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Abstract 
 

This paper investigates the instability of the zero solution of a certain vector differential equation 

of the sixth order with delay. Using the Lyapunov- Krasovskiĭ functional approach, we obtain a 

new result on the topic and give an example for the related illustrations 
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1.  Introduction 

To the best of our knowledge, the instability of the solutions to the sixth order nonlinear scalar 

differential equations was investigated by Ezeilo (1982). Ezeilo (1982) proved a theorem on the 

instability of the zero solution of the sixth order nonlinear scalar differential equation without 

delay: 
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Later, Tiryaki (1990) discussed the instability of the zero solution of the following sixth order 

nonlinear scalar differential equation without delay:  
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After that Tejumola (2000) studied the same topic for the following sixth order nonlinear scalar 

differential equations without delay: 
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It should be noted that using the Lyapunov’s direct method and based on the Krasovskiĭ’s (1963) 

properties, Ezeilo (1982), Tiryaki (1990) and Tejumola (2000) proved their results. Later, Tunc 

(2011, 2012b) studied the instability of the solutions of the sixth order nonlinear scalar delay 

differential equations given by 
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respectively. 

 

On the other hand, Tunc (2004a) discussed the same subject for the sixth order nonlinear vector 

differential equations of the form:   

 

)()6( tX + )()5( tAX + )())(),...,(),(( )4()5( tXtXtXtX  + )())(( tXtX   

                                  + )())(),...,(),(( )5( tXtXtXtXF  + ))(( tXG  + .0))(( tXH             (1)                                    
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We also refer the readers to the papers of Tunc (2004b, 2007, 2008a, 2008b, and 2012a) and 

Tunc and Tunc (2008) for some other related papers on the instability of the solutions of the 

various sixth order nonlinear differential equations. 

 

In this paper, instead of equation (1), we consider its delay form given by 

    

)())(()())(),...,(),(()()( )4()5()5()6( tXtXtXtXtXtXtAXtX    

                ,0))(())(()())(),...,(),(( )5(   tXHtXGtXtXtXtXF                       (2) 

 

where ,nX   0  is the constant retarded argument, A  is a constant nn -symmetric 

matrix, ,    and  F  are continuous nn -symmetric matrix functions for  the arguments 

displayed explicitly, nnG :  and 
nnH :  with  ,0)0()0(  HG  and HG   and    

are continuous functions for the arguments displayed explicitly.  The existence and uniqueness of 

the solutions of equation (2) [Èl’sgol’ts (1966)] are assumed. 

 

Equation (2) is the vector version for systems of real nonlinear differential equations of the sixth 

order:   
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The sequel, equation (1), is stated in system form as follows 

  

,YX   ,ZY     ,WZ     ,UW      ,TU    

                                    

 WZUTUWZYXATT )(),,,,,(  )()(),,,,,( XHYGZTUWZYXF   

                                                                ,)())(()())(( dssYsXJdssZsYJ

t

t

H

t

t

G 





           (3)   
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Let  )(XJ H   and )(YJG  denote the linear operators from )(XH  and  )(YG  to 
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where ),,...,( 1 nxx  ),,...,( 1 nyy   ),...,( 1 nhh  and ),...,( 1 ngg  are the components of ,X ,Y H  and 

,G  respectively. Throughout what follows, it is assumed that  )(XJ H  and )(YJG  exist and are 

symmetric and continuous. However, a review to date of the literature indicates that the 

instability of solutions of vector differential equations of the sixth order with delay has not been 

investigated till now. This paper is the first known work regarding the instability of solutions for 

the nonlinear vector differential equations of the sixth order with delay. The motivation of this 

paper comes from the above papers done on scalar nonlinear differential equations of the sixth 

order without and with delay and the vector differential equations of the sixth order without 

delay. By this work, we improve the result in Tunc (2004a) to a vector differential equation of 

the sixth order with delay. Based on Krasovskiĭ’s (1963) criterions, we prove our main result, 

and an example is also provided to illustrate the feasibility of the proposed result. The result to 

be obtained is new and makes a contribution to the topic. 

 

The symbol YX ,  corresponding to any pair ,X  Y  in n  stands for the usual scalar product   

,
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Thus, ,,
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XXX   and ),(i  ),,...,2,1( ni   are the eigenvalues of the real symmetric nn - 

matrix .  The matrix   is said to be negative-definite, when 0,  XX , for all nonzero X  

in .n  

 

2.   Main Result 
 

In order to achieve our main result, we introduce the following well known algebraic results.  

 

Lemma.  

 

Let  D  be a real symmetric nn -matrix. Then for any nX   
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22

XXDXX dd   

 

where d  and d   are  the least and greatest eigenvalues of ,D  respectively [Bellman (1997)]. 
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Let 0r  be given, and let )  ],0,([ nrCC   with 
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For  0H  define CCH   by  

 

}.:{ HCCH    

 

If 
nArx  ) ,[:   is continuous,  ,0  A  then, for each t  in ),,0[ A  tx  in C  is defined by  
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Let G  be an open subset of C  and consider the general autonomous delay differential system 

with finite delay  
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where nGF :  is continuous and maps closed and bounded sets into bounded sets. It 

follows from these conditions on F  that each initial value problem  
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has a unique solution defined on some interval ),,0[ A .0  A  This solution will be denoted 

by )(.)(x  so that  .)(0  x    

 

Definition.  
 

The zero solution, ,0x  of )( txFx 
 
is stable if for each  0  there exists 0)(    such 

that    implies that  ))(( tx  for all .0t  The zero solution is said to be unstable if it is 

not stable.  

 

The main result of this paper is the following theorem. 

 

Theorem.  

 

We suppose that there exists a constant 2a  and positive constants  , , ,1a  ,4a
 5a  and 6a  such 

that the following conditions hold: 
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then the zero solution  of   equation (2) is unstable. 

 

Remark.  

 

It should be noted that there is no sign restriction on eigenvalues of ,  and it is clear that our 

assumptions have a very simple form and the applicability can be easily verified.    

 

 

Proof:  
 

We define a Lyapunov-Krasovskii functional  :),,,,,( tttttt TUWZYXVV   
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where   and   are certain positive constants; that will be determined later in the proof.   

 

It is clear that 0)0,0,0,0,0,0( V  and   
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for all arbitrary ,0  ,n  which verifies the property )( 1P  of  Krasovskiĭ (1963). 

 

Using a basic calculation, the time derivative of  V   in the solutions of system (3) results in  
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which verifies the property )( 2P  of Krasovskiĭ (1963). On the other hand, it follows that  
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 0(.)V
dt

d
,XY  ,0 YZ   ,0 ZW   ,0WU  0UT    for all .0t  

 

Hence, 

 

,X  .0 TUWZY  
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Hence, the property )( 3P  of Krasovskiĭ (1963) holds. The proof of the theorem is complete. 

 

Example.  

 

For case 2n  in equation (2), in particular, we choose  
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
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
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






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)(6
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2

1





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ty
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and  

 

.
)(9

)(9
))((

2

1













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




tx
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Hence, an easy calculation results in 

 

,3)(1 A ,5)(2 A  
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1
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1

2

1

1
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2
tx 

  
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2

11 txF   

 

,...6(.))( 2

2

2
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

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
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and 

 

)(XJ H = 












90

09
 

 

so that  

 

,03)( 1  aAi  

 

,2(.))( 2ai   

 

,156(.))( 4   aFi  

 

,6))(( 5aYJGi 
 

 

,09))(( 6  aXJ Hi  ),2 ,1( i  
 

and 

.4
4

1 2

24  aa  

 

Thus, if 

 

2 10
min , ,

2 12 2 9 2


 
  

 
 

 

then all the assumptions of the theorem  hold. 
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3.   Conclusion 

 
A kind of functional vector differential equation of the sixth order with constant delay has been 

considered.  The instability of zero solution of this equation has been discussed by using the 

Lyapunov- Krasovskiĭ functional approach. The obtained result improves a well-known result in 

the literature and makes a contribution to the subject. 
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