Applications and Applied Mathematics: An International Journal (AAM)

On Some Hadamard-Type Inequalities for (r,m) -Convex Functıons

M. E. Özdemir
Ataturk University

Erhan Set
Ordu University

Ahmet O. Akdemir
Ağrı İbrahim Çeçen University

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Analysis Commons

Recommended Citation

Özdemir, M. E.; Set, Erhan; and Akdemir, Ahmet O. (2014). On Some Hadamard-Type Inequalitıes for (r,m) -Convex Functıons, Applications and Applied Mathematics: An International Journal (AAM), Vol. 9, Iss. 1, Article 25.
Available at: https://digitalcommons.pvamu.edu/aam/vol9/iss1/25

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

On Some Hadamard-Type Inequalities for (r, m)-Convex Functions

M. Emin Özdemir
Department of Mathematics
Ataturk University
25640, Kampus, Erzurum, Turkey
emos@atauni.edu.tr

Erhan Set

Department of Mathematics
Ordu University
Ordu, Turkey
erhanset@yahoo.com

Ahmet Ocak Akdemir
Department of Mathematics
Ağrı İbrahim Çeçen University
04100, Ağr, Turkey
ahmetakdemir@agri.edu.tr

Received: August 08, 2013; Accepted: August 12, 2013

Abstract

In this paper, we define a new class of convex functions which is called (r, m) - convex functions. We also prove some Hadamard's type inequalities based on this new definition.

Keywords: r - convex; Hadamard's inequality; m-convex, (r, m) - convex

MSC 2010 No.: 26D15, 26A07

1. Introduction

The following definition is well known in the literature: a function $f: I \rightarrow \mathrm{R}, I \subseteq \mathrm{R}$, is said to be convex on I if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for all $x, y \in I$ and $t \in[0,1]$. Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q between P and R, then Q is on or below chord $P R$. Let $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ be a convex function defined on the interval I of real numbers and $a, b \in I$ with $a<b$. Then the following double inequality holds for convex functions:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

This inequality is well known in the literature as Hadamard's inequality. Pearce et al. (1998) generalized this inequality to r-convex positive function f which is defined on an interval $[a, b]$, for all $x, y \in[a, b]$ and $\lambda \in[0,1]$;

$$
f(\lambda x+(1-\lambda) y) \leq \begin{cases}\left(\lambda[f(x)]^{r}+(1-\lambda)[f(y)]^{r}\right)^{\frac{1}{r}}, & \text { if } r \neq 0 \\ {[f(x)]^{\lambda}[f(y)]^{1-\lambda},} & \text { if } r=0\end{cases}
$$

Clearly 0 - convex functions are simply \log - convex functions and 1 -convex functions are ordinary convex functions. Another inequality which is well known in the literature as Minkowski Inequality is stated as follows;

Let

$$
p \geq 1, \quad 0<\int_{a}^{b} f(x)^{p} d x<\infty, \text { and } 0<\int_{a}^{b} g(x)^{p} d x<\infty .
$$

Then,

$$
\begin{equation*}
\left(\int_{a}^{b}(f(x)+g(x))^{p} d x\right)^{\frac{1}{p}} \leq\left(\int_{a}^{b} f(x)^{p} d x\right)^{\frac{1}{p}}+\left(\int_{a}^{b} g(x)^{p} d x\right)^{\frac{1}{p}} . \tag{1}
\end{equation*}
$$

Definition 1.

A function $f: I \rightarrow[0, \infty)$ is said to be log-convex or multiplicatively convex if $\log f$ is convex, or, equivalently, if for all $x, y \in I$ and $t \in[0,1]$ one has the inequality:

$$
\begin{equation*}
f(t x+(1-t) y) \leq[f(x)]^{t}[f(y)]^{1-t} \tag{2}
\end{equation*}
$$

[Pečarić et al. (1992)].

We note that a log-convex function is convex, but the converse may not necessarily be true.
Ngoc et al. (2009) established following theorems for r-convex functions:

Theorem 1.

Let $f:[a, b] \rightarrow(0, \infty)$ be r - convex function on $[a, b]$ with $a<b$. Then the following inequality holds for $0<r \leq 1$:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)^{\frac{1}{r}}\left([f(a)]^{r}+[f(b)]^{r}\right)^{\frac{1}{r}} . \tag{3}
\end{equation*}
$$

Theorem 2.

Let $f, g:[a, b] \rightarrow(0, \infty)$ be r-convex and s-convex functions respectively on $[a, b]$ with $a<b$. Then, the following inequality holds for $0<r$,

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{2}\left(\frac{r}{r+2}\right)^{\frac{2}{r}}\left([f(a)]^{r}+[f(b)]^{r}\right)^{\frac{2}{r}} \tag{4}\\
&+ \frac{1}{2}\left(\frac{s}{s+2}\right)^{\frac{2}{s}}\left([g(a)]^{s}+[g(b)]^{s}\right)^{\frac{2}{s}} .
\end{align*}
$$

Theorem 3.

Let $f, g:[a, b] \rightarrow(0, \infty)$ be r-convex and s-convex functions respectively on $[a, b]$ with $a<b$. Then the following inequality holds if $r>1$, and $\frac{1}{r}+\frac{1}{s}=1$:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq\left(\frac{[f(a)]^{r}+[f(b)]^{r}}{2}\right)^{\frac{1}{r}}\left(\frac{[g(a)]^{s}+[g(b)]^{s}}{2}\right)^{\frac{1}{s}} . \tag{5}
\end{equation*}
$$

Gill et al. (1997) proved the following inequality for r - convex functions.

Theorem 4.

Suppose f is a positive r-convex function on $[a, b]$. Then,

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq L_{r}(f(a), f(b)) . \tag{6}
\end{equation*}
$$

If f is a positive r-concave function, then the inequality is reversed.
For related results on r-convexity see [Yang and Hwang (2001), Gill et al. (1997) and Ngoc et al. (2009)]. Toader (1985) defined m-convex functions, as follows:

Definition 2.

The function $f:[0, b] \rightarrow \mathrm{R}, b>0$, is said to be m-convex, where $m \in[0,1]$, if we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

for all $x, y \in[0, b]$ and $t \in[0,1]$. We say that f is m-concave if $-f$ is m-convex.
We refer to the papers [Bakula et al. (2006); Bakula et al. (2007); Özdemir et al. (2010) and Toader (1988)] involving inequalities for m-convex functions. Dragomir and Toader (1993) proved the following inequality for m-convex functions.

Theorem 5.

Let $f:[0, \infty) \rightarrow \mathrm{R}$ be a m-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then one has the inequality:

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min \left\{\frac{f(a)+m f\left(\frac{b}{m}\right)}{2}, \frac{f(b)+m f\left(\frac{a}{m}\right)}{2}\right\} . \tag{7}
\end{equation*}
$$

Dragomir (2002) proved some Hadamard-type inequalities for m-convex functions as follows.

Theorem 6.

Let $f:[0, \infty) \rightarrow \mathrm{R}$ be a m-convex function with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then one has the inequality:

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{b-a} \int_{a}^{b} \frac{f(x)+m f\left(\frac{x}{m}\right)}{2} d x \\
& \leq \frac{m+1}{4}\left[\frac{f(a)+f(b)}{2}+m \frac{f\left(\frac{a}{m}\right)+f\left(\frac{b}{m}\right)}{2}\right] \tag{8}
\end{align*}
$$

Theorem 7.

Let $f:[0, \infty) \rightarrow \mathrm{R}$ be a m - convex function with $m \in(0,1]$. If $f \in L_{1}[a m, b]$ where $0 \leq a<b<\infty$, then one has the inequality:

$$
\begin{equation*}
\frac{1}{m+1}\left[\int_{a}^{m b} f(x) d x+\frac{m b-a}{b-m a} \int_{m a}^{b} f(x) d x\right] \leq(m b-a) \frac{f(a)+f(b)}{2} \tag{9}
\end{equation*}
$$

2. Main Results

We will start with the following definition.

Definition 3.

A positive function f is (r, m)-convex on $[a, b] \subset[0, b]$ if for all $x, y \in[a, b], \quad m \in[0,1]$ and $\lambda \in[0,1]$

$$
f(\lambda x+m(1-\lambda) y) \leq\left\{\begin{array}{cl}
\left(\lambda f^{r}(x)+m(1-\lambda) f^{r}(y)\right)^{\frac{1}{r}}, & \text { if } r \neq 0 \\
f^{\lambda}(x) f^{1-\lambda}(y) & , \text { if } r=0
\end{array} .\right.
$$

This definition of (r, m) - convexity naturally complements the concept of (r, m)-concavity in which the inequality is reversed.

Remark 1.

We have that $(0,1)$ - convex functions are simply \log - convex functions and $(1,1)$ - convex functions are ordinary convex functions on $[a, b] \subset[0, b]$.

Remark 2.

We have that $(r, 1)$-convex functions are r-convex functions.

Remark 3.

We have that $(1, m)$-convex functions are m-convex functions.
Now, we will prove some inequalities based on above definition and remarks.

Theorem 8.

Suppose that f is a (r, m)-convex function on $[a, b] \subset[0, b]$. Then, we have the inequality;

$$
\begin{equation*}
\frac{1}{b-m a} \int_{m a}^{b} f(t) d t \leq L_{r}\left(m^{\frac{1}{r}} f(a), f(b)\right), \tag{10}
\end{equation*}
$$

for $r \neq 0$. If f is a (r, m) - concave function, then the inequality is reversed.

Proof:

Let $r \neq\{0,-1\}$. First assume that $m^{\frac{1}{r}} f(a) \neq f(b)$. By the definition of $(r, m)-$ convexity, we can write

$$
\begin{aligned}
\int_{m a}^{b} f(t) d t & =(b-m a) \int_{0}^{1} f(s b+m(1-s) a) d s \\
& \leq(b-m a) \int_{0}^{1}\left[s f^{r}(b)+m(1-s) f^{r}(a)\right]^{\frac{1}{r}} d s \\
& =(b-m a)\left(\frac{r}{r+1}\right) \frac{[f(b)]^{r+1}-\left[m^{\frac{1}{r}} f(a)\right]^{++1}}{f^{r}(b)-m f^{r}(a)} .
\end{aligned}
$$

Using the fact that

$$
L_{r}\left(m^{\frac{1}{r}} f(a), f(b)\right)=\left(\frac{r}{r+1}\right) \frac{[f(b)]^{r+1}-\left[m^{\frac{1}{r}} f(a)\right]^{r+1}}{f^{r}(b)-m f^{r}(a)},
$$

we obtain the desired result. Similarly, for $m^{\frac{1}{r}} f(a)=f(b)$, we have

$$
\begin{aligned}
\int_{m a}^{b} f(t) d t & \leq(b-m a) \int_{0}^{1}\left(s\left[m^{\frac{1}{r}} f(a)\right]^{r}+(1-s)\left[m^{\frac{1}{r}} f(a)\right]^{r}\right)^{\frac{1}{r}} d s \\
& =(b-m a) \int_{0}^{1} m^{\frac{1}{r}}\left(s f^{r}(a)+(1-s) f^{r}(a)\right)^{\frac{1}{r}} d s \\
& =(b-m a) L_{r}\left(m^{\frac{1}{r}} f(a), m^{\frac{1}{r}} f(a)\right) .
\end{aligned}
$$

Finally, let $r=-1$, for $m^{\frac{1}{r}} f(a) \neq f(b)$, we have

$$
\int_{m a}^{b} f(t) d t \leq(b-m a) \int_{0}^{1}\left[s f^{-1}(b)+m(1-s) f^{-1}(a)\right]^{-1} d s
$$

Computing the right hand side of the above inequality, we get

$$
\int_{m a}^{b} f(t) d t \leq(b-m a) L_{-1}\left(\frac{f(a)}{m}, f(b)\right) .
$$

The proof of the other case such as $m^{\frac{1}{r}} f(a)=f(b)$, may be obtained in a similar way.

Remark 4.

In Theorem 8, if we choose $m=1$, we have the inequality (6).

Theorem 9.

Let $f:[a, b] \subset[0, b] \rightarrow(0, \infty)$ be $(r, m)-$ convex function on $[a, b]$ with $a<b$. Then, the following inequality holds:

$$
\begin{equation*}
\frac{1}{b-m a} \int_{m a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)\left[f^{r}(a)+m f^{r}(b)\right]^{\frac{1}{r}}, \tag{11}
\end{equation*}
$$

for $0<r \leq 1$.

Proof:

Since f is (r, m)-convex function and $r>0$, we can write

$$
f(t a+m(1-t) b) \leq\left(t[f(a)]^{r}+m(1-t)[f(b)]^{r}\right)^{\frac{1}{r}}
$$

for all $t, m \in[0,1]$. It is easy to observe that

$$
\begin{aligned}
\frac{1}{b-m a} \int_{m a}^{b} f(x) d x & =\int_{0}^{1} f(t a+m(1-t) b) d t \\
& \leq \int_{0}^{1}\left(t[f(a)]^{r}+m(1-t)[f(b)]^{r}\right)^{\frac{1}{r}} d t
\end{aligned}
$$

Using the inequality (1), we get

$$
\begin{aligned}
\int_{0}^{1}\left(t[f(a)]^{r}+m(1-t)[f(b)]^{r}\right)^{\frac{1}{r}} d t & \leq\left[\left(\int_{0}^{1} t^{\frac{1}{r}} f(a) d t\right)^{r}+\left(\int_{0}^{1}(1-t)^{\frac{1}{r}} m^{\frac{1}{r}} f(b) d t\right)^{r}\right]^{\frac{1}{r}} \\
& =\left[\left(\frac{r}{r+1}\right)^{r}\left(f^{r}(a)+m f^{r}(b)\right)\right]^{\frac{1}{r}} \\
& =\left(\frac{r}{r+1}\right)\left[f^{r}(a)+m f^{r}(b)\right]^{\frac{1}{r}}
\end{aligned}
$$

Thus,

$$
\frac{1}{b-m a} \int_{m a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)\left[f^{r}(a)+m f^{r}(b)\right]^{\frac{1}{r}},
$$

which completes the proof.

Corollary 1.

In Theorem 9, if we choose a $(1, m)$ - convex function on $[a, b]$ with $a<b$. Then, we have the following inequality;

$$
\frac{1}{b-m a} \int_{m a}^{b} f(x) d x \leq \frac{f(a)+m f(b)}{2}
$$

Corollary 2.

In Theorem 9, if we choose an $(r, 1)$-convex function on $[a, b]$ with $a<b$. Then, we have the following inequality;

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)\left[f^{r}(a)+f^{r}(b)\right]^{\frac{1}{r}}
$$

Remark 5.

In Theorem 9, if we choose a $(1,1)$ - convex function on $[a, b] \subset[0, b]$ with $a<b$. Then, we have the right hand side of Hadamard's inequality.

Theorem 10.

Let $f, g:[a, b] \subset[0, b] \rightarrow(0, \infty)$ be $\left(r_{1}, m\right)$-convex and $\left(r_{2}, m\right)$-convex function on $[a, b]$ with $a<b$. Then, the following inequality holds;

$$
\begin{equation*}
\frac{1}{b-m a} \int_{m a}^{b} f(x) g(x) d x \leq \frac{1}{2}\left([f(a)]^{r_{1}}+m[f(b)]^{p_{1}}\right)^{\frac{1}{n}}\left([g(a)]^{r_{2}}+m[g(b)]^{h_{2}}\right)^{\frac{1}{2}}, \tag{12}
\end{equation*}
$$

for $r_{1}>1$ and $\frac{1}{r_{1}}+\frac{1}{r_{2}}=1$.

Proof:

Since f is $\left(r_{1}, m\right)$ - convex function and g is $\left(r_{2}, m\right)$-convex function, we have

$$
f(t a+m(1-t) b) \leq\left(t[f(a)]^{]_{1}}+m(1-t)[f(b)]^{\gamma_{1}}\right)^{\frac{1}{n_{1}}}
$$

and

$$
g(t a+m(1-t) b) \leq\left(t[g(a)]^{r_{2}}+m(1-t)[g(b)]^{r_{2}}\right)^{\frac{1}{2}}
$$

for all $t, m \in[0,1]$. Since f and g are non-negative funcions, hence

$$
\begin{aligned}
& f(t a+m(1-t) b) g(t a+m(1-t) b) \\
& \quad \leq\left(t[f(a)]^{\gamma_{1}}+m(1-t)[f(b)]^{\gamma_{1}}\right)^{\frac{1}{1}}\left(t[g(a)]^{r_{2}}+m(1-t)[g(b)]^{r_{2}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Integrating both sides of the above inequality over $[0,1]$ with respect to t, we obtain

$$
\begin{aligned}
& \int_{0}^{1}[f(t a+m(1-t) b) g(t a+m(1-t) b)] d t \\
& \quad \leq \int_{0}^{1}\left[\left(t[f(a)]^{r_{1}}+m(1-t)[f(b)]^{\gamma_{1}}\right)^{\frac{1}{n}}\left(t[g(a)]^{r_{2}}+m(1-t)[g(b)]^{r_{2}}\right)^{\frac{1}{2}}\right] d t .
\end{aligned}
$$

By applying Hölder's inequality, we have

$$
\begin{aligned}
& \int_{0}^{1}\left[\left(t[f(a)]^{r_{1}}+m(1-t)[f(b)]^{r_{1}}\right)^{\frac{1}{n}}\left(t[g(a)]^{r_{2}}+m(1-t)[g(b)]^{r_{2}}\right)^{\frac{1}{2}}\right] d t \\
& \leq\left[\int_{0}^{1}\left(t[f(a)]^{r_{1}}+m(1-t)[f(b)]^{r_{1}} d t\right)\right]^{\frac{1}{1_{1}}}\left[\int_{0}^{1}\left(t[g(a)]^{r_{2}}+m(1-t)[g(b)]^{r_{2}} d t\right)\right]^{\frac{1}{2}} \\
& \quad=\frac{1}{2}\left([f(a)]^{r_{1}}+m[f(b)]^{r_{1}}\right)^{\frac{1}{n_{1}}}\left([g(a)]^{r_{2}}+m[g(b)]^{r_{2}}\right)^{\frac{1}{2}} .
\end{aligned}
$$

By using the fact that

$$
\frac{1}{b-m a} \int_{m a}^{b} f(x) g(x) d x=\int_{0}^{1}[f(t a+m(1-t) b) g(t a+m(1-t) b)] d t
$$

We obtain the desired result.

Corollary 3.

In Theorem 10, if we choose $m=1, r_{1}=r_{2}=2$ and $f(x)=g(x)$, we have the following inequality;

$$
\frac{1}{b-a} \int_{a}^{b} f^{2}(x) d x \leq \frac{1}{2}\left[f^{2}(a)+f^{2}(b)\right] .
$$

Corollary 4.

In Theorem 10, if we choose $m=1$ and $r_{1}=r_{2}=2$, we have the following inequality;

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \sqrt{\frac{f^{2}(a)+f^{2}(b)}{2}} \sqrt{\frac{g^{2}(a)+g^{2}(b)}{2}} .
$$

Theorem 11.

Let $f:[a, b] \subset[0, b] \rightarrow(0, \infty)$ be a $(r, m)-$ convex function on $[a, b]$ with $m \in(0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$, then one has the following inequality;

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min \left\{L_{r}\left(f(a), m^{\frac{1}{r}} f\left(\frac{b}{m}\right)\right), L_{r}\left(f(b), m^{\frac{1}{r}} f\left(\frac{a}{m}\right)\right)\right\} .
$$

Proof:

Since f is (r, m) - convex function, we can write

$$
f(t x+m(1-t) y) \leq\left(t[f(x)]^{r}+m(1-t)[f(y)]^{r}\right)^{\frac{1}{r}}
$$

for all $x, y \geq 0$ and $r \neq 0$, which gives

$$
\begin{equation*}
f(t a+(1-t) b) \leq\left(t[f(a)]^{r}+m(1-t)\left[f\left(\frac{b}{m}\right)\right]^{r}\right)^{\frac{1}{r}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t b+(1-t) a) \leq\left(t[f(b)]^{r}+m(1-t)\left[f\left(\frac{a}{m}\right)\right]^{r}\right)^{\frac{1}{r}} \tag{14}
\end{equation*}
$$

for $t \in[0,1]$ Integrating both sides of (13) over $[0,1]$ with respect to t, we obtain

$$
\int_{0}^{1} f(t a+(1-t) b) d t \leq \int_{0}^{1}\left(t[f(a)]^{r}+m(1-t)\left[f\left(\frac{b}{m}\right)\right]^{r}\right)^{\frac{1}{r}} d t,
$$

or

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \int_{0}^{1}\left(t[f(a)]^{r}+m(1-t)\left[f\left(\frac{b}{m}\right)\right]^{r}\right)^{\frac{1}{r}} d t
$$

Now, suppose that $r \neq\{0,-1\}$. First assume that $f(a) \neq m^{\frac{1}{r}} f\left(\frac{b}{m}\right)$. Then, we get

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L_{r}\left(f(a), m^{\frac{1}{r}} f\left(\frac{b}{m}\right)\right)
$$

Similarly, for $f(a)=m^{\frac{1}{r}} f\left(\frac{b}{m}\right)$, we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & \leq \int_{0}^{1}\left(t[f(a)]^{r}+(1-t)[f(a)]^{r}\right)^{\frac{1}{r}} d t \\
& =L_{r}(f(a), f(a)) .
\end{aligned}
$$

Finally, let $r=-1$, for $f(a) \neq m^{\frac{1}{r}} f\left(\frac{b}{m}\right)$, we have again

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x & \leq \int_{0}^{1}\left(t[f(a)]^{r}+m(1-t)\left[f\left(\frac{b}{m}\right)\right]^{r}\right)^{\frac{1}{r}} d t \\
& =L_{-1}\left(f(a), m^{-1} f\left(\frac{b}{m}\right)\right)
\end{aligned}
$$

When $f(a)=f(b)$, the proof is similar. So, we obtain the inequality

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L_{r}\left(f(a), m^{\frac{1}{r}} f\left(\frac{b}{m}\right)\right)
$$

Analogously, by integrating both sides of the inequality (14), we obtain

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L_{r}\left(f(b), m^{\frac{1}{r}} f\left(\frac{a}{m}\right)\right)
$$

which completes the proof.

Remark 6.

In Theorem 11, if we choose $r=1$, we have the inequality (7).

Remark 7.

In Theorem 11, if we choose $m=1$, we have the inequality (6).

Remark 8.

In Theorem 11, if we choose $m=r=1$, we have the right hand side of Hadamard's inequality.

Theorem 12.

Let $f:[a, b] \subset[0, b] \rightarrow(0, \infty)$ be a $(r, m)-$ convex function on $[a, b]$ with $m \in(0,1]$. If $f \in L_{1}[a, b]$, then one has the following inequalities;

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{b-a} \int_{a}^{b} \frac{f^{r}(x)+m f^{r}\left(\frac{x}{m}\right)}{2} d x \\
& \leq \frac{m+1}{4}\left[\frac{f^{r}(a)+f^{r}(b)}{2}+m \frac{f^{r}\left(\frac{a}{m}\right)+f^{r}\left(\frac{b}{m}\right)}{2}\right] . \tag{15}
\end{align*}
$$

Proof:

By the (r, m)-convexity of f, we have that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}\left[f^{r}(x)+m f^{r}\left(\frac{y}{m}\right)\right]
$$

for all $x, y \in[a, b]$. If we take $x=t a+(1-t) b$ and $y=(1-t) a+t b$, we deduce

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{2}\left[f^{r}(t a+(1-t) b)+m f^{r}\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right],
$$

for all $t \in[0,1]$. Integrating the result over $[0,1]$ with respect to t, we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{2}\left[\int_{0}^{1} f^{r}(t a+(1-t) b) d t+m \int_{0}^{1} f^{r}\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t\right] \tag{16}
\end{equation*}
$$

Taking into account that

$$
\int_{0}^{1} f^{r}(t a+(1-t) b) d t=\frac{1}{b-a} \int_{a}^{b} f^{r}(x) d x
$$

and

$$
\int_{0}^{1} f^{r}\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t=\frac{1}{b-a} \int_{a}^{b} f^{r}\left(\frac{x}{m}\right) d x
$$

in (16), we obtain the first inequality of (15).
By the (r, m)-convexity of f, we also have that

$$
\begin{aligned}
& \frac{1}{2}\left[f(t a+m(1-t) b)+m f\left(t \frac{a}{m}+(1-t) \frac{b}{m}\right)\right] \\
& \quad \leq \frac{1}{2}\left[t f^{r}(a)+m(1-t) f^{r}(b)+m t f^{r}\left(\frac{a}{m}\right)+m^{2}(1-t) f^{r}\left(\frac{b}{m}\right)\right]
\end{aligned}
$$

for all $t \in[0,1]$. Integrating the above inequality over $[0,1]$ with respect to t, we get

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} \frac{f^{r}(x)+m f^{r}\left(\frac{x}{m}\right)}{2} d x \\
& \quad \leq \frac{1}{2}\left[\frac{f^{r}(a)+m f^{r}(b)}{2}+\frac{m f^{r}\left(\frac{a}{m}\right)+m^{2} f^{r}\left(\frac{b}{m}\right)}{2}\right]
\end{aligned}
$$

By a similar argument, we can state

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} \frac{f^{r}(x)+m f^{r}\left(\frac{x}{m}\right)}{2} d x \\
& \quad \leq \frac{1}{8}\left[f^{r}(a)+f^{r}(b)+2 m\left(f^{r}\left(\frac{a}{m}\right)+f^{r}\left(\frac{b}{m}\right)\right)+m^{2}\left(f^{r}\left(\frac{a}{m^{2}}\right)+f^{r}\left(\frac{b}{m^{2}}\right)\right)\right],
\end{aligned}
$$

which completes the proof.

Remark 9.

In theorem 12, if we choose $r=1$, we have the inequality (8).

Remark 10.

In theorem 12, if we choose $m=r=1$, we have the Hadamard's inequality.

1. Conclusion

In this paper, a new class of convex functions called (r, m) - convex functions have been defined and some new Hadamard-type inequalities have been obtained.

Acknowledgement

The authors would like to thank the referees for their encouraging attitude and valuable suggestions in the review process of the work.

REFERENCES

Bakula, M.K., Pečarić, J. and Ribičić, M. (2006). Companion inequalities to Jensen's inequality for m-convex and (α, m) - convex functions, J. Ineq. Pure and Appl. Math., 7 (5), Art. 194.
Bakula, M.K., Özdemir, M.E. and Pečarić, J. (2007). Hadamard-type inequalities for m-convex and (α, m) - convex functions, J. Inequal. Pure and Appl. Math., 9, (4), Article 96.
Dragomir, S.S. (2002). On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang Journal of Mathematics, 33 (1).
Dragomir, S.S. and Toader, G. (1993). Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai Math., 38 (1), 21-28.
Gill, P.M., Pearce, C.E.M. and Pečarić, J. (1997). Hadamard's inequality for r-convex functions, Journal of Math. Analysis and Appl., 215, 461-470.
Ngoc, N.P.G., Vinh, N.V. and Hien, P.T.T. (2009). Integral inequalities of Hadamard-type for r-convex functions, International Mathematical Forum, 4, 1723-1728.
Özdemir, M.E., Avcı, M. and Set, E. (2010). On some inequalities of Hermite-Hadamard type via m-convexity, Applied Mathematics Letters, 23, 1065-1070.
Pearce, C.E.M., Pečarić, J., Simić, V. (1998). Stolarsky Means and Hadamard's Inequality, Journal Math. Analysis Appl., 220, 99-109.
Pečarić, J., Proschan, F. and Tong, Y.L. (1992). Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc..
Toader, G. (1985). Some generalization of the convexity, Proc. Colloq. Approx. Opt., ClujNapoca, 329-338.
Toader, G. (1988). On a generalization of the convexity, Mathematica, 30 (53), 83-87.
Yang, G.S. and Hwang, D.Y. (2001). Refinements of Hadamard's inequality for r-convex functions, Indian Journal Pure Appl. Math., 32 (10), 1571-1579.

