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Abstract 

In this paper, a new matrix method based on exponential polynomials and collocation points is 
proposed to obtain approximate solutions of Hantavirus infection model corresponding to a class 
of systems of nonlinear ordinary differential equations. The method converts the model problem 
into a system of nonlinear algebraic equations by means of the matrix operations and the 
collocation points. The reliability and efficiency of the proposed scheme is demonstrated by the 
numerical applications and all numerical computations have been made by using a computer 
program written in Maple. 
 
Keywords:  Hantavirus infection model; Exponential approximation; Numerical solution;                 
          System of nonlinear differential equations; Matrix method; Collocation points 
 
MSC 2010 No.: 93A30; 35A24; 34K28; 33B10; 65L05; 65L60; 65L80 
 
 
1. Introduction 
 
In this study, we develop an exponential approximation to obtain approximate solutions of the 
Hantavirus infection model considered in [Abramson and Kenkre (2002), Abramson et al. 
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(2003), Goh et al. (2009) and Gökdoğan et al. (2012)]. The Hantavirus infection model is given 
by a system of the nonlinear differential equations  
 

   

 

S S IdS
b S I cS aSI

dt k
I S IdI

cI aSI
dt k


    


    

,      1 2(0) ,   (0)S I   ,   0 t R    ,        (1) 

 
where ( )S t  and ( )I t  are the populations of susceptible and infected mice, respectively, and 

( ) ( ) ( )M t S t I t   is the total population of mice.  
 
In this model problem, the meanings of other terms are as follows: 
 
Births:  b S I  denotes the birth of susceptible newborn mice, all with a rate proportional to the 

total population, since all mice make contribution to breeding regardless of whether it is 
susceptible or infected. 
 
Deaths: c  represents the rate of depletion by death for natural reasons, proportional to the 
corresponding density. 
 
Competition:  SI S I k   shows the process of limiting the increase of population due to 

conflict of resource sharing. k  shows that the carrying capacity of all means to protect the 
population. Higher values of k  represents good environmental conditions which these are water, 
food, housing availability, favorable climatic conditions. 
 
Infection: aSI  represents the number of susceptible mice that get infected, due to an encounter 
with an infected (and consequently infectious) mouse, at a rate a that we assume constant. 
  
On the other hand, exponential polynomials or exponential functions have interesting 
applications in many optical and quantum electronics [Alharbi (2010)], some nonlinear 
phenomena modeled by partial differential equations [Alipour et al. (2011)], many statistical 
discussions (especially in data analysis) [Shanmugam (1988)], the safety analysis of control 
synthesis [Xu et al. (2010)], the problem of expressing mean-periodic functions [Ouerdiane and 
Ounaies (2012)], and the study of spectral synthesis [Debrecen (2000) and Ross (1963)]. These 

polynomials are based on the exponential base set  21, , ,t te e   .  

  
Lately, Yüzbaşı et al. [Yüzbaşı (2012a), (2012b) and Yüzbaşı et al. (2012)] have studied the 
Bessel polynomial approximation, based on the collocation points, for the continuous population 
models for single and interacting species, the HIV infection model of CD4  T cells and the 
pollution model of lakes. 
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Our purpose in this study, is to develop a new matrix method, which is based on the exponential 

basis set  21, , ,t te e    and the collocation points, to obtain the approximate solutions of the 

model (1) in the exponential forms  
 

1,
0

( ) ( )
N

nt
N n

n

S t S t a e



      and      2,
0

( ) ( )
N

nt
N n

n

I t I t a e



  ,           (2) 

 

where the exponential basis set is defined by  21, , , ,t t Nte e e    and 1,na , 2,na  ( 0,1,2,..., )n N  

are unknown coefficients. 
  
Note that ( )S t  and ( )I t  are the exact solutions of the problem (1)-(2) and ( )NS t  and ( )NI t  the 

approximate solution of the problem (1)-(2).  
 
2.  Exponential-Matrix Method  
 
Firstly, let us show model (1) in the form  
  

2

2

1 1
( )

1 1
.

dS
b c S bI S a SI

dt k k

dI
cI I a SI

dt k k

          


         

         (3) 

 
Now, let us consider the approximate solutions ( )S t  and ( )I t  of system (3) defined by the 
exponential basis set (2). The approximate solutions ( )S t  and ( )I t  can be written in the matrix 
forms 
 

1( ) ( )S t t E A  and 2( ) ( )I t t E A ,          (4) 

 
where 
 

2( ) 1 t t Ntt e e e     E  , 1 1,0 1,1 1,

T

Na a a   A   , 2 2,0 2,1 2,

T

Na a a   A   . 

 
Secondly, the relation between ( )tE  and its first derivative ( )tE'  is given by 
 

( ) ( )t tE' E M ,           (5) 
 
so that 
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0 0 0 0

0 1 0 0

2

0 0 0 0

0 0 0 N

 
  
  
 
 
  

M





   





. 

 
By placing Equation (5) into the first derivative of the solution functions, we have the matrix 
forms 
 

(1)
1( ) ( )S t t E MA  and (1)

2( ) ( )I t t E MA .        (6) 

 
By using the relations (4) and (5), we construct the matrices ( )ty  and (1) ( )ty  as follows:   
 

( ) ( )t ty E A    and   (1) ( ) ( )t ty E MA ,        (7) 
 
where 
 

( )
( )

( )

S t
t

I t

 
  
 

y , 
(1)

(1)

(1)

( )
( )

( )

S t
t

I t

 
  
 

y , 
( ) 0

( )
0 ( )

t
t

t

 
  
 

E
E

E
, 

0

0

 
  
 

M
M

M
, 1

2

 
  
 

A
A

A
. 

 
Now, we can show the system (3) with the matrix form 
 

(1)
1,2( ) ( ) ( ) ( ) ( )t t t t t  y By Ky y Ly ,          (8) 

 
so that 
 

0
b c b

c
 
 
 




B ,  1 0

0 1

k

k

 
  

K , (1/ )

(1/ )

k a

k a

  
   

L ,  ( ) 0
( )

0 ( )

S t
t

I t

 
  
 

y  and  1,2 ( ) ( ) ( )t S t I ty . 

 
By placing the collocation points, defined by 
 

i

R
t i

N
 , 0,1, ,i N  ,          (9) 

 
in Equation (8) , we have the matrix equation system 
 

(1)
1,2( ) ( ) ( ) ( ) ( )i i i i it t t t t  y By Ky y Ly ,   0,1, ,i N  .  

 
Briefly, this system can be expressed in the matrix form 
 

(1)    Y BY KYY LY Z ,        (10) 
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where  
 

(1)
0

(1)
(1) 1

(1)

( )

( )

( )N

t

t

t

 
 
 
 
 
  

y

y
Y

y


, 

( 1) ( 1)

0 0 0

0 0 0

0 0
N N  

 
 
 
 
 
 

B

B
B

B

   



,  

0

1

( )

( )

( )N

t

t

t

 
 
 
 
 
 

y

y
Y

y


, 

1,2 0

1,2 1

1,2

( )

( )

( )N

t

t

t

 
 
 
 
 
 

y

y
Y

y


 

  

( 1) ( 1)

0 0 0

0 0 0

0 0
N N  

 
 
 
 
 
 

K

K
K

K

   



,  

0

1

( 1) ( 1)

( ) 0 0 0

0 ( ) 0 0

0 0 ( )N N N

t

t

t
  

 
 
 
 
 
 

y

y
Y

y

   



, 

2( 1) 1

0

0

0
N  

 
 
 
 
 
 

Z =


,  

 

( 1) ( 1)

0 0 0

0 0 0

0 0
N N  

 
 
 
 
 
 

L

L
L

L

   



. 

 
By putting the collocation points (9) into the relations given in Equation (7), we have the systems 
 

( ) ( )i it ty E A    and   (1) ( ) ( )i it ty E MA , 0,1, ,i N  . 

 
Briefly, we can write these systems in the following matrix forms, respectively,  
 

Y EA  and  (1) Y EMA ,      (11) 
 
where  
 

0

1

( )

( )

( )N

t

t

t

 
 
 
 
 
 

E

E
E

E


, 

( ) 0
( )

0 ( )
i

i
i

t
t

t

 
  
 

E
E

E
, 0,1, ,i N  . 

 
By aid of Equation (4), the matrix ( )ty  given in Equation (8) can be expressed with the matrix 
form  
 

( ) 0
( ) ( )

0 ( )

S t
t t

I t

 
 
  

 y E A ,        (12) 

 
where 
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( ) 0
( )

0 ( )

t
t

t

 
 
 

E
E =

E
, 1

2

0

0

 
 
 

A
A =

A
. 

 
By using the collocation points (9) and the relation (12), we gain the relation  
 

0 0

1 1

( ) 0 0 0 ( ) 0 0 0

0 ( ) 0 0 0 ( ) 0 0

0 0 ( ) 0 0 ( )N N

t t

t t

t t

  
  
    
  
  
    

y E A

y E A
Y EA

y E A

       

 

,        (13) 

 
so that 
 

0

1

( ) 0 0 0

0 ( ) 0 0

0 0 ( )N

t

t

t

 
 
 
 
 
 

E

E
E

E

   



, 
( ) 0

( )
0 ( )

i
i

i

t
t

t

 
 
 

E
E =

E
, 

0 0 0

0 0 0

0 0

 
 
 
 
 
 

A

A
A

A

   



,   

 

1

2

0

0

 
 
 

A
A =

A
. 

 
In the similar way, substituting the collocation points (9) into the 1,2 ( )ty  given in Equation (8), 

we have the matrix form 
 

 1,2 0 1,2 1 1,2 0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T

N N Nt t t S t I t S t I t S t I t    Y y y y SI  ,      (14) 

 
where  
 

1S = EA   and  I = ECA ,        (15) 

 

0

1

( ) 0 0 0

0 ( ) 0 0

0 0 ( )N

t

t

t

 
 
 
 
 
 

E

E
E

E


   



, 

1

1
1

1 ( 1) ( 1)

0 0 0

0 0 0

0 0
N N  

 
 
 
 
 
 

A

A
A

A

   



, 

0

1

( )

( )

( )N

t

t

t

 
 
 
 
 
 

E

E
E

E




,    C Z I  , 

 

 ( 1) ( 1)
0

N N  
Z = , I  is the unit matrix in dimension ( 1) ( 1)N N    and 1

2

 
  
 

A
A

A
. 
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Now, let us substitute relations (11), (13)-(15) into Equation (10) and thus we obtain the 
fundamental matrix equation 
 

 1  EM BE KEAE LEA E A = Z  .      (16) 

 
Briefly, we can express the matrix equation (16) in the form  
 

WA Z   or  [ ; ]W Z ;   1  W = EM BE KEAE LEA EC  ,       (17) 

 
which corresponds to a system of the 2( 1)N   nonlinear algebraic equations with the unknown 

coefficients 1,na  and 2,na , ( 0,1,2,...,n N ). 

 
From the relation (7), the matrix form for conditions in the model (1) becomes 
 

[ ]UA       or     [ ; ]U ,        (18) 
 
where 
 

(0)U E A  and 1

2





 

  
 

. 

 
As a result, by replacing the rows of the matrix [ ; ]U  by two rows of the augmented matrix 
[ ; ]W Z , we have the new augmented matrix   
 

[ ; ]W Z    or  WA Z  ,         (19) 
 
which is a nonlinear algebraic system. The unknown coefficients are computed by solving this 
system. The unknown coefficients ,0 ,1 ,, , ,i i i Na a a ,  1,2i   are substituted in Equation (4). 

Hence, we gain the exponential polynomial solutions 
 

1,
0

( )
N

nt
N n

n

S t a e



     and      2,
0

( )
N

nt
N n

n

I t a e



 . 

 
We can easily check the accuracy of these solutions as follows: 
 
Since the truncated series (2) are approximate solutions of system (1), when the function ( )NS t , 

( )NI t  and theirs derivatives are substituted in system (1), the resulting equation must be satisfied 

approximately; that is, for [0, ]qt t R   0,1,2,q   ,    
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   

 

(1)
1,

(1)
2,

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0,

N q N q N q

N q N q N q N q N q N q N q

N q N q N q

N q N q N q N q N q

S t S t I t
E t S t b S t I t cS t aS t I t

k

I t S t I t
E t I t cI t aS t I t

k

 
       




    



   (20)      

 
and 
 

, ( ) 10 qk

i N qE t  , 1,2i    ( qk  positive integer). 

 

If max 10 10qk k   ( k  positive integer) is prescribed, then the truncation limit N  is increased 
until the difference , ( )i N qE t  at each of the points becomes smaller than the prescribed 10 k , see  

[Yüzbaşı (2012a), (2012b)].  
 
3. Numerical Applications 
 
In this section, we apply the presented method to obtain the approximate exponential solutions in 
interval 0 3t   for solving Hantavirus infection model [Abramson and Kenkre (2002), 
Abramson et al. (2003), Goh et al. (2009) and Gökdoğan et al. (2012)]. Firstly, we consider the 
model (1) for 0.1a  , 1b  , 0.5c  , 20k   with the initial conditions (0) 10S   and (0) 10I  .  
 
By applying the procedure in Section 2, we obtain the approximate solutions for 3,5,8N  , 
respectively, 
 

2
3

3

( ) 7.9796108687237224666 1.3577048868675920297e +3.7765771675640166596e

            0.39848314942014709651e ,

t t

t

S t  



 


 

 
2

3

3

( ) 2.8100391985861038614+13.011369515975257778e 9.4528566277088271393e

            +3.6314479131474655003e ,

t t

t

I t  



 
 

 
2

5

3 4 5

( ) 8.1062106573203768838 4.1539364503803987741e +19.983801525528864957e

          40.417559636037345816e +41.968407210407807439e 15.486923306839304690e ,

t t

t t t

S t  

  

 

 
 

 
2

5

3 4 5

( ) 2.4654747495280979769+20.279637386816532149e 51.412352423470310580e

          +106.22137100041973618e 106.65160802533515909e +39.097477312041103369e ,

t t

t t t

I t  

  

 


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2
8

3 4 5

( ) 8.3986256360790617831 3.7914786186071451877e +53.787946143568880295e

           300.90798479851296821e +1098.5575432950269574e 2475.3960662942672625e

           +3287.0301032241887022

t t

t t t

S t  

  

 

 
6 7 8e 2325.9385883729143652e +668.25989978543813943e ,t t t  

 

 
2

8

3 4 5

( ) 1.9700160282326584478+21.266752484031151884e 137.16044310971876387e

           +738.51164961488074596e 2622.3802236466945357e +5815.8217970419928128e

          7639.9688738358019135e

t t

t t t

I t  

  

 



 6 7 8+5362.7702661022330538e 1530.8309406791552099e .t t t  

 

 
For 5N  , 0.1a  , 1b  , 0.5c  , 20k  , (0) 10S   and (0) 10I  , the approximate solutions 
are compared with the solutions of the fourth-order Runge-Kutta (RK4) method in Figure 1. 
From this comparison, it is observed that our method and RK4 method are consistent. We note 
that the classical fourth-order Runge-Kutta method was used for Lorenz system which is a 
system of nonlinear ordinary differential equations in [Ababneh et al. (2009)]. Figure 2(a) 
denotes a plot of the approximate solutions ( )NS t  obtained for (0) 10S  , (0) 10I   and 

3,5,8N  . The approximate solutions ( )NI t  obtained for (0) 10S  , (0) 10I   and 3,5,8N   

are given in Figure 2(b). We compute the error functions for (0) 10S  , (0) 10I   and 3,5,8N    

by using Equation (20). Figure 3(a) displays the error functions for ( )NS t  for 3,5,8N  . The 

error functions for ( )NI t  for 3,5,8N   are shown in Figure 3(b). Figure 2(a) shows that the 

population of suspected mice ( )S t  slowly approaches to 8 for 3,5,8N  . It is seen from Figure 
2(b) that the population of infected mice ( )I t  decreases to 3 for 3,5,8N  .  

 
Figure 1(a).  Comparison of the solutions 5 ( )S t of the present method and the RK4 

method for 0.1a  , 1b  , 0.5c  , 20k  , (0) 10S   and (0) 10I   
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Figure 1(b).  Comparison of the solutions 5 ( )I t of the present method and the RK4 

method for 0.1a  , 1b  , 0.5c  , 20k  , (0) 10S   and (0) 10I   
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Figure 2(a). Graph of the solutions ( )NS t  for (0) 10S  , (0) 10I   and 3,5,8N   

 
Figure 2(b). Graph of the solutions ( )NI t  for (0) 10S  , (0) 10I   and 3,5,8N   

 
Figure 3(a).  Graph of the error functions obtained with accuracy of the solutions 

( )NS t  for (0) 10S  , (0) 10I   and 3,5,8N   
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Figure 3(b).  Graph of the error functions obtained with accuracy of the solutions 

( )NI t  for (0) 10S  , (0) 10I   and 3,5,8N   

 
Secondly, let us consider the model (1) by selecting 0.1a  , 1b  , 0.5c  , 20k  , (0) 20S   
and (0) 8I  .  By following the method in Section 2, the approximate solutions for 3,5,8N   
are computed as follows, respectively, 
 

 
2

3

3

( ) 7.9785791910339515167+2.0977724901029807716e +5.8687174466921839069e

           +4.0549308721708838049e ,

t t

t

S t  




 

 

 
2

3

3

( ) 3.0008588899987160837+14.193577267970781365e 12.589731205937710981e

           +3.3952950479682135323e ,

t t

t

I t  



 
 

 

 
2

5

3 4 5

( ) 8.0964426892753099268 0.85251493218771395312e +22.355041398527925686e

           35.960235247891340219e +41.783192582573209558e 15.421926490297390999e ,

t t

t t t

S t  

  

 

 
 

 

 
2

5

3 4 5

( ) 2.6287826727296234772+22.433717400030604592e 59.245440301504902762e

           +118.31107746833087355e 120.96461699591757457e +44.836479756331375714e ,

t t

t t t

I t  

  

 


 

 

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 8 [2013], Iss. 1, Art. 9

https://digitalcommons.pvamu.edu/aam/vol8/iss1/9



AAM: Intern. J., Vol. 8, Issue 1 (June 2013)                                                                                                             111                               
          

   

 

2
8

3 4 5

( ) 8.4700074822947369071+4.1940925874831515074e +34.949026159768877167e

           186.39763397675789407e +708.47714649755769076e 1643.0056622272026225e

            +2239.244535688653886

t t

t t t

S t  

  



 
6 7 81e 1624.2053657314944162e +478.27385351969659032e ,t t t  

 

 

 

2
8

3 4 5

( ) 2.0344897099603089328+20.843875482002528078e 145.70232728100196255e

           +778.21306485826602621e -2765.0083922309125786e +6144.0074841549497186e

          8090.5986550166078558e

t t

t t t

I t  

  

 

 6 7 8+5694.9740198329983464e 1630.7635595096545313e .t t t  

 

 
For 5N  , 0.1a  , 1b  , 0.5c  , 20k  , (0) 20S   and (0) 8I  , the comparisons between 
the approximation solutions of our method and the fourth-order Runge-Kutta (RK4) method are 
given in Figure 4. It is seen from Figure 4 that our method is to be in harmony with the fourth-
order Runge-Kutta (RK4). The approximate solutions ( )NS t  and ( )NI t  obtained for (0) 20S  , 

(0) 8I   and 3,5,8N   are shown in Figure 5(a) and Figure 5-(b), respectively. Equation (20). 
From Equation (20), we calculate the error functions for these approximate solutions and we 
display them in Figure 6(a) and Figure 6(b). We see from Figure 5(a) that population of 
suspected mice ( )S t  slowly approaches to 8 for 3,5,8N  . It is seen from that the population of 
infected mice ( )I t  decreases to 3 for 3,5,8N  . 

 
Figure 4(a).  Comparison of the solutions 5 ( )S t of the present method and the RK4 

method for 0.1a  , 1b  , 0.5c  , 20k  , (0) 20S   and (0) 8I    
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Figure 4(b).  Comparison of the solutions 5 ( )I t of the present method and the RK4 

method for 0.1a  , 1b  , 0.5c  , 20k  , (0) 20S   and (0) 8I   

 
Figure 5. (a). Graph of the solutions ( )NS t  for (0) 20S  , (0) 8I   and 3,5,8N   
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Figure 5. (b). Graph of the solutions ( )NI t  for (0) 20S  , (0) 8I   and 3,5,8N   

 
Figure 6. (a). Graph of the error functions obtained with accuracy of the solutions 

( )NS t  for (0) 20S  , (0) 8I   and 3,5,8N   
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Figure 6. (b). Graph of the error functions obtained with accuracy of the solutions 

( )NI t  for (0) 20S  , (0) 8I   and 3,5,8N   

 

 
4. Conclusions 
 
The solutions of some problems encountered in Science and Engineering are in form of 
exponential functions. Therefore, it is important to find the approximate solutions in terms of the 
exponential functions of ordinary differential equations. In this paper, a new exponential 
approximation is presented for solving the Hantavirus infection model by means of exponential 
polynomials bases. This model corresponds to a class of systems of nonlinear ordinary 
differential equations. Application of the technique is simple and practical. A applications of the 
suggested method have been given to demonstrate the accuracy and efficiency of this method for 
the model problem. Comparisons between the solutions of our method and the fourth-order 
Runge-Kutta (RK4) method are given. From these comparisons, it is observed that our method 
and RK4 method are consistent.  We assured the correctness of the obtained solutions by putting 
them back into the original equation with the aid of Maple; it provides a measure for confidence 
of the results. It is seen from Figure 3(a), (b) and Figure 6(a), (b) that the accuracies of the 
solutions increase when value of N is increased. However, the calculation errors may be too big 
for large values of N. Therefore, it is recommended that value of N  is to select large enough. 
The computations associated with the application have been performed using a computer code 
written in Maple. The basic idea described in this study can be used to be further employed to 
solve other similar nonlinear problems.  
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