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Abstract 

Two existing methods for solving fuzzy variable linear programming problems based on ranking 
functions are the fuzzy primal simplex method proposed by Mahdavi-Amiri et al. (2009) and the 
fuzzy dual simplex method proposed by Mahdavi-Amiri and Nasseri (2007). In this paper, we 
prove that in the absence of degeneracy these fuzzy methods stop in a finite number of iterations. 
Moreover, we generalize the fundamental theorem of linear programming in a crisp environment 
to a fuzzy one. Finally, we illustrate our proof using a numerical example. 
 

Keywords: Fuzzy variable linear programming, fuzzy primal simplex algorithm, fuzzy 
dual simplex algorithm, ranking function, trapezoidal fuzzy number 

 
MSC 2010 No.: 90C05, 90C70, 03E72 
 

 
1.Introduction 

 
In the classical linear programming problems, the coefficients of the problems are assumed to be 
exactly known. However in practice this assumption is seldom satisfied by a great majority of 
real-life problems. The modeling of input data inaccuracy can be done by means of fuzzy set 
theory [Pop and Stancu-Minasian (2008)]. A number of researchers have, therefore, shown an 
interest in the area of fuzzy linear programming (FLP) problems with various attempts made to 
study the solution of fuzzy linear programming problems [Allahviranloo et al. (2008), 
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Ebrahimnejad and Nasseri (2009, 2012), Hosseinzadeh Lotfi et al. (2009), Kumar and Kaur 
(2010, 2011), Kumar et al. (2011) and Nasseri et al. (2010)]. 
 
Since the fuzziness may appear in a linear programming problem in many ways, the definition of 
FLP problem is not unique. In this paper we try to study a class of FLP problems in which the 
right-hand-side vectors and the decision variables are represented by fuzzy numbers while the 
rest of the parameters are represented by real numbers. This class of FLP problems is known as 
the fuzzy variable linear programming (FVLP) problem. The FVLP problems have been 
explored in Zimmermann’s discussion (1985) of the so-called non-symmetric flexible linear 
programming (NFLP) problems, where the problem data are considered to be crisp but certain 
constraints are considered to be fuzzy inequality constraints; see also Lai and Hwang (1992). 
Maleki et al. (2000) used the crisp solution of linear programming with fuzzy cost coefficients as 
an auxiliary problem for finding the fuzzy solution of FVLP problem. Mahdavi-Amiri and 
Nasseri (2007) showed that this auxiliary problem is indeed the dual of the FVLP problem. They 
then stated and proved duality results obtained by a natural extension of the results in crisp linear 
programming. Using the obtained results, they developed a dual simplex algorithm for solving 
the FVLP problem directly, without any need of an auxiliary problem. Ebrahimnejad et al. 
(2010) described another method for solving FVLP problems called the primal-dual algorithm, 
which is similar to the dual simplex method.  
 
An important difference between the dual simplex method and the primal-dual method is that the 
primal-dual algorithm does not require a dual feasible solution to be basic. Here we show that in 
the absence of primal and dual degeneracy, these fuzzy methods stop in a finite number of 
iterations. In addition, the key in these fuzzy algorithms is that the fuzzy optimal solution is 
obtained at a basic solution. Thus we prove that if there is a fuzzy optimal feasible solution for 
the FVLP problem then there is a fuzzy optimal basic feasible solution. 
 
The rest of the paper is organized as follows: in Section 2, we discuss some necessary concepts 
and backgrounds of fuzzy arithmetic. In Section 3, the fuzzy simplex methods for solving one  
FVLP problems are reviewed. Finite convergence of the existing methods and the generalization 
of the fundamental theorem of linear programming for FVLP problems are proved in Section 4. 
Conclusions are made in Section 5. 
 
 
2.  Preliminaries 
 
The purpose of this section is to recall some concepts of fuzzy set theory which will be needed in 
the sequel, taken from Ebrahimnejad and Nasseri (2010) and Ebrahimnejad et al. (2011). 
 
Definition 2.1.  
 
The characteristic function A  of a crisp set A assigns a value of either one or zero to each 
individual in the universal set X . This function can be generalized to a function A

~  such that the 

values assigned to the element of the universal set X fall within a specified range i.e., 
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]1,0[:~ XA . The assigned value indicates the membership grade of the element in the set A . 

Larger values denote higher degrees of set membership. 
 
The function 

A
   is called a membership function and the set   XxxxA A  )(,

~
~  defined 

by A
~  for each Xx is called a fuzzy set. 

 
Definition 2.2.  
 
A fuzzy set A

~
, defined on the universal set of real numbers R , is said to be a fuzzy number if its 

membership function has the following characteristics: 
 

i) A
~

is convex, i.e.    ,)(),(min)1(],1,0[,, ~~~ yxyxRyx AAA     

ii) A
~

is normal, i.e., ,1)(; ~  xRx A  

iii) A
~ is piecewise continues. 

 
Definition 2.3.  
 
A fuzzy number ),,,(

~ nmA   is said to be a trapezoidal fuzzy number if its membership 
function is given by (see Figure 1) 
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Figure 1: A trapezoidal fuzzy number ),,,(
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Now, we define the arithmetic operations of trapezoidal fuzzy numbers. 

Definition 2.3.  
 
Let ),,,(

~
11111 nmA  and ),,,(

~
22222 nmA   be two trapezoidal fuzzy numbers. Then, the 

arithmetic operations on 1A  and 2A  are given by: 

 

1 2 1 2 1 2 1 2 1 2( , , , )A A m n n m            

1 2 1 2 1 2 1 2 1 2( , , , )A A m n n m          
 

 
),,,(

~
,,0 11111  kknkmkAkRkk  

 
),,,(

~
,,0 11111  kkmknkAkRkk  

 
Ranking procedures are useful in various applications and one of them will be in the study of 
fuzzy mathematical programming in later sections. There are numerous methods proposed in the 
literature for the ranking of fuzzy numbers. Here, we describe only a simple method for the 
ordering of fuzzy numbers. 
 
An efficient approach to the ordering of fuzzy numbers is based on the concept of comparison of 
fuzzy numbers by the use of ranking functions, in which a ranking function RRF  )(:  that 
maps each fuzzy number into the real line is defined for ranking the elements of )(RF . Thus, 
using the natural order of the real numbers we can compare fuzzy numbers easily as follows: 
 

)
~

()
~

(
~~~

2121 AAAA   
 

)
~

()
~

(
~~~

2121 AAAA   

 

)
~

()
~

(
~~

2121 AAAA   
 
Several ranking functions have been proposed by researchers to suit their requirements of the 
problems under consideration. We restrict our attention to linear ranking functions, that is, a 
ranking function   such that )

~
()

~
()

~~
( 2121 AAkAAk  for any 1

~
A and 2

~
A belonging to 

)(RF and any Rk . For a trapezoidal fuzzy number ),,,(
~ nmA  , one of the most linear 

ranking functions introduced by Yager’s (1981) is as follows: 
 





 


22

1
)

~
(2


nmAY  
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3. Fuzzy Variable Linear Programming Problems 
 
In this section two existing methods for solving fuzzy variable linear programming problems are 
reviewed [Mahdavi-Amiri and Nasseri (2007) and Nasseri et al. (2009)]. 
 

An FVLP problem is defined as follows: 
 

0
~~~

~~~..

~~min







x

bxAts

xcz

  )1(   

 
Definition 3.1.  
 
Any fuzzy vector )(~ nRFx   which satisfies the constraints and nonnegative restrictions of (1) is 
said to be a fuzzy feasible solution. 
 
Definition 3.2.  
 
Let X  be the set of all fuzzy feasible solutions of (1). Any fuzzy vector Xx *

~ is said to be a 

fuzzy optimum solution to (1) if xcxc ~~~
*   for all Xx~ , where ),,,( 21 ncccc  and 

nnxcxcxcxc ~~~~
2211   . 

 
Definition 3.3. (Fuzzy basic solution)  
 
Suppose )

~
,,

~
,

~
(

~
21 nxxxx  solves bxA

~~ . If all ),,,(
~

jjjjj nmx  for some 0,,  jjjj nm  , 

such that 0
22

1








 
 jj

jj nm


, then x
~

is said to be a fuzzy basic solution. Otherwise, x
~

has 

some non-zero components, say mkxxx k 1,
~

,,
~

,
~

21  . Then, bxA
~~ can be written as: 

 
bnmanmaxaxaxa nnnnnkkkkkkk
~

),,,(),,,(
~

,
~~

111112211      
 
If the columns kaaa ,,, 21  corresponding to non-zero components kxxx

~
,,

~
,

~
21  are linear 

independent, then x
~

 is said to be fuzzy basic solution. 

 
Remark 3.1.  

Consider the fuzzy system of constraints (1) where A is a matrix of order )( nm and mArank )( . 

Any )( mm  matrix B  formed by m  linearly independent columns of A  is known as a basis for 

this fuzzy system. The column vectors of A  and the fuzzy variables in the problem, can be 
partitioned into the basic and the nonbasic part with respect to this basis B . Each column vector 
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of A , which is in the basis B , is known as a basic column vector. All the remaining column 
vectors of A  are called the nonbasic column vectors. 

Remark 3.2.  

Let Bx~  be the vector of the variables associated with the basic column vectors. The variables 
in Bx~ are known as the fuzzy basic variables with respect to basis B , and Bx~ is the fuzzy basic 
vector. Also, let Nx~  and N  be the vector and the matrix of the remaining variables and columns, 
which are called the fuzzy nonbasic variables and nonbasic matrix, respectively. In this case, 

)0
~

,
~

()~,~(~ 1 bBxxx NB
 is also a fuzzy basic solution. 

 
Definition 3.4.  
 
Suppose x

~
  is a fuzzy basic feasible solution of fuzzy system 0

~~~,
~~  xbxA . If the number of 

fuzzy positive variables x
~

 is exactly m , then it is called a non-degenerate fuzzy basic feasible 
solution, i.e.  )0

~
,,0

~
,0

~
()

~
,,

~
,

~
(

~
21  mxxxx  . If the number of positive x

~  is less than m , then x
~  is 

called a degenerate fuzzy basic feasible solution. 
 
Suppose x

~  is a fuzzy basic feasible solution of (1). Let ky  and w  be the solutions to kk aBy   
and BcwB  , respectively and define jj waz  . Mahdavi-Amiri and Nasseri (2007) proved some 

important theorems of FVLP problems concerning the improvement of a fuzzy feasible solution, 
unbounded criteria and the optimality conditions and then proposed a new algorithm for solving 
FVLP problems. Here, we give a summary of their method in tableau format [Mahdavi-Amiri et 
al. (2009)]. 
 
 

roblemfuzzy primal simplex for FVLP p Algorithm 3.1  A 

Initialization Step 

Suppose a fuzzy basic feasible solution with basic B is at hand. Form the initial tableau as Table 
1. 

Table 1: The initial FVLP simplex tableau 

Basis Bx~  Nx~  R.H.S R 

z~  0  NNBNN cYccz   bBcz B
~~ 1  )

~
()

~
( 1bBcz B

  

Bx~  I  NY  bBb
~~ 1  )

~
(b  

 
Main Step 

(1) Calculate jj cz   for all nonbasic variables. Let  Tjczcz jjkk  ,max  in which T is the 

index set of the current nonbasic variables. 
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If 0 kk cz , then stop; the current solution is fuzzy optimal. Otherwise go to step (2). 

(2)  Let kk aBy 1 . If 0ky , then stop; the problem is unbounded. Otherwise, determine the 

index of variable rBx~ leaving the basic as follows: 

 













 





 




0
22

1
min

22

1
1

ik
ii

ii
ikmi

rr
rr

rk

ynm
y

nm
y

  

 
(3) Update the tableau by pivoting at rky  Update the fuzzy basic and fuzzy nabasic variable 
where kx~  enters the basic and rBx~ leaves the basic and go to (1). 

 
Remark 3.3.  
 
In the step 3 of the above mentioned method, a new fuzzy basic solution and a new fuzzy 
objective are obtained as follows, respectively: 
 

rk

B
BBrj

rk

B
BB y

x
xxriy

y

x
xx r

rk

r

ii

~
~~

ˆ,,
~

~~
ˆ 










              (2) 

 

)(
~

~~
ˆ kk

rk

B cz
y

x
zz r  .                (3) 

 
Mahdavi-Amiri and Nasseri (2009) defined the duality in FVLP problem using linear ranking 
functions leading to a standard primal-dual linear programming pair. 
 
The dual of FVLP problem (1) is defined as follows: 

0

..

~~max






w

cAwts

bwy

                         

(4)

 

In addition, Mahdavi-Amiri and Nasseri (2007) proved some important results concerning the 
FVLP problem and its dual problem and also based on these results proposed a new algorithm 
for solving FVLP problems. Here, we give a summary of their method in tableau format. 
 

roblemPimplex for FVLP Sual Duzzy FAlgorithm 3.2  A  

Initialization Step 

Suppose that basic B be dual feasible for the FVLP problem (1) in its standard form, i.e., 
njcz jj ,,2,1,0  . Form the Table 1 as an initial dual simplex tableau. 
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Main Step 

(1) Suppose bBnmb
~

),,,(
~ 1  .  If 0

22

1








 



nm , then stop; the current solution is 

fuzzy optimal.  Else select the pivot row r, with 0
22

1








 
 rr

rr nm


. 

 
(2) If 0rjy  for all j , then stop; the problem is infeasible. Else select the pivot column k by the 

following test: 
 




















0min

1
ik

rj

jj

mjrk

kk y
y

cz

y

cz  

 
(3) Update the tableau by pivoting at rky . Update the fuzzy basic and fuzzy nabasic variable 
where kx~  enters the basic and

rBx~ leaves the basic and go to (1). 

 
Remark 3.4.  
 
In the step 3 of the above mentioned method a new fuzzy objective value is obtained as follows: 
 

)(

~
~~

ˆ kk
rk

r cz
y

b
zz     (5)

 
Definition 3.5.  
 
A basis B for the FVLP problem (1) is said to be dual degenerate if for at least one nonbasic 
variable, say jx~ , we have 0 jj cz . Otherwise, it said to be dual non-degenerate. The FVLP 

problem (1) is said to be totally dual non-degenerate, if for all fuzzy nonbasic variables in the 
dual simplex tableau with respect to any basis for (1), we have 0 jj cz . 

 
4. Main Results 
 
In this section, we generalize some important results in crisp linear programming problems to 
fuzzy variable linear programming problems. 
 
It needs pointing out that the fuzzy primal method for FVLP problems, starting a fuzzy basic 
feasible solution moves to another fuzzy basic solution with a better (at least not worse) 
objective value until it finds a fuzzy optimal basic feasible solution after a finite number of steps. 
Here, we prove that in the absence of degeneracy, the primal method stops in a finite number of 
iterations. 
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Theorem 4.1.  
 
In the absence of primal degeneracy, the fuzzy primal simplex algorithm stops in a finite number 
of iterations, either with a fuzzy optimal basic feasible solution or with the conclusion that the 
optimal value is unbounded. 
 
Proof:  
 
In the absence of primal degeneracy, every fuzzy basic feasible solution has exactly m  positive 
components and has a unique associated basis. Also, at each iteration, one of the following three 
actions is executed at each iteration: 

 
(1)  It may stop with a fuzzy optimal basic solution if 0 jj cz ; 

(2)  It may stop with an unbounded solution if 0 kk cz  and 0ky  ; 
(3)   It gives a new fuzzy basic feasible solution if 0 kk cz and  0.ky   

In the absence of degeneracy, 0
~~
rb , i.e. 0

~~~ rB bx
r
  and hence 0

~
~


rk

B

y

x
r . By (3), the difference 

between the fuzzy objective values at the previous iteration and the current iteration 

is )(

~

kk
rk

B
cz

y

x
r  . Thus, the fuzzy objective value decreases strictly in all iterations. Hence a basis 

that appears once in the course of method can never reappear. Also the total number of bases for 

(1) is less than or equal to 







m

n
 Hence, the method would stop in a finite number of steps with a 

finite fuzzy optimal basic solution or with an unbounded optimal solution. 
 
 
We note that the fuzzy dual simplex algorithm for FVLP problems starts with a dual fuzzy basic 
feasible solution, but primal basic infeasible solution and walks to a fuzzy optimal solution by 
moving among adjacent dual fuzzy basic feasible solutions. Now, we show that in the absence of 
dual degeneracy, this fuzzy dual method stops in a finite number of iterations. 
 
Theorem 4.2.  
 
In the absence of dual degeneracy, the dual primal simplex algorithm stops in a finite number of 
iterations, either with a fuzzy optimal basic feasible solution or with the conclusion that the 
problem is infeasible. 
 
Proof:  
 
We know that the fuzzy dual simplex method moves among dual feasible bases. Also, at each 
iteration of the method, one of the following three actions is executed. It may be stop with an 

optimal basic solution if 0
~~
rb ; it may stop with the conclusion that the problem is infeasible, if 

0
~~
rb  and 0rjy  for all j ; or else it gives a new fuzzy basic feasible solution if 0

~~
rb  
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and 0;  rjyj . In addition, the difference in the dual fuzzy objective values between two 

successive iterations is )(

~

kk
rk

r cz
y

b
 . Note that 0

~~
rb and 0rky . Moreover, by Definition 3.5 

in the absence of dual degeneracy we have 0.k kz c   Thus, the fuzzy objective value increases 

strictly in each iteration and hence no basis can be repeated and algorithm must converge in a 
finite number of steps.  
 
It is important to note that the key in the fuzzy simplex methods is that the optimal solution is 
obtained at a basic solution. Thus we prove that if a FVLP problem has an optimal solution, then 
it also has a basic optimal solution. 
 
Theorem 4.3. (Generalized fuzzy fundamental theorem)  
 
If FVLP (1) in the standard from has a fuzzy optimum feasible solution, then it has a fuzzy basic 
feasible solution that is optimal. 
 
Proof:  
 
Suppose )

~
,,

~
,

~
(

~
21 nxxxx  be a fuzzy optimum feasible solution in which ),,,(

~
jjjjj nmx  . 

Let  k
jj

jjj aaanma ,,,0
22

1
21 
























 



. So we have 

 

bnmanmaxaxaxa nnnnnkkkkkkk

~
),,,(),,,(

~
,

~~
111112211                               (6)   

 
If  kaaa ,,, 21  is linearly independent, then x

~
is a fuzzy basic feasible solution of (1) and we are 

done. Suppose this set is linearly dependent. So, there exists )0,,0,0(),,,( 21   kyyyy  such 
that 
 

02211  kk yayaya .                (7) 
 
Let )0,0,,(~

jjj yyy  for kj ,,2,1  . Thus, from we have 

 
0
~~~~

2211  kk yayaya .                (8) 
 
Using Equations (6) and (8), we get the following relation in which   is a real number. 
 

bnmanmayxayxayxa nnnnnkkkkkkkk
~

),,,(),,,()~~
()~~

()~~
( 11111222111     .      (9) 

 
Define the fuzzy vector ))(

~
,),(

~
),(

~
()(

~
21  nxxxx  ), where 
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nkj

kjyx
x jj

j
,,10

,,2,1~~
)(

~




 .             (10) 

 

Clearly, )(
~ x satisfies .Ax b   Define  

 
























 



0

22

1
max

1
1 j

j
jj

nj
y

j
nm


 .            (11) 

 
























 



0

22

1
min

1
2 j

j
jj

nj
y

j
nm


 .           (12) 

 
Since )0,,0,0(),,,( 21   kyyyy , at least one 1  or 2 of the must be finite. It is clear that 

01  and 02  . Let  21 ,min0   . Therefore, )(
~ x is a fuzzy feasible solution for all 

satisfing   . In addition, we have,   

  )~~~()
~

(~)(
~~

2211 kk ycycycxzxz   . (13) 

We now show that the assumption x
~

 is fuzzy optimal implies that any ),,,( 21 kyyy   satisfying 
(8) must also satisfy 
 

0
~~~~

2211  kk ycycyc .              (14) 
 
Suppose not. If 0

~~~~
2211 kk ycycyc  , let    and if 0

~~~~
2211 kk ycycyc  , let   . Then, )(

~ x  

is a fuzzy solution of (1) and   )
~

(~)(
~~ xzxz  , which contradicts the assumption that x

~
 is an optimal fuzzy 

solution of (1). This means that the fuzzy feasible solution )(
~ x is a fuzzy optimal feasible 

solution of (1) which the number of its positive fuzzy variables is at least one less than the 
number of positive fuzzy variables of x

~
. In a similar way, it is possible to obtain another fuzzy 

feasible solution )(
~
x  in which the number of positive variables is at least one less than the 

number of positive variables of )(
~ x . By (14), any such fuzzy feasible )(

~
x that we obtain must 

also satisfy   )
~

(~)(
~~ xzxz  . Hence, when this procedure is applied repeatedly, an optimal fuzzy 

basic feasible solution of (1) will be obtained after at most )1( k ) applications of the procedure.  
 
Here, for an illustration of the above theorem we consider the following fuzzy variable linear 
programming problem. 
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Example 4.1.  
 
A company produces two products P1 and P2. These products on two different machines M1 and 
M2. The time required manufacturing one unit of each products and the daily capacity of the 
machines are given in Table 2: 
 

  Table 2.  Daily capacity of the machines 
 Time per unit (minutes)  

Machines P1                         P2 Machine capacity (min/day) 
M1 1                          1 10 
M2 -                             1 8 

 

 

Note that the time availability can vary from day to day due to break down of machines, 
overtime work etc. At the same time the company wants to keep the profit somewhat close to 2 
dollars for P1 and 2 dollars for P2. The company wants to determine the range of each product to 
be produced per day to maximize its profit. It is assumed that all the amounts produced are 
consumed in the market. 
 
Since the time availability on each machine is uncertain, the number of units to be produced on 
each product will also be uncertain. So we will model the problem as a fuzzy variable linear 
programming problem. We use trapezoidal fuzzy numbers for each uncertain value which are 
especially useful in solving FVLP problems and have the most importance among the various 
types of fuzzy numbers. 
 

Times availability for M1 and M2 which are close to 10 and 8 respectively, are modeled as (6, 
14, 5, 5) and (4, 12, 4, 4). So the problem is formulated as follows: 
 

0
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~~~2

)5,5,14,6(
~~~..

~2~2~max
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21

21
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xxts

xxz

.

 

 
Now the standard form of the fuzzy linear programming problem becomes as follows where 

3
~x and 4

~x are the slack fuzzy variables: 
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It should be note that 
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is a fuzzy optimal solution for the above problem with optimal objective 
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are linear dependence. So, there exists )0,0,0(),,( 421  yyyy  such that 
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4 y . By 

definition of 1  and 2 we have 41   and 42  . Thus, we get 4 . In this case, if we have 
4  , we obtain a new fuzzy optimal solution as 
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For this new fuzzy solution, we have   )6,6,24,16()(
~~* xz  and    20)(

~~*  xz . This shows that 
the new fuzzy solution is optimal too. In addition, for this fuzzy solution we have 
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which is linear independence. Thus, the new fuzzy optimal solution is a fuzzy optimal basis 
feasible solution. On the other hand, if we let 4  , we obtain another new fuzzy optimal 
solution as  
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Also, for this new fuzzy solution, we have 
 

  )10,10,28,12()(
~~* xz   and    20)(

~~*  xz .  
 
This shows that it is an alternative fuzzy optimal solution. In addition, for this fuzzy solution we 
have 
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which is linear independence. Thus, this fuzzy optimal solution is another fuzzy optimal basis 
feasible solution. In addition the fuzzy amount of each product corresponding to both optimal 
solutions that company should produce per day to maximize its profit is summarized in Table3. 
 
Table 3. The Fuzzy Optimal Basic Solutions 
 Product P1 Product P2 Maximum Profit 

Optimal solution )(
~ x  

Optimal solution )(
~
x  

)3,3,12,8(   
)3,3,4,0(  

----- 
)2,2,10,6(  

)6,6,24,16( )10,10,28,12(

 
Based on this table, the company has two strategies to obtain its maximum profit. In the first 
strategy, it can only produce (8, 12, 3, 3) amount of product P1. In the second strategy, it can 
produce (0, 4, 3, 3) amount of product P1 and (6, 10, 2, 2) amount of product P2. 
 
Remark 4.1.  
 
We realize that the results obtained here are independent of the type of the fuzzy numbers. In 
other words, we can use any other types of fuzzy numbers, and although the solution obtained 
may be different, the results remain valid for the new solution. As for the types of the uncertain 
data in the model and the assumption of fuzziness in the variables, the type of fuzzy numbers for 
FVLP problems should be the decision maker main concerns. For trapezoidal fuzzy numbers and 
variables, the linear ranking function used here is deemed to be appropriate. In fact, the decision 
maker can choose any type of fuzzy numbers to suit the requirements of the problem under 
consideration. So, this will be a strengthening point of the proposed method. In what follows, we 
explore that the proposed method can be generalized for each LR flat fuzzy number defined as 
follows: 
 
Definition 4.1.  
 
A fuzzy number A

~
defined on the universal set of real numbers denoted as LRnmA ),,,(

~  , is 
said to be an LR  flat fuzzy number if its membership function )(~ xA  is given by: 
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where the symmetric non-increasing function ]1,0[),0[: L  is the left shape function, that 

1)0( L . Also, a right shape function (.)R is similarly defined as (.)L . 
 
Yager (1981) proposed a procedure for ordering fuzzy sets in which a ranking index )

~
(A  is 

calculated for the fuzzy number LRnmA ),,,(
~   according to the following formula: 

 

   dRnLmA   
1

0

11 )()()()(
2

1
)

~
(  

 
Now it is possible to generalize the fundamental theorem in crisp environment to fuzzy one same 
as the proposed approach in this paper. 
 

5.   Conclusions 
 
These days a number of researchers have shown interest in the area of fuzzy linear programming 
problems and various attempts have been made to study the solution of fuzzy linear 
programming problems. In this paper we studied a class of fuzzy linear programming problems 
known as fuzzy variable linear programming problems in which the right-hand-side vectors and 
the decision variables are represented by fuzzy numbers while the rest of the parameters are 
represented by real numbers. We showed that in the absence of primal and dual degeneracy, the 
existing fuzzy simplex methods stop in a finite number of iterations. Finally, we proved that if an 
FVLP problem has a fuzzy optimal solution, then it also has a fuzzy basic optimal solution. 
 
In our opinion, we feel that there are many other points of research that should be explored later 
on. Some of these points are discussed below. 
 
In this paper, we generalized the fundamental theorem of linear programming in a crisp 
environment to a fuzzy one. Development of the Representation Theorem in fuzzy environment 
will be interesting. 
 

In this paper we obtain some new results for FVLP problems where the right-hand-side vectors 
and the decision variables are represented by fuzzy numbers and the rest of the parameters are 
represented by real numbers. However, the method is not very efficient when the cost 
coefficients and decision variables are trapezoidal fuzzy numbers. This will be an interesting 
research work in the future. 
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