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Abstract 

In this paper we introduce the k-Total Product cordial labelling of graphs. Also we investigate 
the 3-Total Product cordial labelling behaviour of some standard graphs. 
 
Keywords:  Path, Cycle, Star, Comb 
 
MSC 2000 No.:  05C78 
 

 
1.  Introduction 
 
The graphs considered here are finite, undirected and simple. The vertex set and edge set of a 
graph G are denoted by V (G) and E (G) respectively. The graph obtained by subdividing each 
edge of a graph G by a new vertex is denoted by S (G). The corona G1ΘG2 of two graphs G1 and 
G2 is defined as the graph G obtained by taking one copy of G1 (which has p1vertices) and p1 
copies of G2 and then joining the ith vertex of G1 to every vertex in the ith copy G2.Terms not 
defined here are used in the sense of Harary (1969). 
  
Rosa (1967) introduced the concept of β-valued graph and Cahit (1987) was instrumental for the 
introduction of a weaker version of the above concept, known as cordial labelling. Several 
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authors studied cordial graphs [Gallian (2011)]. Motivated by these definitions, Sundaram et al. 
(2004) introduced Product cordial labelling of graphs. Some authors are now working on Product 
cordial graphs [Salehi (2010); Selvaraju (2009); Seoud (2011); Vaidya, (2010), (2011)] and 
several variations of it [Babujee (2010), Sundaram (2005)]. The authors have introduced a 
generalized form of Product cordial labelling, known as the k- Product cordial labelling [Ponraj 
(2012)]. In this paper we introduce a new concept known as the k-Total Product cordial labelling 
and investigate 3-Total Product cordial labelling behaviour of some standard graphs. 
 

 2. K-Total Product Cordial Labelling 

  
Definition 2.1. 
  
Let f be a map from V(G) to {0,1, ..., k-1}, where k is an integer, 2 ≤  k  ≤ .V(G)  For each edge 

uv, assign the  label f (u) f (v) (mod k).  f is called a K-Total  Product cordial labelling of G if  
 

 |f(i) – f(j)| ≤ 1 ,   i, j  {0,1,…, k-1}, 
 
where f(x) denotes the total number of  vertices and edges labelled with x (x = 0,1,2, …, k-1). 
 
Theorem 2.2.   
 
Let G be a (p,q)  k-Product cordial graph. If p  0(mod k) or q  0 (mod k) then G is k-Total 
Product cordial. 
 
Proof:  
 
Case (i): p  0(mod k). 
 
Let p= kt. Let f be a k- Product cordial labelling of G. Since f is a k-Product cordial labelling, 

vf(i)=t and  )()( jeie ff  ≤1, 1≤ I ≤  k-1,1≤ j ≤ k-1, where  vf (x) and ef (x) denote the number of 

vertices and edges respectively labeled with x (x =0,1,2,3, …, k-1) .    
 
Now 
 

  )( jfif  = ))()(()()( jejvieiv ffff 
 

= )()()()( jeiejviv ffff  = )()( jeie ff 
 
≤ 1. 

 
Case (ii): Similar to (i) since ef (i) = ef (j). 
 
 
Theorem 2.3.   
 
Any path Pn is 3-Total Product cordial. 
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Proof: 
 
Let Pn be the Path u1u2 .. .un. 
 
Case (i): n  0(mod 3). 
 
Let n = 3t. Define f (ui) = 0, 1 ≤ i ≤ t and f (ut+i) = 2, 1 ≤ i ≤ 2t. Here, f(0) = 2t, f(1) = 2t-1, f(2) = 
2t. Therefore,  f  is a 3-Total Product cordial labling. 
 
Case (ii): n  1(mod 3). 
 
Let n=3t+1. Define f (ui) = 0, 1 ≤  i  ≤  t  and  f (ut+i) = 2, 1 ≤ i ≤ 2t+i. Since  f(0) = 2t, f(1)=2t, 
f(2) = 2t+1, Here,  f  is a 3-Total Product cordial labelling. 
 
Case (iii): n  2(mod 3).  
 
Let n = 3t+2. Define a map f as follows: f (u1) = 0, f (u2) = 1, f (u2+i) = 0, 1 ≤ i ≤ t-1,  f (ut+1+i) = 
2, 1 ≤ i ≤  2t+1. Here, f (0) = f (1) = f (2) = 2t+1. Therefore, f is a 3-Total Product cordial 
labelling. 
 

Illustration 2.4.   

 

 

 

Figure 1.  A 3-Total product cordial labelling of P8 . 
 
 
Theorem 2.5.  
 
The Cycle Cn  is 3-Total product cordial labelling  iff  n ≠ 3, 6. 
  
Proof:  
 
Let Cn be the cycle  u1u2 .... unu1 . 
 
Case (i): n  0(mod 3).n > 6. 
 
Let n = 3t, t > 2. Define f (u1) = 0, f (u2 ) =1, f (u2+i) = 0, 1 ≤ i ≤ t-2,  f (ut+i) = 2, 

1 ≤ i ≤ 2t. 
Clearly,  f (0 )= f (1 ) = f (2) = 2t. Therefore,  f  is a 3-Total Product cordial labelling.

 
 

0 0 1 

0 0 0 

2 2 2 2 2

1 1 1 1 
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Case (ii): n  1(mod 3). 
 
Let n = 3t+1. Define f (ui) = 0, 1 ≤ i ≤ t  and  f (ut+i ) = 2, 1 ≤ i ≤ 2t+1. Here,  f (1) = 2t+1, f (2) = 
2t+2. Therefore,  f  is a 3-Total Product cordial labelling. 
 
Case (iii): n  2(mod 3). 
 
Let n = 3t+2. Define f (ui) = 0, 1 ≤ i ≤ t  and  f (ut+i) = 2, 1 ≤ i ≤ 2t+2. Here, f(0) = 2t+1, f (1) = 
2t+1,  f (2) = 2t+2. Therefore,  f  is a 3-Total Product cordial labelling. 
 
Case (iv): n = 3. 
 
Suppose f is a Total Product cordial labelling of C3. Here, sum of the order and size of C3 is 6. 
Clearly,  f (0) ≥ 3,  a contradiction. 
 
Case (v): n = 6. 
 
Here, sum of the order and size of C6 is 12. If 0 is labelled with 1 vertex, then f (0) = 3. If 0 
labelled with any two vertices then f (0) ≥ 5, which should not happen. 
 
Illustration 2.6.   

 

 

 

 

       

 

 

 

 

Figure 2. A 3-Total product cordial labelling of  C10 . 

 
Result 2.7. Ponraj (2012). Any Star is k-Product cordial. 
 
 
Theorem 2.8. The Star K1,n is 3-Total Product cordial iff  n = 0, 2(mod 3). 
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Proof:  
 
V (K1,n) = { u,vi , 1 ≤ i ≤ n} and  E (K1,n ) = {uvi  , 1 ≤ i ≤ n}. 
 
 
Case (i): n  0, 2(mod 3). 
 
The result follows from theorem 2.2 and 2.7. 
 
Case (ii): n  1(mod 3). 
 
Let n = 3t+1. Here, the sum of order and size of the star is 6t+3.  Clearly, f (u) ≠ 0. 
 
Subcase (i): f (u) = 1. 
 
Suppose x pendant vertices are labelled with 0 and y pendant vertices are labelled with1.Then n-
x-y pendant vertices are labelled with 2. Therefore,  f (0) = 2 x, f (1) = 2 y+1, f (2) = 2(n-x-y). 
But,  f(0) = f (1) = f (2) = 2 t+1. Therefore, 2x = 2t+1, an impossibility.   
 
Subcase (ii): f(u) = 2. 
 
Similar to Subcase (i), we get a contradiction. Hence K1,n is is 3-Total Product cordial labelling 
iff  n = 0, 2 (mod 3). 
 
Illustration 2.9. 

 

 

 

 

 

 

 

Figure 3. A 3-Total product cordial labelling of  K1,10 . 

Remark 2.10.   
 
Any star is k-Product cordial [Ponraj (2012)] and hence a k-Product cordial graph need not be a 
k- Total Product cordial graph.  
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Theorem 2.11.  
 
The Comb is 3-Total Product cordial. 
  
Proof:  
 
Let Pn be the path u1u2u3...un. Also, let vi be the pendant vertex adjacent to ui (1 ≤ i ≤ n ) 
 
Case (i): n  0(mod 3). 
 
Let n=3t. Define f (ui) = f (vi ) = 0, 1 ≤ i ≤ t,  f (ut+i ) =1, 1 ≤ i ≤ 2t,  f (vt+i ) = 2, 1≤ i ≤ 2t. Here, 
f(0) = 4t, f (1)=4t - 1, f (2) =4t. Therefore,  f  is a Total Product cordial labelling. 
 
Case (ii): n  1(mod 3). 
 
Let n = 3t+1. Define f (ui) = 0, 1 ≤ i ≤ t,  f (vi ) = 0, 1 ≤ i ≤ t-1, f(vt) =2 , f (vt+1 ) = 0, f (ut+i ) =1, 
1≤ i ≤ 2t+1, f (vt+1+i) = 2, 1≤ i ≤ 2t. Here, f(0) = f (1) =  f (2) =4t +1. Therefore, f is a Total 
Product cordial labelling. 
 
Case (iii): n  2(mod 3). 
 
Let n=3t+2.  
 
Define f (ui) = 0, 1 ≤ i ≤ t,  f (vi ) = 0, 1 ≤ i ≤ t+1,  f (ut+i ) =1, 1 ≤ i ≤ 2t+2,  f (vt-1+i ) = 2, 1≤ i ≤ 
2t+1. Here, f (0) = 4t+2, f (1)=4t+1, f (2) =4t+2.  
 
Therefore,  f  is a Total Product cordial labelling. 
 
Theorem 2.12.  
 
PnΘ2K1 is 3- Total Product cordial. 
 
Proof:  
 
Let Pn be the path u1,u2...un. Let vi and wi be the pendant vertices which adjacent to ui , 1 ≤ i ≤ n.  
 
Define f (ui) = 1, 1 ≤ i ≤ n,  f (vi ) = 0, 1 ≤ i ≤ n,  f (wi ) =2, 1 ≤ i ≤ n,  f (0) = 2n, f (1)=2n-1,  f (2) 
= 2n.  
 
Therefore,  f  is a 3-Total Product cordial. 
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Illustration 2.13. 
 
 
 

 

 

 
 
 

Figure 4. A 3-Total product cordial labelling of P5Θ2K1 . 
 
Theorem 2.14.  
 
K2+mK1  is 3-Total Product cordial iff m =2 (mod 3). 
 
Proof:  
 

Let V(K2+mK1) = niuvu i 1:,, and E(K2+mK1) = nivuuuuv ii 1:,,
. 

 
Case (i): m  0(mod 3). 
  
Let m=3t. If possible, let there be a 3-Total Product cordial labelling. The sum of the order and 
size of K2+mK1 is 9t+3. Therefore,  f (0) =  f (1) = f (2) =3t+1. 
 
Clearly, f (u) and f (v) are not equal to zero otherwise f (0) ≥ 3t+2. Let x, y be the number of 
vertices in mK1 labelled with 0 and 1, respectively. Then 3x = 3t+1, a contradiction. 
 
Case(ii): m  1(mod 3). 
 
Let m=3t+1. Here, the sum of size and order is 9t+6. Here, f (0) =  f (1) = f (2) =3t+2. Let x be 
the number of vertices in mK1 labelled with 0. Then, 3x=3t+2, a contradiction. 
 
Case(iii): m  2(mod 3). 
 
Let m=3t+2. Define f (u) = f (vi) = 1, f (ui ) =0, 1 ≤ i ≤ t+1, f (ut+1+i ) =1, 1 ≤ i ≤ t, f (u2t+1+i ) =2, 1 
≤ i ≤ t+1. Here, f (0) =  f (1)=f (2) = 3t+3. Therefore  f is 3- Total Product cordial. 
 
Theorem 2.15.  
 
S(K1,n)  is 3-Total Product cordial. 
 
Proof:  
 

0
0

1 1

2 

2 2

1 1 1 1 11 

0 0 0 0 02 2 22 
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Let V(S(K1,n) )= nivuu ii 1:,, and  E(S(K1,n) ) = nivuuu iii 1:, . 

 
Case (i):  n  0(mod 3). 
 
Let n=3t. Define f (u) =1, f (ui ) =1, 1 ≤ i ≤ 2 t, f (u2t+i ) =2, 1 ≤ i ≤ t, f (vi) = 2, 1 ≤ i ≤ t, f (vt+i) = 
0, 1 ≤ i ≤2 t, f (1)= 4t+1,  f (0) = f (1)=4t. Hence  f is 3-Total Product cordial labelling. 
 
Case (ii): n  1(mod 3). 
 
Let n=3t+1. Define f (u) =1, f (ui ) =1, 1 ≤ i ≤ 2 t, f (u2t+i ) =2, 1 ≤ i ≤ t+1, f (vi) = 2, 1 ≤ i ≤ t, 
f(vt+i) = 0, 1 ≤ i ≤2t+1, f (1)= 4t+1,  f (0) = f (2)=4t+2. Hence, f is 3-Total Product cordial 
labelling. 
 
Case (iii): n  2(mod 3). 
 
Let n=3t+2. Define f (u) =1, f (ui ) =1, 1 ≤ i ≤ 2t, f (u2t+1 ) =0, f (u2t+1+i ) =2, 1 ≤ i ≤ 2t+1, f (vi) = 
2, 1 ≤ i ≤ t, f(vt+i) = 0, 1 ≤ i ≤ t, f(v2t+1) = 1, f(v2t+1+i) = 0, 1 ≤ i ≤ t, f(v3t+2) = 2, f (0) = f (1)= f 
(2)=4t+3. Hence, f is 3-Total Product cordial labelling. 
 
3.   Conclusions 
  
In this paper we have explored the cases when a k-Product cordial graph become K-Total 
Product cordial and also studied the k-Total Product cordial behaviour of some graphs  for the 
specific value k = 3.It shall be interesting to study the K-Total Product behaviour of standard 
graphs for general k. 

 

References 

Baskar Babujee, J., and Shobana, L. (2010). Prime and Prime Cordial Labelling for Some 
Special Graphs, Int. J. Contemp., Math. Sciences, 5, 2347-2356.  

Cahit, I. (1987).  Cordial  graphs, A  weaker  version of graceful and harmonious graphs, Ars 
Combinatoria , 23, 201-207. 

Ebrahim, Salehi (2010).  PC-Labelling of a Graph and its PC- Set, Bulletin of the Institute of 
Combinatorics and its Applications, 58, 112-121. 

Gallian, J.A. (2009).  A dynamic survey of graph labelling, The Electronics J. of Combinatorics, 
16, # DS6.   

 Harary, F. (1969).  Graph Theory, Addision Wisely, New Delhi. 
 Mominul, Haque, Kh. Md., Lin Xiaohui, Yang, Yuansheng and Zhao, Pingzhong (2010). On the 

Prime cordial labelling of generalized, Utilitas Mathematica, 82 ,71-79. 
 Ponraj, R., Sivakumar, M., and Sundram, M. (  ).  k-Product cordial labelling of graphs, Int. J. 

Contemp. Math. Sciences, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733 - 742.   
 Rosa, A. (1967). In certain valuation of vertices of a graph, Theory of graphs (International 

Symposium, Rome July 1966) Gorden and Breach N.Y and Dunod, Paris, 349-355. 

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 7 [2012], Iss. 2, Art. 16

https://digitalcommons.pvamu.edu/aam/vol7/iss2/16



716                                                                                                                                                            R. Ponraj et al.  
 

 Selvaraju, P., Nirmala, Gnanam and Pricilla, B. (2009). On Cordial labelling: The Grid, 
Diagonal Grid, Structured Web Graphs, International journal of Algorithms, Computing and 
Mathematics, 2, 5-14. 

Seoud, M.A. and Helmi, E.F. (2011).  On product cordial graphs, Ars Combinatoria, 101, 519-
529. 

 Sundram, M., Ponraj, R. and Somasundaram, S. (2004). Product cordial labelling of graphs, 
Bulletin of Pure and  Applied Sciences, 155-163. 

 Sundaram, M.,   Ponraj, R. and Somasundaram, S. (2005). Total Product cordial labelling of 
graphs,Bulletin of Pure and Applied Sciences, 199-203. 

 Sundaram, M., Ponraj, R. and Somasundaram, S (2005). EP-Cordial labelling of graphs, 
Varahmihir  journal of Mathematical Sciences, 7, 185-194. 

 Vaidya, S.K., and Dani, A. (2010). Some New Product cordial graphs, Journal of Applied 
Computer Science & Mathematics, 4, 63-66. 

 Vaidya, S.K., and Vyas, NB. (2011). Product Cordial labelling in the Context of Tensor Product 
of Graphs, Journal of Mathematics Research, 3, 83-88. 

 

9

Ponraj et al.: K-Total Product Cordial Labelling of Graphs

Published by Digital Commons @PVAMU, 2012


	K-Total Product Cordial Labelling of Graphs
	Recommended Citation

	Microsoft Word - 16_Ponraj AAM-R467-RP-122111 Ready to Go_R_ 01-02-13

