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Abstract 

The present mathematical analysis, the study of blood flow through the model of a composite 

stenosed catheterized artery with permeable wall, has been performed to investigate the blood 

flow characteristics. The expressions for the blood flow characteristics-the impedance (resistance 

to flow), the wall shear stress distribution in stenosis region, the shear stress at the throat of the 

stenosis have been derived. The results obtained are displayed graphically and discussed briefly. 
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1.  Introduction 

The cause and development of many cardiovascular diseases, most common types are ischemia, 

angina pectoris, myocardial infraction and cerebral strokes, are related to the nature of blood 

flow and mechanical behavior of the blood vessel wall, that is why the study of the blood flow 

through a stenosed artery is very important. The generic medical term stenosis or arteriosclerosis 

is the narrowing of any body passage, tube or orifice; comes from the Greek words arthero 

(meaning gruel or paste) and sclerosis (hardness). A common form of arterial narrowing or 

stenosis is that caused by atheroma, a deposition of fats and fibrous tissue in the arterial lumen. 

Such constriction of the arterial lumen grows inward and restricts the normal flow of blood 
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where the transport of blood to the region beyond the narrowing is reduced considerably. 

Moreover, under normal physiological conditions, the transport of blood in the human 

circulatory system depends entirely on the pumping action of the heart which produces a 

pressure gradient throughout the arterial system. 

 

Since the first investigation of Mann et al. (1938), a large number of studies including the 

important contributions of Young (1968,1979), Young and Tsai (1973), Caro et al. (1978), 

Shukla et al.(1980), Ahmed and Giddens (1983), Sarkar and Jayaraman (1998), Pralhad and 

Schultz (2004), Jung et al. (2004), Liu et al. (2004) Srivastava and coworkers (1996, 2009, 

2010a,b), Mishra et al. (2006), Ponalagusamy (2007), Layek et al. (2005, 2009), Joshi et al. 

(2009), Mekheimer and El-Kot (2008), Tzirtzilakis (2008), Mandal and coworkers (2005, 2007a, 

b), Politis et al. (2007, 2008), Siddiqui et al. (2009), Singh et al. (2010), Medhavi (2011) and 

many others, have been conducted in the literature in various context. 

 

It has been established that the development of stenosis in its early stage of the disease, is 

strongly related to the characteristics of the blood flow by [Gidden et al. (1993)]. It is reported 

that at high shear rates and in larger vessel, blood behaves like a Newtonian fluid, [Taylor 

(1959)], [Young (1968)] has analyzed the effects of stenosis on flow characteristics of blood 

treating blood as a Newtonian fluid. He reported that an increase in the stenosis size increases 

both the impedance to flow and wall shear stress. 

 

The insertion of a catheter into an artery forms the annular region between the catheter wall and 

the arterial wall. A catheter is composed of polyster based thermoplastic polyurethane, medical 

grade polyvinyl choloride, etc. The insertion of the catheter will change the flow field, modify 

the pressure distribution and increase the resistance. Even though the catheter tool devices are 

used for the measurement of arterial blood pressure or pressure gradient and flow velocity or 

flow rate, X-ray angiography and intravascular ultrasound diagnosis and coronary ballon 

angioplasty treatment of various arterial diseases, a little attention has been given in literature to 

the flow in catheterized arteries.   

 

Kanai et al. (1970), has reported that when a catheter is inserted in a stenosed artery, it further 

increases the impedance to flow and changes the pressure distribution. Jayaraman and Tewari 

(1995) have studied blood flow in a catheterized curved artery, by assuming the artery as a 

curved pipe and the catheter to be co-axial to it. Young and Tsai (1973), Lee (1974), Mcdonald 

(1979), Ahmad and Giddens (1983), Ponalagusami (1986), Back (1994) and Back et al. (1996) 

studied the mean flow resistance increase during coronary artery catheterization in normal as 

well as stenosed arteries. Srivastava and Srivastava (2009) have presented a brief review of the 

literature on artery catheterization with and without stenosis. Layek et al. (2009) investigated the 

effect of an overlapping stenosis on flow characteristics considering the pressure variation in 

both the radial and axial direction of the arterial segment under consideration.  Srivastava et al. 

(2010) investigated the effect on flow characteristics of blood due to the presence of overlapping 

stenosis in an artery assuming that the flowing blood is  represented by Newtonian fluid.  

 

The plasma membrane is a thin elastic membrane around the cell which usually allows the 

movement of small irons and molecules of various substances through it. This nature of plasma 

membrane is termed as ‘permeability’. The flow in the permeable boundary is described by 
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Darcy law which states that the rate at which a fluid flows through a permeable substance per 

unit area is equal to the permeability times the pressure drop per unit length of flow, divided by 

the viscosity of fluid. Most recently, Srivastava et al. (2009) studied impedance and wall shear 

stress in blood flow through a bell shaped stenosis in an artery with permeable wall.  

 

In view of  the above discussion, the research reported here is devoted to the study of blood flow 

through a composite stenosis in catheterized artery with permeable wall; the flow in the 

permeable boundary is described by Darcy law; assuming that blood is represented by a 

Newtonian fluid.  

 

2.  Formulation of the Problem 

Consider the axisymmetric flow of blood through a composite stenosis, specified at the position 

shown in Figure 1 in an inserted catheterized artery with permeable wall. The geometry of the 

stenosis which is assumed to be manifested in the arterial wall segment is described as: 

 

0 0 0

( ) 2
1 ( );    

R z
z d

R R L


   0 / 2,d z d L                                                                            (1) 
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 
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         =1;          otherwise,                                                                                                     (3)                                                                          

where  0( ),  R z R are the radii of the tube (with, without) stenosis, 0L  is the stenosis length and d

indicates its location,  is the depth of the stenosis at throat. 

 

 

 

 

 

 

 

Figure 1. The geometry of a composite stenosis in inserted catheterized artery with permeable wall 

The flowing blood is assumed to be represented by a Newtonian fluid; using thus a continuum 

approach, the equations governing the linear momentum and the conservation of mass for a 

Newtonian fluid are given by        
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where 2 =
2 2 2 2/ (1/ )( / ) /r r r z        is a two-dimensional Laplacian operator, r is the 

radial coordinate measured in the direction normal to the tube axis, ( ,u v ) denotes the (axial, 

radial) components of velocity of the fluid, p is the pressure, ρ and μ are respectively the fluid 

density and the viscosity. 

 

Due to the non-linearity of convective acceleration terms, to obtain the solution of equations (4)–

(6) is a formidable task. Depending, therefore, on the size of the stenosis, however, certain terms 

in these equations are of less importance than other (Young, 1968). Considering thus the case of 

a mild stenosis 0(  / 1)R  , the general constitutive equations (4)-(6) in the case of an 

axisymmetric, laminar, steady one-dimensional flow of blood in an artery  reduce (Young, 1968; 

Srivastava and Rastogi, 2009) to 

                                     


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(7)

                                             

 

where u  is the axial velocity,   is the fluid viscosity, r  is the radial co-ordinate and p  is the 

pressure. 

 

The condition that are specified at the artery wall and the interface for present study may now be 

stated (Beavers and Joseph, 1967; Srivastava et al., 2012) as 

 

,at     , 0 cRru 
                                                                                                                 

(8)
  

               
 

),(at     , )(
r

  and  zRruu
D

u
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(9)

                              

 

 where ,
dz

dpD
u a

porous



  porousu  is the velocity in the permeable boundary, 

Bu  is the slip 

velocity, aD  is the Darcy number and  , called slip parameter, is a dimensionless quantity 

depending on the material parameters which characterize the structure of the permeable material 

within the boundary region. 
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3.  Analysis 
 

Using boundary conditions (8) and (9), the expression for the velocity obtained as solution of 

equation (7), is given as  

 
2 2

2 21 ( ) log( )
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Also the slip velocity, 
Bu  is determined as 
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An application of equation (10) into (11), yields 
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The volumetric flow rate, Q  is now calculated as
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From equation (13), one now obtains        
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where 
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The pressure drop,  Lz, -pzpp  at  0at   across the stenosis in the tube of length, L  is 

obtained as 
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The first and the fourth integrals in the expression obtained above are straight forward whereas 

the analytical evaluation of second and third integrals are almost a formidable task and therefore 

shall be evaluated numerically. 

 

The flow resistance (resistive impedance),  , the wall shear stress in stenotic region, w , and 

shearing stress at stenotic throat, s  are now calculated as 
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Following now the reports of Srivastava et al. (2009), one derives the expressions for the 

impedance,  , the wall shear stress in the stenotic region, 
w , and shearing stress at stenotic 

throat, s   in their non-dimensional form as
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In the absence of the catheter (i.e., under the limit 0 ), one derives the expressions for , w , 

respectively, through a stenosed artery with permeable wall as   
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4.  Numerical Results and Discussion
 
 

The development of a stenosis in an artery can obviously create many serious problems and in 

general disrupt the normal function of the circulatory system. In order to observe the quantitative 

effects of the various parameters involved in the present analysis, computer codes are developed 

to evaluate the analytical results obtained in equations  (19)-(21) for dimensionless resistance to 

flow,  , the wall shear stress , w , in the stenotic region, the shear stress, 
s , at the throat of the 

stenosis in a tube of radius R0 = 0.01cm for various parameter values: d = 0; L0(cm) =1; L (cm) = 

1, 2, 5;  (non-dimensional catheter radius)= 0.1, 0.2, 0.3, 0.4, 0.5;  = 0.1, 0.2, 0.3, 0.4, 0.5; 

aD (square root of Darcy number,  Da and hereafter referred as Darcy number) = 0.1, 0.2, 0.3, 

0.4, 0.5; 
0R = 0, 0.05, 0.10, 0.15, 0.20.  

 

The impedance,  , increases with increasing value of the catheter size,  , also increases with the 

stenosis height, 
0R , for any given set of parameters which turns difficult for blood to flow in 

the blood vessel (Figure 2). 
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It is observed that the presence of the catheter causes increase in the magnitude of impedance, 

,aD  in addition to that due to the presence of the stenosis (Figure 3) and possesses similar 

characteristics with catheter size,  , (Figure 5). 

 

It is also clear that the blood flow characteristic, impedance,  , decreases with increasing value 

of the slip parameter,  , increases with the stenosis height, 
0R , for given value of Darcy 

number, aD ,
 
(Figures 4).
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For other given set of parameters, the blood flow characteristic, λ, increases with increasing 

Darcy number, aD ,  (Figure:6). One observes that the flow resistance,  , decreases rapidly 

with increasing value of  the slip parameter from its maximal amplitude at 1.0  (Figure:7). 

For a given Darcy number,
 aD  , the catheter size,   , the impedance,  , decreases with 

increasing tube length, L , increases with stenosis size (Figure: 8). The wall shear stress in the 

stenotic region, 
w , increases rapidly in the upstream of the stenosis throat  from its approached 

value at 00 LZ  and achieves its maximal magnitude at the stenosis throat (i.e., at 5.00 LZ

), it then decreases rapidly in the downstream of the throat to its approached value at the end 

point of the constriction profile (at 10 LZ )(Figure: 9, 10, 11 and 12). The curves representing 

the shear stress distribution have features almost analogous to the geometry of a composite 

stenosis under 
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consideration. The wall shear stress are found to be compressive in nature and they are all 

downwardly concave.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5


w

Figure:10. Wall shear stress distribution, 
w
 in stenotic region 

                     for different catheter size,  .

Z/L
0

Number 

 / R
0
=0.1

D
a

1/2
 = 0.1

 = 0.1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

40

60

80

100

120

140

160

180

200

Nunber D
a

1/2

0.1

0.2

0.5

0.4

0.3

Z/L
0

 = 0.1 

 / R
0
=0.1

 = 0.1

Figure:11. Wall shear stress distribution, 
w
 in stenotic region for

                     different Darcy number  D
a

1/2
.


w

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 9 [2014], Iss. 1, Art. 6

https://digitalcommons.pvamu.edu/aam/vol9/iss1/6



70                                                                                                                                                      Rupesh K. Srivastav 

 

                                                                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The wall shear stress at the stenosis throat,
 S  

increases with increasing value of the stenosis 

height,
0R  and attains its maximal magnitude and after that assumes an asymptotic value with 

increasing value of the stenosis height, 
0R , (Figure 14) and also wall shear stress, 

S

corresponding to catheter size,  , possesses similar characteristics (Figure 13). 
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The wall shear stress at the stenosis throat,
 S ,

 
decreases with increasing value of the slip 

parameter,  , decreases and assumes an asymptotic value with increasing value of the stenosis 

height,
0R , (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

In the present paper, we have discussed the effect on flow characteristics of a Newtonian fluid in 

an inserted catheterized stenosed artery with permeable wall. A significant change in the 

magnitude of the blood flow characteristics occurs with respect to the flow parameters and the 
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catheter size. Thus, the size of the catheter must be chosen, keeping in view, the stenosis height 

during the medical treatment. 
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