx (t) + Sy (t)‖ ≤ (m + 1) γ [β (n + 1) ρ + =] + ρ

m
∑

i=1

$i + mω + %̂. (3.16)

Using (H4), we obtain

‖Rx (t) + Sy (t)‖ ≤ ρ. (3.17)

Hence,

Rx + Sy ∈ Bρ.

Let us now prove the contraction of R : We have

‖Rx (t)− Ry (t)‖ = ‖ 1
Γ(α)

∑

0<ti<t

∫ ti

ti−1
(ti − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1f (τ, x (τ ) , x (α1 (τ )) , ..., x (αn (τ ))) dτ + g (x (s0) , ..., x (sr))

− 1
Γ(α)

∑

0<ti<t

∫ ti

ti−1
(ti − τ )α−1f (τ, y (τ ) , y (α1 (τ )) , ..., y (αn (τ ))) dτ

+ 1
Γ(α)

∫ t

ti
(t − τ )α−1f (τ, y (τ ) , y (α1 (τ )) , ..., y (αn (τ ))) dτ + g (y (s0) , ..., y (sr)) ‖.

(3.18)

8
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With the same arguments as before, we get

‖Rx (t)− Ry (t)‖ ≤ (m + 1) γβ

(

‖x− y‖ +

n
∑

k=1

θk ‖x − y‖
)

+ % ‖x − y‖ ,

By (3.1) we can state that R is a contraction on Bρ.

Now, we shall prove that the operator S is completely continuous from Bρ to Bρ.

Since Ii ∈ C (J, R) , then S is continuous on Bρ.

Now, we prove that S is relatively compact as well as equicontinuous on PC(J, R) for every

t ∈ J .

To prove the compactness of S, we shall prove that S(Bρ) ⊆ PC(J, R) is equicontinuous and

S(Bρ)(t) is precompact for any ρ > 0, t ∈ J . Let x ∈ Bρ and t + h ∈ J, then we can write

‖Sx (t + h) − Sx (t)‖ ≤
∥

∥

∥

∥

∥

∑

0<ti<t+h

Ii(x(ti)) −
∑

0<ti<t

Ii(x(ti))

∥

∥

∥

∥

∥

. (3.20)

The quantity (3.20) is independent of x, thus S is equicontinous and as h → 0 the right hand

side of the above inequality tends to zero, so S (Bρ) is relatively compact, and S is compact.

Finally by Krasnosellkii theorem, there exists a fixed point x(.) in Bρ such that (Tx) (t) = x (t),

and this point x (.) is a solution of (1.1) . This ends the proof of Theorem 8.

Example 1: Consider the following fractional differential equation:

Dαx (t) =

exp(−t)

˛

˛

˛

˛

˛

˛

˛

x(t)+

n
∑

k=1

x( t

2k+1 )

˛

˛

˛

˛

˛

˛

˛

(25+exp(t))

0

B

@
1+x(t)+

n
∑

k=1

x( t

2k+1 )

1

C

A

t ∈ J = [0, 1], t 6= 1
2
, k = 1, ..., n, 0 < α < 1,

∆x (t) |t=ti = bix (ti) , bi ∈
(

1√
2
, 1
]

, i = 1, 2, ..., m,

x (0) = 1
3
x (ξ) + cosx (0) − n

√
a sinx (η) , ξ, η ∈ [0, 1], a ∈ R+.

(3.21)
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Corresponding to (1.1), we have

f (t, x (t) , x (αk (t))) =

exp (−t)

∣

∣

∣

∣

∣

x (t) +
n
∑

k=1

x
(

t
2k+1

)

∣

∣

∣

∣

∣

(25 + exp (t))

(

1 + x (t) +
n
∑

k=1

x
(

t
2k+1

)

) ,

αk (t) =
t

2k+1
,

Ii (x (ti)) = bix (ti) , bi ∈
(

1√
2
, 1

]

.

It is easy to see that

s0 = 0, s1 = ξ, s2 = η,

and

g (x (s0) , x (s1) , x (s2)) =
1

3
x (ξ) + cos x (0) − n

√
a sinx (η) .

Now, for x, y ∈ PC ([0, 1] ; R) , we have

|f(t, x (t) , x (αk (t))) − f(t, y (t) , y (αk (t)))|

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp (−t)

∣

∣

∣

∣

∣

x (t) +
n
∑

k=1

x
(

t
2k+1

)

∣

∣

∣

∣

∣

(25 + exp (t))

(

1 + x (t) +

n
∑

k=1

x
(

t
2k+1

)

) −
exp (−t)

∣

∣

∣

∣

∣

y (t) +
n
∑

k=1

y
(

t
2k+1

)

∣

∣

∣

∣

∣

(25 + exp (t))

(

1 + y (t) +

n
∑

k=1

y
(

t
2k+1

)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

≤ exp (−t)

(25 + exp (t))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

x (t) +
n
∑

k=1

x
(

t
2k+1

)

)

−
(

y (t) +
n
∑

k=1

y
(

t
2k+1

)

)

(

1 + x (t) +
n
∑

k=1

x
(

t
2k+1

)

)(

1 + y (t) +
n
∑

k=1

y
(

t
2k+1

)

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

≤ exp (−t)

(25 + exp (t))

∣

∣

∣

∣

∣

(

1 + x (t) +
n
∑

k=1

x
(

t
2k+1

)

)(

1 + y (t) +
n
∑

k=1

y
(

t
2k+1

)

)
∣

∣

∣

∣

∣

×
(
∣

∣

∣

∣

∣

n
∑

k=1

x

(

t

2k+1

)

−
n
∑

k=1

y

(

t

2k+1

)

∣

∣

∣

∣

∣

+ |x − y|
)

,

≤ exp (−t)

(25 + exp (t))

(
∣

∣

∣

∣

∣

n
∑

k=1

x

(

t

2k+1

)

−
n
∑

k=1

y

(

t

2k+1

)

∣

∣

∣

∣

∣

+ |x − y|
)

,

≤ 1

26

(
∣

∣

∣

∣

∣

n
∑

k=1

x

(

t

2k+1

)

− y

(

t

2k+1

)

∣

∣

∣

∣

∣

+ |x− y|
)

,

Further we can easily show that the conditions (Hi)i=1,4 are satisfied and it is possible to choose

β, ω, $ , n and % in such a way that the constant Λ < 1. Hence, by Theorem 7, the system

(3.21) has a unique solution defined on [0, 1].
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4. Conclusion

In this paper, we have studied an impulsive fractional differential equation. Using Banach fixed

point theorem, we have established new sufficient conditions for the existence of a unique solution

for the problem (1.1). To illustrate this result, we have presented an example. Another result for

the existence of at least a solution for (1.1) is also given using Krasnosellkii theorem.
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