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Abstract 

This paper develops a new class of joint modeling of mixed correlated ordinal and continuous 
responses with elliptically contoured errors. This joint model includes the latent variable 
approach of using an elliptically contoured distribution for mixed ordinal and continuous 
responses. A Markov Chain Monte Carlo sampling algorithm is described for estimating the 
posterior distribution of the parameters. For sensitivity analysis to investigate the perturbation 
from associate responses, it is demonstrated how one can use some elements of covariance 
structure. Influence of small perturbation of these elements on the posterior normal curvature is 
also studied. To illustrate the application of such modeling the data (medical) is analyzed.  
 

Keywords:  Bayesian inference; Joint modeling; Gibbs sampler; Ordinal and continuous 
responses; Markov Chain; Monte Carlo; Sensitivity Analysis; Posterior Normal 
Curvature  

 
AMS-MSC (2010) No.:  62F03 
 
 
1. Introduction 

 
Some biomedical data include some correlated discrete and continuous outcomes. Outcomes 
related to mixed ordinal and continuous responses data are pervasive and research on analyzing 
them needs to be encouraged. For joint modeling of responses, one method is to use the general 
location model of Olkin and Tate (1961), where the joint distribution of the continuous and 
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categorical variables is decomposed into a marginal multinomial distribution for the categorical 
variables and a conditional multivariate normal distribution for the continuous variables. The 
categorical variables (for a mixed Poisson and continuous responses) were used in the method by 
Olkin and Tate’s (1961), see Yang et al. (2007).  For joint modeling of mixed outcomes using 
latent variables see McCulloch (2007). A second method for joint modeling is to decompose the 
joint distribution as a multivariate marginal distribution for the continuous responses and a 
conditional distribution for categorical variables given the continuous variables. Cox and 
Wermuth (1992) empirically examined the choice between these two methods. The third method 
uses the simultaneous modeling of categorical and continuous variables to take into account the 
association between the responses by the correlation between errors in the model for responses. 
For more details of this approach see, for example, Heckman (1978) in which a general model 
for simultaneously analyzing two mixed correlated responses is introduced and Catalano and 
Ryan (1992) who extended and used the model for a cluster of discrete and continuous outcomes. 
Poon and Lee (1987) presented a model for the ordinal and continuous responses without 
considering any covariate effect.  
 
The class of elliptical distribution includes a vast set of known symmetric distributions, for 
example, the normal and Student t distributions [see Kelker (1970) and Fang et al. (1990)]. In the 
case of normal distribution, see Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), 
and Arnold and Beaver (2000). They obtained the multivariate distribution by conditioning on 
one suitable random variable being greater than Zero. Sahu et al. (2003) conditioned on as many 
random variables as the dimension of the multivariate distribution (multivariate skew-normal and 
t distributions). They obtained analytical forms of densities and studied distributional properties.  
 
Bayesian analysis of regression problems under heavy-tailed error distributions were researched 
by Zellner (1976), Geweke (1993) and Fernandez and Steel (1998). Extensions of those results 
for elliptical distributions are considered in Chib et al. (1998). The Bayesian approach has 
several important advantages. First, the exact posterior distribution of the parameters can be 
estimated by using MCMC methods. Means and quantities based on the estimated posterior are 
appropriate regardless of the sample size. In contrast, standard errors and confidence limits for 
the maximum likelihood estimates are typically based on strong asymptotic normality 
assumptions. Second, the Bayesian approach allows for the direct incorporation of prior 
knowledge. This is a major advantage in structural equation modeling. Classical methods often 
require that a subset of the parameters is known to ensure identifiability. Although constrain on 
the threshold parameters and the variance of the latent variables are often reasonable, additional 
less justifiable constraints can be avoided by using a prior distribution to allow for prior 
uncertainty in the parameters. In addition, by assigning parameters about which there is previous 
information, more precise estimates of the parameters of interest can be obtained.  
 
In this paper, the author proposed a new class of latent variable models for mixed correlated 
ordinal and continuous responses with elliptically contoured errors.  Markov chain Monte Carlo 
(MCMC) algorithms (Tierney, 1994) are developed for estimating the posterior distribution of 
the parameters. The aim of this paper is to adapt and extend an approach similar to that of 
Heckman (1978), for a joint modeling of multivariate ordinal and continuous outcomes with 
elliptically contoured errors.  
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In Section 2, the general modeling framework is described. A general MCMC sampling 
algorithm for posterior estimation is outlined in Section 3. In Section 4, we have a simulation 
study. In Section 5, a common way to investigate if perturbations of model components influence 
key results of the analysis is to compare the results derived from the original and perturbed 
models using posterior normal curvature. In Section, the proposed methodology is applied on the 
medical data. In this section, as sensitivity analysis for these data the influence of a small 
perturbation of the associate responses on posterior normal curvature will be also investigated. 
Finally, concluding remarks are given.  
 
 
2. Latent Variable Model 

 
Consider a m dimensional random vector W  having elliptical distribution with probability 
density function of the form  
 

, Σ, |Σ|   Σ , 
 
where Σ is an m m  positive definite matrix with the covariance matrix of the random vector 
given by W  is a function  to  called the density generator of the random vector , 
defined by  
 

2 .
;

;
, 

 

where  ;g u M  is a function  to  such that the ; ∞. We shall denote 

an elliptically distributed  dimensional vector with location , scale Σ  and characteristic 
generator , by , Σ; . 
  
We use  to denote th ordinal response for the th individual with  levels defined as,  
 

1	 	 ∗
, ,

1	 	 ,
∗

, , 			 1, . . . , 2
	 	 ∗

, ,
, 

 
where 1, . . . , , 1, . . . , . , , . . . , ,  are the cut-point parameters and ∗  denotes the 

underlying latent variable for . The joint model takes the form:  
 

																																											 ∗ 											 1, . . . , ,

																																										 											 1, . . . , , 			 .
																					 1  

 
Let  
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, ∼ 0, Σ; , 
 

where , . . . , , , . . . , , , , . . . , , , 1, . . . , , 

is the vector of cutpoint parameters for the th ordinal response and  is the vector of 
explanatory variables for the  individual and Σ is the  covariance matrix which for 
illustration, when 2 and 3 has the following structure, 
  

Σ
1

1 , 

 
where  is the variance of the continuous response, and  for , 1,2,3 is the 
correlation between th and th responses. The vector of coefficients , cut points parameters  
for 1, . . . ,  and Σ  should be estimated. The parameter vector,  for 1, . . . , , 
includes an intercept parameter but , for 1, . . . , , due to having cut point parameters, are 
assumed not to include any intercept. In this model any elliptical distribution can be assumed for 
the errors in the model.  
 
 
3. Bayesian Estimation 

 
In this section, prior distributions are chosen for the parameters, and the general MCMC 
algorithm is outlined for estimating the posterior distributions of the parameters and the latent 
variables via Dunson (2000). The prior distributions are conjugate if the underlying variables are 
normal.  
 
Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the 
parameter space. The Markov chains are defined in such a way that the posterior distribution, in 
a given statistical inference problem, is the asymptotic distribution. One of the standard 
approaches to define such Markov chains is Gibbs sampling. We will use MCMC techniques for 
posterior computation in the models proposed in section 2. In the special case where all the 
underlying and latent variables have normal distribution the MCMC algorithm is Gibbs sampler 
that follows a simple form.  
 
3.1. Prior Distributions  
 
The parameters , . . . , , , . . . ,  are assigned a normal prior,  
 

∼ , Σ ; , 
 
where  is a vector of location parameters, Σ  is a covariance matrix and . To 
choose a vague prior distribution for , set 0 and Σ , . . . , . Wishart prior are 
specified for the precision matrix Σ in expressions (1):  
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Σ ∼ , Λ , 

 
with degrees of freedom  and precision Λ . A prior can be assigned by choosing , where 

 is the the dimension of Σ.  
 
3.2. The Gibbs Sampler 
 
Consider the model with all equations given in (1). We assume that  and Σ  are a priori 
independent with , Σ ;  and Σ , Λ , where .  is the prior 
distribution. The conditional posterior distribution of | , , Σ  and Σ| , ,  are computed 
in subsection 3.3.  
 
To estimate the posterior distributions of the parameters, we define a Markov chain in 
, Σ . Denote with , Σ  the state parameter of the Markov chain after  iterations. 

Given the nature of a Markov chain, all we need to define is the transition probability, i.e., given 
a current value for , we need to generate a new value . We do so by sampling from the 
complete conditional posterior distributions for  and Σ 
  

∼ , , Σ ,

Σ ∼ Σ | , .
 

 
Step 1 and Step 2 define a Markov chain  which converges to , Σ| , , as desired. The 
described Markov chain Monte Carlo simulation is a special case of a Gibbs sampler. In general, 
let ∗ , . . . ,  denote the parameter vector. The Gibbs sampler proceeds iteratively, for 

1, . . . , , generating from the conditional posterior distributions 
  

∼ | , . . . , , , . . . , , , . 
 
 
3.3. Posterior Computations  

 
We now obtain the form of the joint posterior distribution.  Let y y , . . . , y , z
z , . . . , z  and x x , . . . , x  where y y , . . . , y , z z , . . . , z  and 
x x , . . . , x , and p  is the number of explanatory variables for the ith  individual (the 
number of components in this vector may also be dependent on the chosen variable, i.e., x  be 
x  and p be p , here, we ignore this for simplicity).  
 
The joint posterior distribution for the parameters and latent variables is:   
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where π . |x  denote the joint prior density and η β , . . . , β , θ , . . . , θ .  
 
Using the above Theorem, the joint posterior distribution could be summarized as,  
 

 

 
 

     
   

i1 i1 iM iM 11 1

1

1

1

1

i i

1

b a b a i1 iM i i
1

i i

M
i0

1

1

i1 i2 iM

n M Mν M 1

2 2
22

'M M 1
i z 22 i z

M M ' 1
0 0 0

P η,Σ y, z , x [ Δ Δ F(w , , w | z , x )

f (z | x )]π(η,Σ | x)]

(F F F ... 1) F

Σ Σ

g z μ Σ z μ

g {(η μ ) Σ η μ }

n

i

i

n

n

i







  

 

 



 
      
 

 
  

 

 







 

, 

 
where μ β X , . . . , β X , Σ Var Z , b θ ,  and a θ ,  and F  is the 

sum of all 
M
j  terms of the from F g , . . . , g |z , x  with g a  for exactly j integers in 

0,1, . . . , M , and g b  for the remaining M j integers.  
 
We require the full conditional distributions of each unknown parameter. We have  
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The full conditional distribution of the precision matrix Σ is   
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4. Simulation 

 
We consider three continuous variables Y∗, Y∗ and Z. The ordinal variables Y  and Y  with three 
levels are defined as  
 

Y
1    Y∗ θ ,
2  θ Y∗ θ ,
3    Y∗ θ ,

 

 
and  
 

Y
1    Y∗ η ,
2  η Y∗ η ,
3    Y∗ η ,

 

 
the variables, Y∗ , Y∗ and Z are generated by a multivariate normal distribution with zero mean 
and covariance matrix 
  

Σ
1 ρ σρ
ρ 1 σρ
σρ σρ σ

. 

 
 
We let ρ ρ ρ 0.5 and different values of σ , (0.5, 1 and 2). We also let θ η
1 and 2 2θ η 1  . In the set of cut points, not having any covariate in the model for latent 

variable of Y  and Y , one expects to have, roughly, 16 percent of Y values to be equal to 1, 16 
percent to be equal to 3 and 68 percent to be equal to 2. So, the low and high values have nearly 
the same frequency but the middle value have the highest frequency.  For this we consider 3 
values for n (50, 100, and 1000). In this analysis we use 1000 sets of simulation. In each 
simulation we analyze the following simple model  
 

∗ 	 ,
∗ 	 ,

.

 

 
Table 1 contains the average estimated values of , ,  (the correlation between  and ∗), 
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 (the correlation between  and ∗),  (the correlation between ∗ and ∗), , ,  and 
 for n=50, n=100 and n=1000. The parameter estimates by the model for , , , , , 
, ,  and  (for 30, n=100 and n=500) are close to the true values of the parameters. 

Of course, the more the value of n the better the estimates. We used a Gibbs sampler within 
winBUGS to estimate from the joint posterior distribution of the parameters. We run three chains 
with widely varying initial values and used 10000 Gibbs iterates collected after convergence 
from each chain to compute posterior summaries of the parameters. Posterior summaries of the 
global parameters for each outcome are shown in Table 1.  
 

Table 1.  Results of the simulation study   
                                                n=30                   n=100                n=500

Parameter     True 
value

  Est. S.E.     Est. S.E.     Est. S.E.  

 0.000   0.050 0.151     0.013 0.101     0.001 0.026  

 1.000  1.130 0.136    1.015 0.071    1.003 0.027  
.500  0.441 0.019    0.532 0.011   0 .503 .002  
2.000 2 .128 0.178 2   .013 0.168 2  .013 0.127  

 0.500   0.455 0.145     0.496 0.080     0.502 0.029  

 0.500   0.435 0.139     0.491 0.093     0.506 0.020  

 0.500   0.447 0.178     0.493 0.072     0.509 0.013  

 -1.000  -1.150 0.248    -0.985 0.153    -0.996 0.047  

 1.000   1.085 0.293     1.024 0.164     0.993 0.032  

 -1.000  -1.151 0.255    -0.963 0.141    -0.996 0.049  

 1.000   1.092 0.226     1.028 0.144     0.984
0.59  

 
 
5. Sensitivity Analysis 

 
Sensitivity analysis is the study of how model output varies with changes in model inputs. An 
assessment of the influence of minor perturbations of the model is important, see Cook (1986).  
 
Generally, one introduces perturbations into the model through the 1  vector  which is 
restricted to some open subset Ω of . Let |  denote the log- posterior corresponding to 
the perturbed model for a given  in Ω. For a given set of observed data, where  is a 1 
vector of unknown parameters, the author assume that there is an  in Ω such that 

|  for all . Finally, Let ̂  and ̂  denote the maximum posterior estimators under  
and | . To assess the influence of varying  throughout Ω , the author considers the 
posterior displacement defined as:  
 

2 ̂ ̂ . 
 
A graph  versus  contains essential information on the influence of the perturbation 
scheme in questions. It is useful to view this graph as the geometric surface formed by the values 
of the 1 1  vector , ,  as  varies throughout Ω . When 

1, the posterior curvature of such plain curves at  is,  
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| |

/ , 																																																									 2  

 
where the first and second derivations  and  are evaluated at . Since 1 and 

0,  reduces to . When 1, an influence graph is a surface in 
. The posterior normal curvature  of the lifted line in the direction  can now be obtained 

by applying (2) to the plan curve , , where , ∈ , and  is a fixed 
non-zero vector of unit length in . I proposed looking at local influences, i.e., at the posterior 
normal curvature  of  in , in the direction of some -dimensional vector  of unit 
length. Let Δ  be the -dimensional vector defined by 

 

Δ
|

| ̂ ,   0 

 
and define Δ as the  matrix with Δ  as its th column. Further, let  denote the  matrix 
of second-order derivatives of |  with respect to , also evaluated at ̂ . Cook (1986) 
has then shown that  can be easily calculated by  
 

2 Δ Δ . 
 
I have now shown that  can be easily calculated by 
  
																																																														 2 Δ Δ . 																																																										 3  

 
Obviously,  can be calculated for any direction . One evident choice is the vector  
containing one in the 	  position and zero elsewhere, corresponding to the perturbation of the 
th weight only. Another important direction is the direction  of maximal normal curvature 

. It shows how to perturb the condition for associate of the responses to obtain the largest 
local changes in .  is the largest eigenvalue of Δ Δ and  is the 
corresponding eigenvector.  
 
 
6. Application 

6.1. Medical Data 

The medical data set is obtained from an observational study on women in the Taleghani hospital 
of Tehran, Iran. These data record status of osteoporosis of the spine and Steatosis as ordinal 
responses and BMI as a continuous response for 163 patients. Osteoporosis of the spine is a 
disease of bone in which the bone mineral density (BMD) is reduced, bone micro architecture is 
disrupted and the amount and variety of non-collage nous proteins in bone are altered. BMI is a 
statistical measure of the weight of body mass index. A person’s body mass index may be really 

accurately calculated using any of the formulas such as BMI kg/cm  where W is weight 

and H is height. Steatosis is the process describing the abnormal retention of lipids within a cell. 
It reflects an impairment of the normal process of synthesis and breakdown of triglyceride fat. 
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Excess lipid accumulates in vesicles that displace the cytoplasm.  
 
These three variables, osteoporosis of the spine, Steatosis and BMI are endogenous correlated 
variables, and they have to be modeled simultaneously. Explanatory variables which affect these 
variables are: (1) amount of total body calcium (Ca), (2) job status (Job, employee or 
housekeeper), (3) type of the accommodation (Ta, house or apartment) and (4) age.  
 
Descriptive statistics (mean and standard deviation for continuous response and frequency or 
percentage for ordinal responses) are given in Table 2.  is osteoporosis of the spine of an 
individual as an ordinal response with 3 levels. These levels defined as 1: individual hasn’t 
osteoporosis of the spine (None), 2: individual has mild osteoporosis of the spine (Mild), 3: 
individual has severe osteoporosis of the spine (Severe). ST is Steatosis of an individual as an 
ordinal response with 3 levels. These levels defined as 1: individual hasn’t Steatosis (None), 2: 
individual has mild Steatosis (Mild), 3: individual has severe Steatosis (Severe). BMI is the body 
mass index of individual   
 

Table 2 .  Descriptive statistics for medical data   
  No. Mean S.E. 

BMI  163 29.357 10.806 

Steatosis Levels No. Percentage  
 None 41 0.251  
 Mild 58 0.355  
 Severe 64 0.394  

OS     
 None 59 0.362  
 Mild 65 0.399  
 Severe 39 0.239  

 
Table 2 shows less percentage for severe osteoporosis than those of none and mild levels. The 
vector of explanatory variable is , , , .  
 

6.2.  Models 

For comparative purposes, two models are considered. The first model (model (I)) does not 
consider the correlation among responses. This model is  
 

*
11 12 13 14 1

*
21 22 23 24 2

30 31 32 33 34 3

,

,

.

OS Job Age Ta Ca

ST Job Age Ta Ca

BMI Job Age Ta Ca

    
    
     

    
    
     

 

 
The covariance matrix of the vector of errors ε , ε , ε  for this model is Σ diag 1,1, σ . 
The second model (model (II)) uses model (I) and takes into account the correlation among three 
errors. For this model covariance matrix is  
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12 13

12 23
2

13 23

1

Σ 1

 
 
  

 
   
 
 

. 

 
Here, a multivariate normal distribution with correlation ,  and  are assumed for the 
errors and these parameters should be also estimated.  

6.3. Results 

Results of using two models are given in Table 3. Model (I) shows a weak significant effect of 
age on ST, a weak significant effect of Ta on BMI and a weak significant effect of Ca on OS. 
From these effects the author can inferred that the older the patient the less the BMI, people who 
live in apartment have more BMI than of that people who live in a house and the more the 
amount of calcium of the body of the patient the higher is the probability of low value of 
osteoporosis of the spine. To compare model (II) and model (I) the author have deviance 
=123.318 with two d.f. (P-value 0.001). So one may preffered model (II). For model (II) 
correlation parameters  and  are strongly significant. They show a positive correlation 
between BMI and Steatosis ( =0.714) and it shows a negative correlation between BMI and 
osteoporosis of the spine ( =-0.210). The estimated variance of BMI ( ) obtained by model 
(II) are less than those of model (I). A consequence of estimating the correlation parameters by 
model (II) is that the estimated standard errors of constant parameters in models for continuous 
response are reduced in comparing them with the results obtained by model (I).  
 

Table 3. Results using two models for medical data (**: Significant at %5 level, *: Significant at %10 level and 
dashed (-): Neither of the correlation among responses was considered in model (I))  

     
          Model  (I)          Model (II)  
Parameter Est. S.E. Est. S.E. 

OS     
 -0.530 0.545 -0.533  0.501 

 0.006 0.014 0.005 0.032 

 0.005 0.139 0.006 0.154 

  0.201* 0.123  0.211* 0.126 

 1.207 1.472 1.237 1.889 

 2.284 1.477  2.315 1.894 

ST     
  1.633 2.133 1.622 2.110 

 -0.103 * 0.045 -0.102 * 0.044 

 0.951  0.740 0.940 0.744 

 -0.183 0.417 -0.180 0.317 

BMI     
    86.151** 14.153    86.151** 9.664 

 1.653 4.918 1.652 6.498 

 0.127 0.125 0.126 0.127 

  3.001 * 1.744   3.000* 1.746  

 0.010 0.173 0.009 0.179 

 116.524** 0.588    112.949** 0.588 

 - - -0.210** 0.084 

 - - -0.101 0.086 

 - -    0.715 ** 0.038 

-loglike     1273.044      1211.385  
 

11

Samani: Local Influence in Bayesian Elliptically Contoured-Ordinal Model

Published by Digital Commons @PVAMU, 2013



402                                                                                                                                              Ehsan Bahrami Samani   
                                                                                                                          
 

6.4. Sensitivity Analysis for Correlated Responses 

In our application, suppose M 2 and M 3, so Σ is the 3 3 covariance matrix which for 
illustration has the following structure,  
 

Σ
1

1 , 

 
 
which gives the following condition for independent responses:  
 

, , 0,0,0 . 
 
The perturbation from independent responses to correlated responses is what the author likes to 
consider for our ordinal response. Posterior normal curvature may be used for the effect of 
perturbation from correlated responses to independent responses. Here, , , , 

0,0,0  and 3q  . Denote the log-posterior function by  
 

| ∑ | , 
 
where |  is the contribution of the  individual to the log-posterior and  is the parameter 
vector. Here, |  is the log-posterior function which corresponds to a normal distribution. 
Suppose  perturbed around . Let ̂  be the Bayesian estimator for  obtained by maximizing 

|  and let ̂  denote the Bayesian estimator for  under | . Now one 
compares ̂  and ̂  as local influences. Strongly different estimates show that the estimation 
procedure is highly sensitive to such modification. To search for sensitivity analysis, the author 
finds . This is confirmed by the curvature 10.76  computed from (3). This 
curvature indicates an extreme local sensitivity.  
 
7. Conclusion 

 
In this paper the Bayesian elliptically contoured-ordinal model for mixed data and assessment of 
local influence via covariance is presented for simultaneously modeling of ordinal and 
continuous correlated responses. An elliptically contoured distribution is assumed for errors in 
the model. However, any other multivariate distribution such as t or logistic can be also used 
with and without missing responses. 
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