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Abstract

This paper develops a new class of joint modeling of mixed correlated ordinal and continuous
responses with elliptically contoured errors. This joint model includes the latent variable
approach of using an elliptically contoured distribution for mixed ordinal and continuous
responses. A Markov Chain Monte Carlo sampling algorithm is described for estimating the
posterior distribution of the parameters. For sensitivity analysis to investigate the perturbation
from associate responses, it is demonstrated how one can use some elements of covariance
structure. Influence of small perturbation of these elements on the posterior normal curvature is
also studied. To illustrate the application of such modeling the data (medical) is analyzed.

Keywords: Bayesian inference; Joint modeling; Gibbs sampler; Ordinal and continuous
responses; Markov Chain; Monte Carlo; Sensitivity Analysis; Posterior Normal
Curvature

AMS-MSC (2010) No.: 62F03

1. Introduction
Some biomedical data include some correlated discrete and continuous outcomes. Outcomes
related to mixed ordinal and continuous responses data are pervasive and research on analyzing

them needs to be encouraged. For joint modeling of responses, one method is to use the general
location model of Olkin and Tate (1961), where the joint distribution of the continuous and
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categorical variables is decomposed into a marginal multinomial distribution for the categorical
variables and a conditional multivariate normal distribution for the continuous variables. The
categorical variables (for a mixed Poisson and continuous responses) were used in the method by
Olkin and Tate’s (1961), see Yang et al. (2007). For joint modeling of mixed outcomes using
latent variables see McCulloch (2007). A second method for joint modeling is to decompose the
joint distribution as a multivariate marginal distribution for the continuous responses and a
conditional distribution for categorical variables given the continuous variables. Cox and
Wermuth (1992) empirically examined the choice between these two methods. The third method
uses the simultaneous modeling of categorical and continuous variables to take into account the
association between the responses by the correlation between errors in the model for responses.
For more details of this approach see, for example, Heckman (1978) in which a general model
for simultaneously analyzing two mixed correlated responses is introduced and Catalano and
Ryan (1992) who extended and used the model for a cluster of discrete and continuous outcomes.
Poon and Lee (1987) presented a model for the ordinal and continuous responses without
considering any covariate effect.

The class of elliptical distribution includes a vast set of known symmetric distributions, for
example, the normal and Student t distributions [see Kelker (1970) and Fang et al. (1990)]. In the
case of normal distribution, see Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999),
and Arnold and Beaver (2000). They obtained the multivariate distribution by conditioning on
one suitable random variable being greater than Zero. Sahu et al. (2003) conditioned on as many
random variables as the dimension of the multivariate distribution (multivariate skew-normal and
t distributions). They obtained analytical forms of densities and studied distributional properties.

Bayesian analysis of regression problems under heavy-tailed error distributions were researched
by Zellner (1976), Geweke (1993) and Fernandez and Steel (1998). Extensions of those results
for elliptical distributions are considered in Chib et al. (1998). The Bayesian approach has
several important advantages. First, the exact posterior distribution of the parameters can be
estimated by using MCMC methods. Means and quantities based on the estimated posterior are
appropriate regardless of the sample size. In contrast, standard errors and confidence limits for
the maximum likelihood estimates are typically based on strong asymptotic normality
assumptions. Second, the Bayesian approach allows for the direct incorporation of prior
knowledge. This is a major advantage in structural equation modeling. Classical methods often
require that a subset of the parameters is known to ensure identifiability. Although constrain on
the threshold parameters and the variance of the latent variables are often reasonable, additional
less justifiable constraints can be avoided by using a prior distribution to allow for prior
uncertainty in the parameters. In addition, by assigning parameters about which there is previous
information, more precise estimates of the parameters of interest can be obtained.

In this paper, the author proposed a new class of latent variable models for mixed correlated
ordinal and continuous responses with elliptically contoured errors. Markov chain Monte Carlo
(MCMC) algorithms (Tierney, 1994) are developed for estimating the posterior distribution of
the parameters. The aim of this paper is to adapt and extend an approach similar to that of
Heckman (1978), for a joint modeling of multivariate ordinal and continuous outcomes with
elliptically contoured errors.
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In Section 2, the general modeling framework is described. A general MCMC sampling
algorithm for posterior estimation is outlined in Section 3. In Section 4, we have a simulation
study. In Section 5, a common way to investigate if perturbations of model components influence
key results of the analysis is to compare the results derived from the original and perturbed
models using posterior normal curvature. In Section, the proposed methodology is applied on the
medical data. In this section, as sensitivity analysis for these data the influence of a small
perturbation of the associate responses on posterior normal curvature will be also investigated.
Finally, concluding remarks are given.

2. Latent Variable Model

Consider a m— dimensional random vector W having elliptical distribution with probability
density function of the form

1
fwlw 2, g™ = 217 2g™[(w — 0)'T™ (W — )],
where X is an mxm positive definite matrix with the covariance matrix of the random vector

given by W g™ is a function R* to R* called the density generator of the random vector W,
defined by

M
F(j) gu; M)
MM '
nz [ uz g(w; M)du

o M_
where g(u;M) is a function R* to R* such that the [~ u> 1 g(u; M)du < o0. We shall denote

an elliptically distributed M — dimensional vector with location u, scale ¥ and characteristic
generator g™, by ECy (i, Z; g™).

We use Y;; to denote jth ordinal response for the ith individual with ¢; levels defined as,

1 lej < 91,]:
Yl]= k+1 Hk,jSYi;'<8k+1,jﬂ kzl,...,Cj—z’
Cj le] = HCj,jJ
wherei =1,...,n,j=1,...,M;. 0 ,...,0¢,_4 ; are the cut-point parameters and ¥;; denotes the

underlying latent variable for Y;;. The joint model takes the form:

* ! 1 .
Yi=pX+el =1, M,

A (1)
Zij =B Xi + & j=M+1,...M, (M3 <M).

Let
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& = (8(1) (2))/ ”dECM(O % g)

1 1 1 2 2 2 ,
where & = (e1,...,£50)", &7 = (&{ iy €)'+ 05 = B Oym1)sj = 1,0, My,
is the vector of cutpoint parameters for the jth ordinal response and X; is the vector of
explanatory variables for the ith individual and X is the M X M covariance matrix which for

illustration, when M; = 2 and M = 3 has the following structure,

1 P12 0pP13
X=| P12 1 0pP23 |,
Op13 0Pz O

where o2 is the variance of the continuous response, and pjjrforj#j',j=j" =123 is the
correlation between jth and j’th responses. The vector of coefficients f3;, cut points parameters 6;
for j =1,...,M; and X should be estimated. The parameter vector, ,Bj forj=M;+1,...,.M,
includes an intercept parameter but f8;, for j = 1,..., My, due to having cut point parameters, are

assumed not to include any intercept. In this model any elliptical distribution can be assumed for
the errors in the model.

3. Bayesian Estimation

In this section, prior distributions are chosen for the parameters, and the general MCMC
algorithm is outlined for estimating the posterior distributions of the parameters and the latent
variables via Dunson (2000). The prior distributions are conjugate if the underlying variables are
normal.

Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the
parameter space. The Markov chains are defined in such a way that the posterior distribution, in
a given statistical inference problem, is the asymptotic distribution. One of the standard
approaches to define such Markov chains is Gibbs sampling. We will use MCMC techniques for
posterior computation in the models proposed in section 2. In the special case where all the
underlying and latent variables have normal distribution the MCMC algorithm is Gibbs sampler
that follows a simple form.

3.1. Prior Distributions
The parameters = (By,..., Bu, 01,...,0y,)" are assigned a normal prior,
n~EC, (1o, Zo; 9,

where p, is a vector of location parameters, X, is a covariance matrix and g = M + M;. To
choose a vague prior distribution for 8, set u, = 0 and £, = diag{c?,..., 03}. Wishart prior are
specified for the precision matrix X in expressions (1):

https://digitalcommons.pvamu.edu/aam/vol8/iss2/4



Samani: Local Influence in Bayesian Elliptically Contoured-Ordinal Model
AAM: Intern. J., Vol. 8, Issue 2 (December 2013) 395

Y ~ Wishart(v, ),

with degrees of freedom v and precision A . A prior can be assigned by choosing v > M, where
M is the the dimension of .

3.2. The Gibbs Sampler

Consider the model with all equations given in (1). We assume that n and £ are a priori
independent with p(n) = EC, (o, 2Zo; g) and p(Z) = Wishart(v,A), where p(.) is the prior
distribution. The conditional posterior distribution of p(n|y, z,X) and p(2|y, z,n) are computed
in subsection 3.3.

To estimate the posterior distributions of the parameters, we define a Markov chain in & =
(1, %). Denote with £ = (n®, 2(®)) the state parameter of the Markov chain after t iterations.
Given the nature of a Markov chain, all we need to define is the transition probability, i.e., given
a current value for £, we need to generate a new value ¢+, We do so by sampling from the
complete conditional posterior distributions for 7 and X

D~ p(r®y, 2, £0),
D ~ p(EO[yz,n®).

Step 1 and Step 2 define a Markov chain §(® which converges to p(n, |y, z), as desired. The
described Markov chain Monte Carlo simulation is a special case of a Gibbs sampler. In general,
let $* = (&4,...,&,) denote the parameter vector. The Gibbs sampler proceeds iteratively, for
j =1,...,p, generating from the conditional posterior distributions

t+1 t+1 t+1) o(t t
£ < p(gleY, L0, e0 LD, y, ).

3.3. Posterior Computations

We now obtain the form of the joint posterior distribution. Lety = (y;’,...,¥n') , z=
(z1')..,24")" and x = (x{',...,x,")" where y; = (¥it,---,Vim,) > Zi = @Zigmy+1)+--»Zim)  and
Xi = (Xi1,.--,Xip)’, and p is the number of explanatory variables for the ith individual (the

number of components in this vector may also be dependent on the chosen variable, i.e., x; be
Xim and p be py,, here, we ignore this for simplicity).

The joint posterior distribution for the parameters and latent variables is:
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P(m.Ely.z,x) e f,, (Y. 27, Z,%).7 (1, ZIX)
=[H f(z, yi|xi,77,2)}r(77,2\x)
i=1

=(LTP (G, <Y <00yl < Yoo <O
i=1

z(n,Zx) f (zx)]

9

ZI,XI)

where 1(. |x) denote the joint prior density andn = (By,...,Bm, 61,...,0m,) -

Using the above Theorem, the joint posterior distribution could be summarized as,

P(n

Y525X) HAb a, leaMlF(W ’Z1, 1)
f(z; [x)]n(M, X | x)]

o{ﬁ(Fm —F,+F, -+ (D" E, )}
i=l

v-M-1 —n(M-M,)
2

=]

L0 {Z( ) T (7, )}

i=l
g™ M=) Z,' (=, )}
where p,, = (Bm,+1 Xiv- -0 By 1 Xi)'s Za2 = Var(Zy), by = 8jy; and aj; = ;. _; and F is the

M
sum of all < ].1) terms of the from F(giq, ..., im, |Zi, X;) with g; = aj for exactly j integers in

{0,1,...,M;}, and g;x = by for the remaining M; — j integers.
We require the full conditional distributions of each unknown parameter. We have

P(77

(’V' M,)

Y.2.E.X) o [ [(Fy = Fy + Fy =t (=DM By )I[Z05]
i=1

s {Z(Z i) T (2 - )}

i=l1

g™ M- 1) = (7 11y )}

The full conditional distribution of the precision matrix X is
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P(z

Y, Zonax) oC H(Fio - l:il + Fiz _"'+(_1)Ml l:iMl )]
i=1

—n(M-M,)

v—M-1
DINERE S I

g {Zn:(zi —u, ) (2 -, )}

i=1

4. Simulation

We consider three continuous variables Yy, Y, and Z. The ordinal variables Y; and Y, with three
levels are defined as

1 Y <0,
Yl = {2 91 < Y* < 92,
3 Y* >0,

and

1 Y* <1,
YZ:{Z N <Y <1y,
3 Y* =13,

the variables, Y; , Y, and Z are generated by a multivariate normal distribution with zero mean
and covariance matrix

1 P12 OP13
X=| P12 1 0p23 |.
O0pP13 OP23 o?

We let p;, = p13 = P23 = 0.5 and different values of 02, (0.5, 1 and 2). We also let0; =1, =
—1and 0, =n, =1. In the set of cut points, not having any covariate in the model for latent

variable of Y; and Y,, one expects to have, roughly, 16 percent of Y values to be equal to 1, 16
percent to be equal to 3 and 68 percent to be equal to 2. So, the low and high values have nearly
the same frequency but the middle value have the highest frequency. For this we consider 3
values for n (50, 100, and 1000). In this analysis we use 1000 sets of simulation. In each
simulation we analyze the following simple model

Yl* = &,
Yz* s 82,
Z = Uz + &3,

Table 1 contains the average estimated values of u,, 62, p;, (the correlation between Z and Y;"),
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p13 (the correlation between Z and Y5'), p,3 (the correlation between Y;" and Y5), 84, 6,, n; and
1, for n=50, n=100 and n=1000. The parameter estimates by the model for u,, 62, p13, P13, P23>
6., 05,1, and n, (for n = 30, n=100 and n=500) are close to the true values of the parameters.
Of course, the more the value of n the better the estimates. We used a Gibbs sampler within
winBUGS to estimate from the joint posterior distribution of the parameters. We run three chains
with widely varying initial values and used 10000 Gibbs iterates collected after convergence
from each chain to compute posterior summaries of the parameters. Posterior summaries of the
global parameters for each outcome are shown in Table 1.

Table 1. Results of the simulation study

n=30 n=100 n=500
Parameter True Est. S.E. Est. S.E. Est. S.E.
value
U 0.000 0.050 | 0.151 0.013 | 0.101 0.001 | 0.026
Z
0.2 1.000 1.130 | 0.136 1.015 0.071 1.003 0.027
.500 0.441 0.019 0.532 | 0.011 0.503 .002
2.000 2.128 | 0.178 | 2 .013 0.168 2 .013 0.127
p 0.500 0.455 | 0.145 0.496 | 0.080 0.502 | 0.029
12
p 0.500 0.435 | 0.139 0.491 | 0.093 0.506 | 0.020
13
p 0.500 0.447 | 0.178 0.493 | 0.072 0.509 | 0.013
23
9 -1.000 -1.150 | 0.248 -0.985 | 0.153 -0.996 | 0.047
1
9 1.000 1.085 | 0.293 1.024 | 0.164 0.993 | 0.032
2
T] -1.000 -1.151 | 0.255 -0.963 | 0.141 -0.996 | 0.049
1
1.000 1.092 | 0.226 1.028 | 0.144 0.984
TIZ 0.59

5. Sensitivity Analysis

Sensitivity analysis is the study of how model output varies with changes in model inputs. An
assessment of the influence of minor perturbations of the model is important, see Cook (1986).

Generally, one introduces perturbations into the model through the g X 1 vector w which is
restricted to some open subset (L of R9. Let P(n|w) denote the log- posterior corresponding to
the perturbed model for a given w in Q. For a given set of observed data, wherenis ap X 1
vector of unknown parameters, the author assume that there is an wg in () such that P(n) =
P(n|w,) for all n. Finally, Let 7} and 7j,, denote the maximum posterior estimators under P (1)
and P(n|w). To assess the influence of varying w throughout 0, the author considers the
posterior displacement defined as:

PD(w) = 2[P(1) — P(o)]-

A graph PD(w) versus w contains essential information on the influence of the perturbation
scheme in questions. It is useful to view this graph as the geometric surface formed by the values
of the (q + 1) X 1 vector a(w) = (a1,a,)" = (w, PD(w))" as w varies throughout . When
q = 1, the posterior curvature of such plain curves at wy, is,

https://digitalcommons.pvamu.edu/aam/vol8/iss2/4
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_ |a1a2 - a2a1|

PC=———F—>,
@ - )

(2)

where the first and second derivations ¢; and &; are evaluated at w,. Since ¢; = 1 and @, =
&, = 0, PC reduces to PC = ¢, = PD(w,). When g > 1, an influence graph is a surface in
RI*1, The posterior normal curvature PC; of the lifted line in the direction [ can now be obtained
by applying (2) to the plan curve (a, PD(w(a))), where w(a) = wy + al, a € R, and [ is a fixed
non-zero vector of unit length in RY. I proposed looking at local influences, i.e., at the posterior
normal curvature PC; of a(w) in wy, in the direction of some gq-dimensional vector [ of unit
length. Let A; be the p-dimensional vector defined by

_0%P;(nlw;)

i =

=1, w; =0
3001 In =1, w;

and define A as the p X n matrix with A; as its ith column. Further, let P denote the p X p matrix
of second-order derivatives of P(n|w,) with respect to n, also evaluated at n = 7j. Cook (1986)
has then shown that C; can be easily calculated by

C, = 2|ITAT(L)~tAl|.
I have now shown that PC; can be easily calculated by
PC, = 2|ITAT (P)~tAl|. (3)

Obviously, PC; can be calculated for any direction [. One evident choice is the vector [;
containing one in the i th position and zero elsewhere, corresponding to the perturbation of the
ith weight only. Another important direction is the direction [,,,, of maximal normal curvature
PCpax- It shows how to perturb the condition for associate of the responses to obtain the largest
local changes in PCpgy . PCpayx is the largest eigenvalue of AT(P)71A; and g, is the
corresponding eigenvector.

6. Application

6.1. Medical Data

The medical data set is obtained from an observational study on women in the Taleghani hospital
of Tehran, Iran. These data record status of osteoporosis of the spine and Steatosis as ordinal
responses and BMI as a continuous response for 163 patients. Osteoporosis of the spine is a
disease of bone in which the bone mineral density (BMD) is reduced, bone micro architecture is
disrupted and the amount and variety of non-collage nous proteins in bone are altered. BMI is a
statistical measure of the weight of body mass index. A person’s body mass index may be really

accurately calculated using any of the formulas such as BMI = % (kg/cm?) where W is weight

and H is height. Steatosis is the process describing the abnormal retention of lipids within a cell.
It reflects an impairment of the normal process of synthesis and breakdown of triglyceride fat.
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Excess lipid accumulates in vesicles that displace the cytoplasm.

These three variables, osteoporosis of the spine, Steatosis and BMI are endogenous correlated
variables, and they have to be modeled simultaneously. Explanatory variables which affect these
variables are: (1) amount of total body calcium (Ca), (2) job status (Job, employee or
housekeeper), (3) type of the accommodation (Ta, house or apartment) and (4) age.

Descriptive statistics (mean and standard deviation for continuous response and frequency or
percentage for ordinal responses) are given in Table 2. OS is osteoporosis of the spine of an
individual as an ordinal response with 3 levels. These levels defined as 1: individual hasn’t
osteoporosis of the spine (None), 2: individual has mild osteoporosis of the spine (Mild), 3:
individual has severe osteoporosis of the spine (Severe). ST is Steatosis of an individual as an
ordinal response with 3 levels. These levels defined as 1: individual hasn’t Steatosis (None), 2:
individual has mild Steatosis (Mild), 3: individual has severe Steatosis (Severe). BMI is the body
mass index of individual

Table 2 . Descriptive statistics for medical data

No. Mean S.E.
BMI 163 29.357 10.806
Steatosis | Levels | No. | Percentage
None 41 0.251
Mild 58 0.355
Severe | 64 0.394
0os
None 59 0.362
Mild 65 0.399
Severe | 39 0.239

Table 2 shows less percentage for severe osteoporosis than those of none and mild levels. The
vector of explanatory variable is X = (Job, Age, Ta, Ca).

6.2. Models

For comparative purposes, two models are considered. The first model (model (I)) does not
consider the correlation among responses. This model is

OS™ = B,,Job+ B,Age+ B.,Ta+ f,Ca+eg,
ST" = B,,Job+ 3,,Age+ B,,Ta+ f3,,Ca+e,,
BMI = 3, + 3,,Job + 3,,Age + B,,Ta+ B,,Ca+e,.

The covariance matrix of the vector of errors (g, €5, €3)’ for this model is 2,4 = diag{1,1, 62}.
The second model (model (I1)) uses model (I) and takes into account the correlation among three
errors. For this model covariance matrix is

https://digitalcommons.pvamu.edu/aam/vol8/iss2/4
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1 P OP;
= p, 1 op, |

2
Op;; OpPy O

Here, a multivariate normal distribution with correlation p;,, p;3 and p,3 are assumed for the
errors and these parameters should be also estimated.

6.3. Results

Results of using two models are given in Table 3. Model (I) shows a weak significant effect of
age on ST, a weak significant effect of Ta on BMI and a weak significant effect of Ca on OS.
From these effects the author can inferred that the older the patient the less the BMI, people who
live in apartment have more BMI than of that people who live in a house and the more the
amount of calcium of the body of the patient the higher is the probability of low value of
osteoporosis of the spine. To compare model (II) and model (I) the author have deviance
=123.318 with two d.f. (P-value<0.001). So one may preffered model (II). For model (II)
correlation parameters p,3 and p;, are strongly significant. They show a positive correlation
between BMI and Steatosis (p,3=0.714) and it shows a negative correlation between BMI and
osteoporosis of the spine (p;,=-0.210). The estimated variance of BMI (62) obtained by model
(IT) are less than those of model (I). A consequence of estimating the correlation parameters by
model (I) is that the estimated standard errors of constant parameters in models for continuous
response are reduced in comparing them with the results obtained by model (I).

Table 3. Results using two models for medical data (**: Significant at %5 level, *: Significant at %10 level and
dashed (-): Neither of the correlation among responses was considered in model (I))

Model (T) Model (IT)
Parameter Est. S.E. Est. S.E.
oS
Job 0530 0.545 20.533 0.501
Age 0.006 0.014 0.005 0.032
Ta 0.005 0.139 0.006 0.154
Ca 0.201* 0.123 0.211%* 0.126
0, 1.207 1.472 1.237 1.889
0, 2.284 1.477 2.315 1.894
ST
Job 1.633 2.133 1.622 2.110
Age -0.103 * 0.045 -0.102 * 0.044
Ta 0.951 0.740 0.940 0.744
Ca -0.183 0.417 -0.180 0.317
BMI
Const 86.151%* 14.153 86.151%* 9.664
Job 1.653 4918 1.652 6.498
Age 0.127 0.125 0.126 0.127
Ta 3.001 * 1.744 3.000* 1.746
Ca 0.010 0.173 0.009 0.179
o2 116.524** 0.588 112.949** 0.588
Dz - - -0.210% 0.084
Dia - - -0.101 0.086
Dya - - 0.715 ** 0.038
-loglike 1273.044 1211.385
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6.4. Sensitivity Analysis for Correlated Responses

In our application, suppose M; = 2 and M = 3, so X is the 3 X 3 covariance matrix which for
illustration has the following structure,

1 P12 O0pP13
X=| P12 1 0p23 |,
Op13 0Pz O

which gives the following condition for independent responses:

w = (p12, P13, P23)" = (0,0,0)".

The perturbation from independent responses to correlated responses is what the author likes to
consider for our ordinal response. Posterior normal curvature may be used for the effect of
perturbation from correlated responses to independent responses. Here, w = (012, P13, P23)’»
wo = (0,0,0)" and q =3. Denote the log-posterior function by

P(nw) = Xiz; P (Mlw),

where P;(n|w) is the contribution of the ith individual to the log-posterior and 1 is the parameter
vector. Here, P(n|w,) is the log-posterior function which corresponds to a normal distribution.
Suppose w perturbed around w,. Let 7 be the Bayesian estimator for 7 obtained by maximizing
P(m) = P(n|wy) and let i3, denote the Bayesian estimator for 1 under P(n|w). Now one
compares 7j,, and 79 as local influences. Strongly different estimates show that the estimation
procedure is highly sensitive to such modification. To search for sensitivity analysis, the author
finds PC,,4,. This is confirmed by the curvature PC,,,, = 10.76 computed from (3). This
curvature indicates an extreme local sensitivity.

7. Conclusion

In this paper the Bayesian elliptically contoured-ordinal model for mixed data and assessment of
local influence via covariance is presented for simultaneously modeling of ordinal and
continuous correlated responses. An elliptically contoured distribution is assumed for errors in
the model. However, any other multivariate distribution such as t or logistic can be also used
with and without missing responses.
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