
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 9 Issue 1 Article 9 

6-2014 

Modeling the Transmission Dynamics of Typhoid in Malaria Modeling the Transmission Dynamics of Typhoid in Malaria 

Endemic Settings Endemic Settings 

Steady Mushayabasa 
University of Zimbabwe 

Claver P. Bhunu 
University of Zimbabwe 

Ngoni A. Mhlanga 
University of Zimbabwe 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Biology Commons, and the Other Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Mushayabasa, Steady; Bhunu, Claver P.; and Mhlanga, Ngoni A. (2014). Modeling the Transmission 
Dynamics of Typhoid in Malaria Endemic Settings, Applications and Applied Mathematics: An 
International Journal (AAM), Vol. 9, Iss. 1, Article 9. 
Available at: https://digitalcommons.pvamu.edu/aam/vol9/iss1/9 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol9
https://digitalcommons.pvamu.edu/aam/vol9/iss1
https://digitalcommons.pvamu.edu/aam/vol9/iss1/9
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/216?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol9/iss1/9?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol9%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


121 

 

 

Available at 

http://pvamu.edu/aam 
Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 9, Issue 1 (June  2014),  pp. 121-140 

Applications and Applied 

Mathematics:  

An International Journal 

(AAM) 

 

 

 
Modeling the Transmission Dynamics of Typhoid in  

Malaria Endemic Settings 
 

 

Steady Mushayabasa
*
, Claver P. Bhunu and Ngoni A. Mhlanga 
Department of Mathematics 

University of Zimbabwe    

P.O. Box MP 167    

Harare, Zimbabwe 

steadymushaya@gmail.com 

 

*Corresponding author 

 

Received: October 24, 2012; Accepted: December 2, 2013  

 

 
 

 

 Abstract 
 

Typhoid and malaria co-infection is a major public health problem in many developing countries. 

In this paper, a deterministic model for malaria and typhoid co-infection is proposed and 

analyzed. It has been established that the model exhibits a backward bifurcation phenomenon. 

Overall, the study reveals that a typhoid outbreak in malaria endemic settings may lead to higher 

cumulative cases of dually-infected individuals displaying clinical symptoms of both infections 

than singly-infected individuals displaying clinical symptoms of either malaria or typhoid. 
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1. Introduction 
 

Malaria and typhoid fever are among the most endemic diseases in the tropics [Uneke (2008)]. 

Both diseases have been associated with poverty and underdevelopment with significant 

morbidity and mortality. An association between malaria and typhoid fever was first described in 

the medical literature in the middle of the 19
th

 century, and was named typho-malarial fever by 
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the United States Army [Uneke (2008), Smith (1982)]. However, by the end of 19th century, 

laboratory tests had eliminated this theory as they found that it was either one thing or the other, 

or in rare instances, co-infection with both Salmonella typhi and the Plasmodium species. In the 

last two decades, this relationship between the two diseases has been substantiated by studies 

from Africa and India [Ammah et al. (1999)] 

 

Malaria is a tropical disease of man caused by some species of plasmodium and characterized by 

fever, malaise and weakness. Malaria is the infectious disease that causes incidence estimates of 

2 to 3 million deaths and 300 to 500 million clinical cases in the world [Eze et al. (2011)]. There 

are four species of Plasmodium that infect humans: Plasmodium falciparum, Plasmodium vivax, 

Plasmodium malariae and Plasmodium ovale. Plasmodium falciparum is the major human 

parasite responsible for high morbidity and mortality. Infection with Plasmodium falciparum is 

associated with developing fever, a high number of parasites in the blood and pathogenesis, 

including severe anaemia, body weight loss and cerebral malaria in humans [Niikura et al. 

(2008), Eze et al. (2011)]. 

 

Typhoid fever is also an infectious disease. It is caused by species of Salmonella. The species 

and strains of Salmonella that commonly cause typhoid fever in humans are Salmonella 

paratyphi A, Salmonella paratyphi B, Salmonella paratyphi C and Salmonella paratyphi D 

[WHO (2003)]. The different serotypes of Salmonella can coinfect an individual or cause 

infections differently. Like malaria fever, Salmonella infection is characterised by fever, 

weakness, anaemia, body weight loss, vomiting and sometimes diarrhoea [Samal and Sahu 

(1991)]. The detection of high antibody titre for Salmonella is not always indicative of current 

infection(s) [Eze et al. (2011)]. Therefore, stool and/or blood culture from the patients is/are 

confirmatory [WHO (2003)]. 

 

The co-infection of malaria parasite and Salmonella species is common, especially in the tropics 

where malaria is endemic. The common detection of high antibody titre of these Salmonella 

serotypes in malaria patients has made some people to believe that malaria infection can progress 

to typhoid or that malaria always co-infect with typhoid/paratyphoid in all patients. Hence, some 

people treat malaria and typhoid concurrently once they have high antibody titre for Salmonella 

serotypes, even without adequate laboratory diagnoses for malaria and vice versa [Eze et al. 

(2011)].  

 

Mathematical models have become invaluable management tools for epidemiologists, both 

shedding light on the mechanisms underlying the observed dynamics as well as making 

quantitative predictions on the effectiveness of different control measures, (for example see 

Agarwal and Verma (2012), Kar and Mondal (2012), Mushayabasa et al. (2012), Naresh and 

Pandey (2012)). The literature and development of mathematical epidemiology is well 

documented and can be found in Brauer and Castillo-chavez (2000).  Important results on the 

transmission dynamics of typhoid only have been revealed in the last decade, for instance see 

Gonzlez-Guzman (1989), Mushayabasa (2011),  Laura et al. (2009), Mushayabasa et al. (2013a), 

Mushayabasa et al. (2013b), to mention a few.  Similarly, investigating the transmission 

dynamics of malaria only has been an interesting area for a number of researchers recently, for 

instance see studies by Chitnis et al. (2006),  Li (2011) and Oksun and Makinde (2011) to 

mention a few. Although, several mathematical models for either typhoid or malaria infection(s) 
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only have been proposed recently, not much has been discussed on their co-infection using the 

aid of mathematical models. 

 

In view of the above we propose a deterministic mathematical model to investigate the effects of 

typhoid outbreak in malaria endemic settings. In this study it is assumed that co-infected 

individuals displaying clinical symptoms of one disease may be treated either both infections or 

single infection.  Further we assume that individuals successful treated of infection(s) recover 

with temporary immunity. 

 

2.  Model Formulation 

 
In this Section, we wish to examine the impact of typhoid and malaria co-infection, but initially 

we will examine the transmission dynamics of typhoid and malaria separately. 

 

 

2.1. Compartmental Model for the Transmission Dynamics of Typhoid Fever Only 

 
In this section, we introduce a typhoid model incorporating typhoid treatment and typhoid 

carriers. The total population ( )tN   is sub-divided into five classes namely; the susceptible class 

tS  (these are individuals who have not yet contracted the disease), the infectious class tI  (these 

are individuals who are displaying clinical symptoms of typhoid fever and are capable of passing 

on the infection), treated/recovered class tR , and the chronic enteric carriers tC  (this comprises 

of individuals who sheds typhoid bacilli for more than 12 months after onset of acute illness. 

Although, there is a possibility of one to become a chronic enteric carrier with no history of 

clinical illness [CDC (2005)], in this study we assume that individuals who are chronic enteric 

carriers would have displayed clinical symptoms of typhoid before). Thus the total population 

tN    at time  is given by 

 

( ) ( ) ( ) ( ) ( )t t t t tN S I C R        .  

 

We have considered direct transmission (short cycle) of the disease (direct person-to-person 

contact transmission of typhoid fever) only, although individuals can be infected indirectly 

through consumption, mainly of water and sometimes of food, that has been contaminated by 

sewage containing the excrement of people suffering from the disease. Since much less is known 

about the induction of acquired immunity during successful treatment of bacterial infections, 

including typhoid [Griffin et al. 2009], in this study we have assumed that individuals who 

recover from typhoid acquire temporary immunity which wanes out at rate t . The model has the 

compartmental structure of the classical SEIRS epidemic model and is described by the following 

system of non-linear differential equations 

 

( )t
t t t t t t t t

dS
I C S S R

d
   


     ,                   (2.1.1) 
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( ) ( )t
t t t t t t t

dI
I C S I

d
     


      ,       (2.1.2) 

( ) ,t
t t t t

dC
I C

d
   


            (2.1.3) 

 

( ) .t
t t t t t

dR
C I R

d
   


             (2.1.4) 

 

New recruits join the model at rate   and they are assumed to be susceptible to typhoid, t is 

the natural mortality rate, t  denotes typhoid transmission rate,  is the fraction of symptomatic 

typhoid patients who become carriers at rate  ,   is the treatment rate of symptomatic 

infectious individuals,   is the treatment rate for the carriers, t  is the disease related mortality 

rate for individuals in class tI  and tC . The modification factor  0    captures the relative 

infectiousness of chronic enteric carrier relative to symptomatic individuals.  If 0 1  , it 

implies that a symptomatic individual is highly likely to pass on the infection to a susceptible 

individuals compared to a chronic enteric carrier, 1   implies that both symptomatic 

individuals and chronic enteric carriers have equal chances of passing on the infection to the 

susceptible individuals, and 1   implies that chronic enteric carriers are more likely to pass on 

the infection compared to symptomatic individuals. 

 

2.1.1.   Feasible Region 

 

Dynamics of equations ((2.1.1)-(2.1.4)) will be analyzed in the closed set 

                                                     

  4, , , :t t t t t

t

S I C R N




 
    

 
. 

 
The set   is positively invariant and attracting. Hence, existence, uniqueness and continuation 

results for system ((2.1.1)-(2.1.4)) holds in this closed set. 

 

2.1.2.   Reproduction Number 

 

System (1) has an infection-free equilibrium point (denoted by 0 ) given by  

     

 0 0 0 0 0, , , ,0,0,0t t t t

t

S I C R


  
  

  

. 

                                                                                     
The reproductive number is defined as the spectral radius of an irreducible or primitive non-

negative (next-generation matrix) [Diekmann et al. (1990)]. Biologically, the reproductive 

number captures the power of the disease to invade the population. Using the approach in van 

den Driessche and Watmough (2002), and adopting the matrix notations therein, the matrices for 

4
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new infection terms F and the transfer terms V, evaluated at infection-free equilibrium point are 

given by 

 

  

0 0

t t

t tF

 

 

  
 
 
  

    and       1

2

0k
V

k

 
  

 
, 

 
with 1 t tk         and 2 t tk      . The reproductive number is given by the spectral 

radius (the dominant eigenvalue) of the matrix, 1FV   denoted by 1( )FV  . Thus, the 

reproductive number is 

 

1 2

1 2

( )
( ) t

t

t

k
R FV

k k

 




  
  .                                               

 

The following result follows from Theorem 2 in van den Driessche and Watmough (2002). 

 

Theorem 2.1.  
 

The infection-free equilibrium of system (1) is locally-asymptotically stable if  

1tR  , and unstable whenever 1.tR   

 

2.1.3.  Global Stability of the Typhoid Fever-Free Equilibrium 

 

Theorem 2.2.  

 

The infection-free equilibrium point 0  is globally-asymptotically stable in the feasible region 

   if 1tR  . 

 

Consider the following Lyapunov function 

 

2

1 2 2

( )t t
t t

k
F I C

k k k

  
  . 

                                                   
Its Lyapunov derivative along the solutions to system (1) is 

 

' '2

1 2 2

( )
' t t

t t

k
F I C

k k k

  
   

 

 2

1 2

( )
( ) 1t

t t t t

t

k
I C S

k k

 
 



  
   

 
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    2

1 2

( )
( ) 1t

t t t

t

k
I C

k k

 
 



  
   

 
    

    
 ( )( 1).t t t tI C R     

 

Thus, ' 0F   if 1.tR    Furthermore, ' 0F    if and only if 0t t tI C R    or 1tR  , and, 

0

t tS S . Hence, F  is a Lyapunov function on,  . Since   is invariant and attracting, it follows 

that the largest compact invariant set in   , , , : ' 0t t t tS I C R F   is the singleton { 0 }. Using 

LaSalle's Invariance Principle [Lasalle (1976)] it follows that every solution to system (1), with 

initial conditions in   approaches 0 as   . That is,  , , (0,0,0)t t tI C R  as     

Substituting 0t t tI C R    in system (1) gives 0  as   . Thus, 0  is globally 

asymptotically stable in   whenever 1tR  . 

 

2.1.4.   Existence and Stability of the Endemic Equilibrium  

 

System (1) has an endemic equilibrium point given by * * * * *( , , , )t t tS I C R  , where 

 

* ,t

t

S
R





   * 2 ( )( 1)

( )( )

t t t
t

t t t t t

k R
I

 

      

  


   
,  

 

 *

2 1

( )( 1)

( ( ( )))

t t t
t

t t t t t t

R
C

k k R

  

      

  


   
,             (2.1.5) 

 

 * 2

2 1

( )( 1)

( ( ( )))

t
t

t t t t t t

k R
R

k k R

 

      

  


   
. 

 

Based on the results in equation (2.1.5) Theorem 2.3 is established. 

 

Theorem 2.3.  
 

The endemic equilibrium point * exists if 1tR  .  

 

In order to investigate the global stability of the endemic equilibrium using the geometrical 

approach in Li and Muldowney (1996), we rewrite system ((2.1.1)-(2.1.4)) as  

 

( ) ( )t
t t t t t t t t t t t

dS
I C S S N S I C

d
   


        ,                 (2.1.6) 

 

1( )t
t t t t t

dI
I C S k I

d
 


   ,         (2.1.7) 

6
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2 .t
t t

dC
I k C

d



             (2.1.8) 

        
Theorem 2.4.   
 

Let 3( )x f x    be 1C  function (class of functions whose derivatives are continuous) for x  

in a simply connected domain 3D  , where 

 

t

t

t

S

x I

C

 
 

  
 
 

         and     1

2

( ) ( )

( ) ( )

t t t t t t t t t t t

t t t t t

t t

I C S S N S I C

f x I C S k I

I k C

   

 



       
 

   
  

. 

 

Consider the system of differential equations ' ( )x f x  subject to initial conditions 
0 0 0

0( , , ) .T

t t tS I C x  Let 0( , )x x  be a solution of the system. System ((2.1.6)-(2.1.8)) has a unique 

endemic equilibrium point *  in D  and there exists a compact absorbing set .K D  It is further 

assumed that system (2) satisfies the Bendixson criterion [Li and Muldowney (1996)], that is 

robust under 1C  local perturbations of f  at all non-equilibrium non-wandering points of the 

system. Let ( )x M x  be a 3 3 matrix valued function that is  1C  for x D  and assume that 
1( )M x  exists and is continuous for x K  then the unique endemic equilibrium point *  is 

globally stable in D  if  

 

2 0

0

1
limsup ( ( ( , )))q m Q x s x ds



   

  ,      1 [2] 1

fQ P P PJ P    .   (2.1.9) 

 

The value of  fP  is obtained by replacing each entry ijp  in P  by its directional derivative in the 

direction of *, ijf p f  and ( )m Q  in the Lozinskii measure of Q  with respect to a vector norm   

in 3

 , defined by [see Coppel (1965) for more information], 

  

0

1
( ) lim

h

I hA
m Q

h

 
 .                               (2.1.10) 

 

The Jacobian matrix of system ((2.1.3)-(2.1.5)) along ( , , )t t tS I C  is given by 

 

1

2

( ) ( ) ( ) ( )

( )

0

t t t t t t t t t t t

t t t t t t t

I C S S

J I C S k S

k

       

   



        
 

   
  

. 
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The corresponding associated second additive compound matrix  [2]J  (for detailed discussion of 

compound matrices, their properties and their relations to differential equations we refer the 

readers to [Fiedler (1974)]), is given by 

 

 

1

[2]

2

1 2

( ( )) ( )

( ) ( ) ( )

0 ( ) ( )

t t t t t t t t t t t

t t t t t t t t

t t t t t

S I C k S S

J I C k S

I C S k k

      

      

  

      
 

        
    

. 

 

Set  ( ) ( , , )t t tP x P S I C  as ( ) 1, ,t t

t t

I I
P x diag

C C

 
  

 
. 

Then,   

 

 
' ' ' '

1 0, ,t t t t
f

t t t t

I C I C
P P diag

I C I C

  
   

 
. 

 

Thus,  1 [2] 1

fQ P P PJ P    can be presented in the block form  

  

11 12

21 22

Q Q
Q

Q Q

 
  
 

, 

 

where 

 

11 1( ( )) ( )t t t t t tQ S I C k         ,         12
t t t t t t t

t t t

S C S C C
Q

I I I

 


 
  
 

,  

 

21

0

t

t

I

CQ

 
 


 
 
 

,    

' '

2

22 ' '

1 2

( ) ( ) ( )

( ) ( )

t t
t t t t t t t t

t t

t t
t t t t t

t t

I C
I C k S

I C
Q

I C
I C S k k

I C

     

  

 
         
 
 

      
 

. 

 

Let  ( , , )x y z  be a vector in 3

  as   ( , , ) max , .x y z x y z   For any vector 3( , , )x y z   , 

let m  denote the Lozinskii measure with respect to this norm. We can then obtain 

 

  1 2( ) sup ,m Q g g  ,                        (2.1.11) 

 

where,  1 1 11 12( ) ,g m Q Q      2 21 1 22( )g Q m Q  .   

 

Therefore,  
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' '

2 2 t t t
t t t

t t t

I C I
g

I C C
            .                 (2.1.12) 

 

Using the identity  

 
'

( )t t
t t

t t

C I

C C
       ,                  (2.1.13) 

 

it follows that 

 
'

2 ( ).t
t t

t

I
g

I
                        (2.1.14) 

 

For 1g  we have  

 

1 2 ( ) ( ) t t t
t t t t t t t t

t

S C
g I C S

I


                 . 

 

Using the identity 

 
'

( ),t t t t
t t t t

t t

S C I
S

I I


                                      (2.1.15) 

 

it follows that 

 
'

1 ( ) ( )t
t t t t t

t

I
g I C

I
         

 
'

( ).t
t t

t

I

I
                                    (2.1.16) 

 

Hence, 

 

 
'

1 2sup ( ), ( ) ( ).t
t t

t

I
g t g t

I
     

 

Thus, 

  

 1 2 0

0

1
sup ( ), ( ) log | ( ) ( ) 0.

2
t t t tg g d I


                                       (2.1.17) 
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Results in equation (2.1.17) shows that 2 0,q   which shows that the endemic equilibrium ( * ) 

exists and is globally asymptotically stable if  1.tR   

 

2.2.   Compartmental Model for the Transmission Dynamics of Malaria Only 

 

In this section, we adopt a mathematical model for the transmission dynamics of malaria 

proposed by Jia (2011). To account for the transmission dynamics between humans and the 

vector, the vector population is subdivided into classes of the susceptible vS , exposed vE , and 

infective vI , so that the total vector population is given by .v v v vN S E I    Since the life span 

of mosquitoes is shorter than their infective period, it has been assumed that there are no 

recovered mosquitoes in the model. Further, the human population consists of the following 

classes: the susceptible hS , the exposed hE , the infectious  ,hI  and the treated/recovered hR . 

Thus, the total human population at time   is given by 

 

.h h h h hN S E I R                          (2.2.1) 

 

The transmission dynamics of malaria among humans is given the following system of 

differential equations ((2.2.2)-(2.2.5)) 

 

h v v h
h h h h

h

dS rI S
S R

d N


 


     ,         (2.2.2) 

  

( )h v v h
h h h

h

dE rI S
E

d N


 


   ,        (2.2.3) 

 

( )h
h h h h h h

dI
E I

d
   


    ,        (2.2.4) 

 

( )h
h h h h h

dR
I R

d
  


   .        (2.2.5) 

  

The dynamics of malaria among the vector population is described by the model in system 

((2.2.6)-(2.2.8)) 

 

v h h v
v v v

v

dS rI S
S

d N





    ,          (2.2.6) 

  

( )v v h v
v v v

v

dE rI S
E

d N


 


   ,         (2.2.7) 
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v
v v v h

dI
E I

d
 


  ,         (2.2.8) 

 

where h   and v   are input flows of the susceptible humans and mosquitoes including births, 

h and h  are natural and disease-induced death rates for humans, respectively; v   is the 

transmission probability to a human per infected bite,  r  is the number of bites on a human by an 

individual mosquito per unit time, h  is the recovery of humans, h  is the rate of loss of 

immunity for recovered humans, h is the transmission probability per bite to a susceptible 

mosquito from an infective human, h  is the developing rate of exposed humans becoming 

infectious,  v  is the rate at which incubating mosquitoes become infectious, v is the natural 

death rate of the mosquitoes. 

 
2.2.1.   Analytical Results 

 

Comprehensive analytical results for the malaria model are presented in Jia (2011), hence we 

will not repeat the computations involved in establishing these results. For more information we 

refer the reader to Jia (2011). According to Jia (2011) the reproductive number for system 

((2.2.2)-(2.2.5)) and ((2.2.6)-(2.2.8)) is 

 

( )( )( )

v h v h v v
M

v h h h h h h v v

r
R

    

       




    
.                   (2.3.9)              

 

3. Co-Infection Model  

 
The total human population at time  , denoted by N is subdivided into mutually-exclusive 

compartments, namely: the susceptible S, individuals exposed to malaria only Em, infectious 

individuals singly infected with malaria Im, infectious individuals singly-infected with typhoid It, 

singly-infected typhoid carriers C, infectious typhoid patients exposed to malaria H1, individuals 

dually infected with typhoid and malaria and display clinical symptoms of both diseases Imt, 

typhoid carriers exposed to malaria H2, dually-infected typhoid carriers who display clinical 

symptoms of malaria only H3 and the recovery population R. Thus,  

 

N = S  + Em  +  Im  +  It  +  C +  Imt + H1+  H2 +  H3 +  R.         (3.1) 

 

The vector population is subdivided into classes of the susceptible Sv, exposed Ev, and infective 

Iv, so that the total vector population is given by  

 

.v v v vN S E I                            (3.2) 

 

Susceptible individuals acquire typhoid infection at rate t   given by  

 

1 2 1 3( ( ) ( ))t t t mtI H C H I H         ,           (3.3) 
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where t  denotes typhoid transmission rate, 0   accounts for the assumed unequal typhoid 

transmission probability between symptomatic typhoid individuals in classes  It  , H1  compared 

to typhoid carriers in class C and H1,  1 1  accounts for the assumed increase in infectiousness 

for dually infected individuals in class  Imt  and H3 compared to singly-infected individuals. 

Susceptible individuals are infected with malaria at rate v   given by  

 

.v v
v

rI

N


                (3.4) 

 

In (3.3) v  represents the transmission probability to a human per infected bite and, r , denotes 

the number of bites on a human by an individual mosquito per unit time. The population of 

susceptible individuals diminishes due to natural mortality at rate  . It is increased by the 

recruitment of individuals (assumed susceptible) into the population at rate h  and the transfer 

of recovery individuals (at rate  ) due to waning of temporary immunity acquired after 

successful treatment. Putting all these gives the following equation for the rate of change of the 

susceptible population 

 

( ) .h t m

dS
S S R

d
   


                (3.5) 

 

The population of individuals exposed to malaria is generated following the infection of 

susceptible population at rate m , and the recovery of a fraction f, of individuals in class H1 who 

would have been treated typhoid infection only (at rate σ). It reduces due to natural mortality (at 

rate µ), progression of individuals from exposed to infectious (at rate γ1), and infection by 

typhoid bacteria (at rate λt). Thus, 

 

1 1( ) .m
m t m

dE
S E f H

d
    


                           (3.6) 

 

The population of infectious individuals singly infected with malaria is generated through 

progression of individuals exposed to malaria only (at rate γ1). It diminishes due to natural 

mortality (at rate µ), treatment/recovery (at rate ϕ1), malaria-induced mortality (at rate δm) and 

infection by typhoid bacteria (at rate λt). Thus, 

 

1 1( ) .m
m t t m

dI
E I

d
    


                            (3.7) 

 

The population of infectious individuals singly infected with typhoid is generated by the 

infection of susceptible individuals in class S (at rate λt). It reduces due to natural mortality (at 

rate µ), typhoid-induced death (at rate δt), recovery/treatment (at rate ϕ2), progression of a 

fraction κ into typhoid carriers (at rate γ2), and infection by malaria (at rate λm). Thus, 
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2 2( ) .t
t t m t

dI
S I

d
     


                 (3.8) 

 

The population of individuals in class H1 is generated through the infection of individuals 

exposed to malaria by typhoid (at rate λt), infection of symptomatic and singly-infected typhoid 

individuals by malaria (at rate λm). It diminishes due to natural mortality (at rate μ), transfer to Imt 

class (at rate γ3), typhoid induced death (at rate δt) and recovery/treatment (at rate σ). Since these 

individuals will be displaying clinical symptoms of typhoid only we assume that a fraction f  of 

the  infected individuals who will seek treatment might be treated typhoid only and the 

remainder (1- f) might have a chance to be treated both infections. If 0f   it implies that these 

individuals would be treated typhoid infection only. Thus, 

1
3 1( ) .t m m t t

dH
E I H

d
     


                 (3.9)   

  

The population of dually-infected individuals displaying clinical symptoms of both infections is 

generated by progression of individuals in class H1 (at rate γ3), and infection of individuals who 

display clinical symptoms of malaria only (Im) by typhoid bacteria (at rate λt). It diminishes due 

to natural mortality (at rate µ), typhoid induced mortality (at rate δt), malaria related mortality (at 

rate δm). Although the signs and symptoms of malaria and typhoid fever do overlap, it was 

observed in Pakistan that subjects with dual infection had significantly higher rates of nausea, 

vomiting, abdominal pain, and diarrhea, all common presenting features of enteric fever 

[Prasanna (2011)]. Hence, we assume that dually-infected individuals displaying clinical 

symptoms of both diseases are treated (at rate ϕ3). Thus,  

 

3 1 3( ) .mt
t m t m mt

dI
I H I

dt
                   (3.10) 

 

The population of singly-infected typhoid carriers (C) is generated through progression of a 

fraction κ of singly infected individuals displaying clinical symptoms of the disease into typhoid 

carriers (at rate γ2) and recovery/treatment (at rate σ). Since individuals in class H3 will be 

displaying clinical symptoms of malaria-only, we assume that a fraction f of the individuals who 

seek treatment might be treated malaria only and the remainder (1- f) might have a chance to be 

treated both infections. The population diminishes due to natural death (at rate μ), typhoid related 

mortality (at rate δt), infection by malaria (at rate λm), treatment/recovery (at rate ϕ4). Thus, 

 

2 3 4( ) .t t m

dC
I f H C

d
     


              (3.11) 

    

The population of typhoid carriers exposed to malaria H2 is generated through malaria infection 

of singly-infected typhoid carriers (at rate λm). It diminishes due to natural death (at rate μ), 

typhoid related death (at rate δt), progression of a fraction p of untreated individuals to class H3 

(at rate γ4), transfer of individuals successfully treated of both infections (at rate (1- p) γ4 ). Thus, 
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2
4 2( ) .m t

dH
C H

d
   


                         (3.12) 

 

The population of typhoid carriers who display clinical symptoms of malaria is generated by the 

progression of dually-infected individuals from class H2 (at rate pγ4). It diminishes due to natural 

death (at rate μ), typhoid related death (at rate δt), malaria-induced mortality (at rate δm) and 

recover/treatment (at rate σ). Thus, 

 

3
2 3( ) .t m

dH
p H H

d
    


              (3.13) 

 

The recovery population R, is generated by the treatment of individuals singly-infected 

displaying clinical symptoms of malaria only (at rate ϕ1), treatment of individuals singly infected 

and displaying clinical symptoms of typhoid (at rate ϕ2), treatment of dually-infected individuals 

displaying clinical symptoms of both infections (at rate ϕ3), treatment/recovery of singly-infected 

typhoid carriers only (at rate ϕ4 ), recovery/treatment of the fraction (1- f) of individuals in 

classes H1 and H3  (at rate  σ). It diminishes due to natural death (at rate μ) and waning out of 

immunity (at rate θ) Thus, 

  

1 2 3 4 4 2 1 3(1 ) (1 )( ) ( ) .m t mt

dR
I I I C p H f H H R

d
       


               (3.14) 

      

Equations (3.5)-(3.14) summarize the transmission dynamics of typhoid and malaria among the 

human population.  The following system of non-linear ordinary differential equations describes 

the vector population: 

 

3( )v h m mt v
v v v

dS r I I H S
S

d N






 
    ,        (3.15) 

 

3( )
( )v v m mt

v v v v

dE r I I H
S E

d N


 



 
   ,       (3.16) 

 

v
v v v h

dI
E I

d
 


  .          (3.17) 

 

In system (3.15)-(3.17),  v  denotes the input flows of the susceptible mosquitoes including 

births, βh is the transmission probability per bite to a susceptible mosquito from an infective 

human, r is the number of bites on a human by an individual mosquito per unit time, γv is the rate 

at which incubating mosquitoes become infectious, μv is the natural death rate of the mosquitoes. 
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Table 1. Model Parameters and their baseline values 

Symbol Units Baseline value Source 

,h v   Per day 100,1000 Okosun and Makinde (2011) 

 

, v   Per day 0.00004, 0.1429 

 

Okosun and Makinde (2011) 

 

,h v   - 0.09 , 0.083 

 

Okosun and Makinde (2011) 

 

1,   - 1.2, 2.5 Estimate 

1, v   Per day 0.059, 0.055 Okosun and Makinde (2011) 

 

2 3 4, ,    Per day 0.1, 0.1, 0.15 Estimate 

r  Per day 50 Estimate 

m  Per day 0.05 Okosun and Makinde (2011) 

 

t  Per day 0.01 CDC (2005) 

, p  - 0.03, 0.05 Bhan et al 

t  Per day 0.01 Mushayabasa et al (2013a) 

f  - 0.05 Estimated 

  Per day 0.0013 Okosun and Makinde (2011) 

 

  Per day 0.2 Estimate 

1 2 3 4, , ,     Per day 0.25, 0.2, 0.15,0.1 Estimate 

 

 

3.1. The Reproductive Number 

 
Using the next generation method it can easily be deduced that the reproductive number of the 

co-infection model (system (11) and (12)) is given by 

 

 max ,TM T MR R R .           (3.18)                             

 

In (3.18) TR  and MR  are respectively given by  

 

2 4

2 2 4

( )

( )( )

h t t
T

t t

R
    

       

   


    
,                     (3.20) 

                                                

( )( )( )

v h v h v v
M

v h h h h h h v v

r
R

    

       




    
.                                               (3.21) 

 

In equation (3.20)  TR   represents the average number of new typhoid cases generated by typhoid 

infectious individual during his/her infectious period in malaria endemic settings and similarly in 
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equation (3.21) MR  measures the power of malaria infection to invade the population in the 

presence of typhoid disease.    

        

3.2. Stability of the Co-Infection Model Steady States 

 

Results from the analysis of single infections (typhoid-only and malaria-only) reveals that a 

typhoid model has globally stable steady states and the malaria-only model exhibits a backward 

bifurcation phenomenon (results adapted from Li (2011) and reference there in). Combining 

these results one can easily establish that the co-infection model may exhibit the phenomenon of 

backward bifurcation where multiple endemic equilibria co-exist with a disease-free equilibrium. 

 

4.  Numerical Results and Discussion 
 

To support analytical results in this study, we performed numerical simulations of the co-

infection model using the MATLAB ODE solver, ode45, and parameter values in Table 2. 

 

Numerical results in Figures 1-4 depicts cumulative population levels for RTM   > 1. Figure 4.1 

shows that in the presence of typhoid and malaria infections in the community, then in the long-

run they will be a higher population of recovery individuals than the susceptible population. In 

Figure 4.2 depicts the dynamics of individuals exposed to malaria only and those exposed to 

typhoid but displaying clinical symptoms of typhoid. We observe that in the long-run cumulative 

infections in this case will be dominated by individuals exposed to malaria infection only. Figure 

4.3 illustrated the dynamics of singly and dually infected, but displaying clinical symptoms of 

the infection(s).  Results in Figure 4.3 suggests that, on the onset cumulative infections will be 

dominated by malaria cases only up to a period of 15 days, there after cumulative infections will 

be dominated by dual infections. Although, this arguably might be a small fraction its impact on 

disease prevalence cannot be ignored since these individuals will continue to transmit typhoid 

even though they are no longer displaying clinical symptoms of the disease. Figure 4.4 illustrates 

the dynamics of typhoid carriers, both singly and dually infected. We observe that from the onset 

cases of typhoid carriers exposed to malaria will be dominated to a period of 600 days, there 

after cases of individuals singly infected with typhoid will be dominant. 

 

 
Figure 4.1. Numerical results of illustrating the dynamics of Equation (3.5) and (3.14) 
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       Figure 4.2.  Simulations illustrating the dynamics individuals exposed to malaria infection only and 

individuals displaying clinical symptoms of typhoid but have been exposed to malaria 

 
Figure 4.3. Simulations illustrating the dynamics of infected individuals displaying clinical symptoms of 

infection(s) 

 

 
   Figure 4. 4. Simulations showing the dynamics of the typhoid carrier population, both singly and dually infected 
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5. Concluding Remarks 
 

A deterministic mathematical model for assessing the transmission dynamics of typhoid in 

malaria endemic settings has been proposed and analyzed. Initially, a sub-model for the 

transmission dynamics of typhoid-only has been developed and comprehensively discussed. 

Important results from the qualitative analysis of the typhoid sub-model suggest that, the model 

have globally stable equilibrium points, namely the infection-free and the endemic equilibrium. 

Secondly, we present a brief discussion of the malaria infection only model adopted from Li 

(2011). Essential results on the transmission dynamics of malaria only, adapted from Li (2011) 

shows that the model exhibits a backward bifurcation phenomenon (a scenario where multiple 

endemic equilibria co-exist with a disease-free equilibrium). Thirdly, we formulated the co-

infection model making use of the two sub-models discussed earlier. The reproductive number 

for the co-infection has been computed. Based on the analytical results of the two sub-models we 

have established that the co-infection model exhibits a backward bifurcation phenomenon. 

Numerical results presented in this study suggests that a typhoid outbreak in malaria endemic 

settings may lead to higher population of dually infected individuals displaying clinical 

symptoms of both infections than the singly-infected population displaying clinical symptoms of 

the disease. 
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Figure 5. Model flow diagram 
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