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Abstract 
 
This paper deals with the reliability characteristics of two different series system configurations 
with mixed standby (include cold and warm standby) components.  The failure rates of the 
primary and warm standby components are assumed to follow the Weibull distribution. The 
repair time distribution of each server is exponentially distributed. Moreover, we will derive the 
mean time-to-failure, and the steady-state availability for a special case of a serial system of two 
primary components, two warm standby components, and one cold standby component, when 
the failure and repair rate are constant.    
 

Keywords: Reliability, Availability, Time varying failure, standby components, Markov 
Method 

 
MSC 2010 No.: 60K10; 62P30; 60J28 

 
 
1.  Introduction 

System reliability and system availability have widely been studied because of their prevalence 
in power plants, manufacturing systems, and industrial systems. Maintaining a high or required 
level of reliability and/or availability is often an essential request. In this paper, we consider the 
manufacturing system or the power plant to be series system with mixed standby (include cold 
and worm standby) components. A standby component is called a 'cold standby' if its failure rate 
is zero. The standby component is referred as 'warm standby' when the failure rate is nonzero and 
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is less than the failure rate of a primary component. Primary, warm, and cold components can be 
considered to be repairable.  

The present study is differs from past work in that it presents a novel methodology to design a 
system configuration involving series and mixed standby components. The reliability 
characteristics of a system with M operating machines, S warm standby spares and R repairmen 
with exponential failure and exponential repair time distributions was investigated by Wang and 
Sivazlian (1989). Srinivasan and Gopalan (1973) studied one on-line unit (operating machine) 
with general lifetime distribution, w Warm standbys with exponential failure and exponential 
repair time distributions based on only one assumption, namely, the system fails when no spares 
are available to replace the failed operating machine.  

Studies have been focused on assuming that the time-to-repair follows an exponential 
distribution [see Yadavalli et al. (2002); Chien et al. (2006)]. The reliability and availability 
characteristics of two different series system configurations studied by [El-Said and El-Sherbeny 
(2007)].  El-Sherbeny et al. (2009) derived the reliability and availability characteristics of three 
different series system configurations with warm standby components and a repairable service 
station.  El-Sherbeny (2010) discussed the optimal system for series systems with mixed standby 
components. 

In this paper, we are going to study three different system configurations of series and mixed 
standby components. Configurations 1,2 are compared  based on their reliability. In addition, for 
configuration 3, which is a special case, we are going to develop the explicit expressions for the 
mean time-to-failure MTTF and the steady-state availability )(TA , and to calculate the 
cost/benefit ratio )/( BC  based on assumed numerical values given to the system parameters, as 
well as to the costs components. 

2.  Estimation of the 2-parameter Weibull distribution 

The hazard function of a component following a 2-parameter Weibull distribution can be 
described by: 
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where θ is a scale parameter, and η is a shape parameter.  
   
The likelihood function for m items begin test at the same time by Farnum and Booth (1997) is: 
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The partial derivatives of the natural log of the likelihood function are: 
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Substituting the results from equations (3), (4) into (2), then we have: 
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For censoring, it  is a recorded failure time for i  and si tt   for mi  1 , where st  is the 

maximum test time for censoring, is the number of items that fail before st . When all 
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it ),...,3,2,1( mi  are available, the data are complete; complete data are a special case of right 

concerning for .   
 

Our empirical investigations suggest that choosing: )(lim 


hv


 .  

Compute estimate of the parameters θ and η for number of failures times . The proofs of the 

following results are presented in the appendix. 

3. Description of the system 

For the sake of discussion, we consider the requirements of a 10MW power plant. We also 
assume that generators are available in units of both 10 and 5 MW. Standby generators are 
always necessary in case of failure.  We assume that the switch is perfect (Wang and Kuo, 2000). 
We also assume that the switchover time from warm standby component to primary component, 
from cold standby component to warm standby component, from failure to repair, or from repair 
to cold standby component (or primary component if the system is short) is instantaneous. 
Primary components and warm standby components can be considered to be repairable by Wang 
et al. (2006) and Xie et al. (2004). Each of the primary components fails independently of the 
state of the others and has time-dependent failure rate  with parameters .   

Whenever one of the primary components fails, a warm standby moves into operation if any is 
available, and a cold standby is put on warm standby state if any is available, we now assume 
that when a warm standby moves into a primary component state, its failure characteristic will be 
that of the primary component, and when a cold standby moves into a warm standby state, its 
failure characteristic will be that of a warm standby.  We assume that each of the available warm   
standby components fails   independently of the state of all the others and   has time-dependent 
failure rate  with parameters . Whenever a primary component or a warm standby 
component fails, it is immediately repaired in the order of breakdowns with a time-to-repair, 
which is exponentially distributed with parameter . Once a component is repaired, it is "as good 
as new", notice that a failed system is never repaired. 
 
The following configurations are considered: 
 
The first configuration is a serial system of one primary 10MW component, one warm standby 
10MW component, and one cold standby 10MW component. 
 
The second configuration is a serial system of two primary 5MW components, one warm 
standby 5MW component, and one cold standby 5MW component. 
 
The third configuration (a special case): of two primary 5MW components, two warm stand by 
5MW components, and one cold standby 5MW component, with constant failure rate 21 ,  ,and 
constant repair rate µ. 

 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 7 [2012], Iss. 2, Art. 14

https://digitalcommons.pvamu.edu/aam/vol7/iss2/14



676                                                                                                                    M. El-Damcese and   A.  Helmy 

4. The Reliability of the System 
    
The state probability )(tP j

,for j=0,1,2,3 can be viewed as a result of solving a set of four first 

order linear differential equations given by the following identity: 
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where   is the transition rate from state j to state i. 
 
4.1. Calculations for Configuration 1 
 
For configuration 1, let )(3 tP  be the probability that exactly 3 components are working at time t, 

)0( t . If we let )(tP denote the probability row vector at time t, then the initial conditions for 
this problem are: 

    0,0,0,1)0(),0(),0(),0()0( 0123  PPPPP .           (7) 

The system-state equations for a Markov model which is the set of the first-order linear 
differential equations given by 
 

QPP 


.           
   

The transition rate matrix Q for reliability according to configuration 1 is given by: 
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 We will take the matrix Q and delete the rows and columns for the absorbing state. The new 
matrix is called )(t . 
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We can write the system in the form: 
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To solve equation (8) with the initial condition 
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Multiplying both sides of equation (8) by 
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The method of solving we follow gives us the value of De  by the following relation 
 

2
210 DDIeD   ,             (13) 

 
where I is the identity matrix of rank 3 and 210 ,,  are the parameters obtained from the 

solution of the following system: 
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where 
321 ,, SSS  are the characteristic roots of the matrix D. these roots are obtained from the 

characteristic equation g(s) of the matrix D given by: 
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By solving equations (14) – (16), we have 
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Now we can obtain the value of De from equation (13) and obtain the values of required states 
probabilities from equation (11) which are: 
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The system reliability function of configuration 1 is: 
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4.2.  Calculations for Configuration 2 

Let )(3 tP  be the probability that exactly 4 components are working at time t, )0( t . If we let 

)(tP denote the probability row vector at time t, then the initial conditions for this problem are: 
 

   0,0,0,1)0(),0(),0(),0()0( 0123  PPPPP .          (22) 

 
The transition rate matrix Q for reliability according to configuration 2 is given by: 
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We will take the matrix Q and delete the rows and columns for the absorbing state. The new 
matrix is called )(t . 
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We can write the system in the form: 
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We will solve equation (23) with the aid of the method used in the previous section and hence: 
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Here, the value of De  will be given by the same relation, which is: 
 

2
210 DDIeD   ,                                                                         (25) 
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where I is the identity matrix of rank 3 and 210 ,,  are the parameters obtained from the 

solution of the following system: 
 

2
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1 rrer   ,              (26) 
2

22210
2 rrer   ,              (27) 

2
32310
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where 321 ,, rrr  are the characteristic roots of the matrix D. these roots are obtained from the 

characteristic equation g(r) of the matrix D given by:   
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By solving equations (26) – (28), we have 
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Now we can obtain the value of 
De  from equation (25) and obtain the values of required states 

probabilities from equation (23) which are: 
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The system reliability function of configuration 2 is: 
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4.3. Calculations for Configuration 3: 

Mean time to failure of the system:  

 

For configuration 3, let )(4 tP  be the probability that exactly 5 components are working at time 
t, )0( t . If we let )(tP denote the probability row vector at time t, then the initial conditions for 
this problem are: 

 
   0,0,0,0,1)0(),0(),0(),0(),0()0( 01234  PPPPPP ,         (34) 

where the transition rate matrix Q for reliability according to configuration 3 is given by: 
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To evaluate the transient solution is too complex. Therefore, we will restrict ourselves in 
calculating the MTTF. Therefore, we will take the transpose matrix of Q and delete the rows and 
columns for the absorbing state. The new matrix is called A. 
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The expected time to reach an absorbing state is calculated from: 
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Availability Analysis of the System: 

For the availability case of configuration 3, we will use the initial condition initial conditions for 
this problem from equation (34): 
 

The differential equations form can be expressed as: 
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The steady state availability can be obtained using the following procedure. In the steady state, 
the derivatives of the state probabilities become zero. That allows us to calculate the steady state 
probabilities with:  

 )(1)( 0  PAT ,                                                   (38) 

and, 
 

0)( QP , 

or, in the matrix form: 
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 .         (39) 

Using the following normalization condition: 
 





4

0

1)(
i

iP .               (40) 

We substitute (40) in any one of the redundant rows in (39) to yield 
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.        (41) 

 
Solution of (41) provides the steady-state probabilities in the availability case. The explicit 
expression for )(TA is given by: 
 

])4108()817(12)210(
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TA

.

       (42)     

                                                                                                               

 
 
Cost/Benefit Ratio: 
 
The notion of cost-benefit analysis is simple in principle. We assume the size-proportional cost 
for the primary components, warm standby components, and cold standby components, 
respectively, shown in table (2) with this we calculate the costs for configuration 3. It utilizes the 
cost/benefit ratio )/( BC  as a means to rank alternatives, let: 
 

C = the cost for the configuration3, 

1B = the MTTF of configuration 3, 
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or  
 

2B = the  )(TA of configuration 3. 

Table 1. The size-proportional cost for the components 

Component Cost (in $) 

Primary 5MW 5E+6 
Warm standby 5MW 3E+6 
Cold standby 5MW 2E+6 

The cost for configuration 3 (where there is two primary components, two warm standby 
components, and one cold standby component= $18E+6). 
 
A numerical illustration is provided by considering the following parameters: 
 

0.1,05.0,6.0 21   . 

 
Given these values, we can calculate for configuration 3: 

  1)  cost/MTTF=1.39E+6 

  2) )(/cos TAt =18.5E+6 

 

5.  Conclusion 

We have provided in this paper, the reliability of two configurations, when the components have 
time-dependent failure rate and a constant repair rate. By comparing the R(t) in both 
configurations, we can see that in the first configuration the reliability is higher than reliability in 
second configuration as shown in Figure 1. Moreover, from numerical results for the cost/benefit 
measure have been obtained for configuration 3 (special case), we have provided a systematic 
methodology to develop the mean time to system failure and the steady-state availability of 
series system with mixed standby components. By comparing the MTTF and the )(TA , we can 
draw a conclusion that the mean time to system failure and the steady-state availability are 
significantly improved by adding cold standby components.  

Numerical results for the cost /benefit measure have been obtained for the configuration 3 gives 
smallest  cost/MTTF than the cost/MTTF by configuration (two primary 5MW components, one 
warm standby 5MW component, and one cold standby 5MW component), and the configuration 
3 gives smallest )(/cos TAt than )(/cos TAt by configurations (one primary 10MW 
component, one warm standby 10MW component, and one cold  standby 10MW component), 
(one primary 10MW component, one warm standby 10MW component, and two cold  standby 
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10MW components), and (one primary 10MW component, two warm standby 10MW 
components, and one cold standby 10MW component). 
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Figure 1: Relationships between R(t) and Time (hr.) in Configuration 1, 2 

 
 
 

Appendix 
 
Then from equation (4), we have: 
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Using equations (A.1) and (A.2) to obtain : 
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.          (A.3) 
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This approximation simplifies to 
v

2




 . Equation (A.3) provides a quick approximation to  and 

can be used as an initial estimate of   for iterative MLE routines. 
 

Table 2. Computing estimate of the parameters   and   for number of failures times . 

Order failures times   
For i=1,2,…,10 

v V/2



 




/1

10

1 10








 





i

it

 1 2 3 4 5 6 7 8 9 10 

37 58 72 88 115 136 152 165 185 213 0.682 2.933 138.07 
31 43 56 65 73 82 96 101 111 135 0.948 2.12  97.22 
27 35 66 83 96 101 131 145 199 222 0.884 2.26 128.41 
24 32 41 66 79 89 98 120 180 235 1.117 1.79 111.66 
18 26 39 53 77 93 108 135 220 253 1.216 1.64 118.84 
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