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Abstract 

In this paper, we implemented modification of truncated expansion method for the exact 
solutions of the Konopelchenko-Dubrovsky equation the (n+1)-dimensional combined sinh-
cosh-Gordon equation and the Maccari system. Modification of truncated expansion method is a 
powerful solution method for obtaining exact solutions of nonlinear evolution equations. This 
method presents a wider applicability for handling nonlinear wave equations. 
 
Keywords:  Modification of truncated expansion method; Konopelchenko-Dubrovsky equation; 

(n+1)-dimensional combined sinh-cosh-Gordon equation; Maccari system 
 

MSC 2000 No.:  35Q53; 35Q80; 35Q55; 35G25. 
 

 

1. Introduction 

 
The theory of nonlinear dispersive and dissipative wave motion has recently undergone much 
research. Phenomena in physics and other fields are often described by nonlinear evolution 
equations which play a crucial role in applied mathematics and physics. Furthermore, when an 
original nonlinear equation is directly solved, the solution preserves the actual physical 
characters of the equations. Explicit solutions of nonlinear equations are therefore of 
fundamental importance. Various methods for obtaining explicit solutions of nonlinear evolution 
equations are proposed. Many explicit exact methods are introduced in the literature. Among 
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these methods, the tanh method [Ma (1993), Malfliet (1992)], the multiple exp-function method 
[Ma et al. (2010), Ma and Zhu (2012)], the Backlund transformation method [Miura (1978)], the 
Hirotas direct method [Hirota (1971), Hirota (2004)], the transformed rational function method 
[Ma and Lee (2009)], the first integral method [Feng (2002), Feng and Wang (2003), Feng and 
Knobel (2007), Feng (2002), Feng and Chen (2005)], the simplest equation method [Kudryashov 
(2005)], the automated tanh-function method [Parkes (1996)], modification of truncated 
expansion method [Kudryashov (2004), Kudryashov (1990), Ryabov (2010)] and the solitary 
wave ansatz method [Biswas et al. (2012), Triki et al. (2012), Ebadi et al. (2012), Johnpillai et al. 
(2012), Girgis et al. (2012), Crutcher et al. (2012)] are some of the methods used to develop 
nonlinear dispersive and dissipative problems. 
 
Konopelchenko and Dubrovsky (1984) presented the Konopelchenko-Dubrovsky (KD) equation 
 

2 23
6 3 3 0, (1 )

2
, (1 )

t xxx x x y x

y x

u u buu a u u v au v a

u v b

      

 

                                               (1) 

 
where a  and b  are real parameters. Equation (1) is a new nonlinear integrable evolution 
equation on two spatial dimensions and one temporal. This equation was investigated by the 
inverse scattering transform method. The F-expansion method is also used in Wang and Zhang 
(2005) to investigate the KD equation. 
 
The aim of this paper is to find exact solutions of the KD equation and the (n+1)-dimensional 
combined sinh-cosh-Gordon equation and the Maccari system by using modification of truncated 
expansion method [Kudryashov (2004), Kudryashov (1990), Ryabov (2010)]. 
 
2.  Modification of Truncated Expansion Method 

We present the modification of the truncated expansion method [Kudryashov (2004), 
Kudryashov (1990), Ryabov (2010)]. We consider a general nonlinear partial differential 
equation (PDE) in the form 
 

 , , , , ... 0.x y tE u u u u                                                                                                             (2) 

 
Using traveling wave  ( , , ) ( ),u x y t y z z kx ly wt     carries (2) into the following ordinary 
differential equation (ODE): 
 

 , , ,..., , , 0.z zzL y y y k l w                                                                                                        (3) 

 
The modification of the truncated expansion method involves the following steps [Kudryashov 
(2004), Kudryashov (1990), Ryabov (2010)]. 
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Step 1.  
 

Determination of the dominant term with highest order of singularity. To find the dominant 
terms we substitute 

 

,py z                                                                                                                                   (4) 

 
into all terms of Equation (3). Then compare degrees, and choose two or more with the 
lowest degree. The maximum value of p  is the pole of Equation (3) and is denoted by N . 
The method is applicable when N  is integer. Otherwise the equation has to be transformed. 

 
Step 2.  
 

We look for exact solution of Equation (3) in the form 
 

0

( ),
N

i
i

i

y a Q z


                                                                                                                         (5) 

 
where  0,1,...,ia i N are constants to be determined later, such that 0,Na  while ( )Q z has 

the form 
 

 
1

( ) ,
1 exp

Q z
c z




                c = const,                                                                               (6) 

a solution to the Riccati equation 
 

2 .zQ Q Q   

 
 

Remark  1.  
 
This Riccati equation also admits the following exact solutions [Ma and Fuchssteiner 
(1996)]: 

 

 

0
1 0

0
2 0

ln1
( ) 1 tanh , 0,

2 2 2

ln1
( ) 1 coth , 0,

2 2 2

z
Q z

z
Q z

  

 


         
  

        

 

More general solutions are presented in the reference [Ma and Fuchssteiner (1996)]. 
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Remark 2.  
 
Exponential functions are also applied to the construction of the (3+1)-dimensional and the 
three wave solutions to the bilinear equations [Ma and Zhu (2012)], and linear ordinary 
differential equations of arbitrary order are used to establish invariant subspaces of the 
solutions to the nonlinear equations [Ma (2012)]. 

 
Step 3.  
 

We calculate the necessary number of derivatives of function y . It is easy to do 
using Maple or Mathematica package. In case 1N   we have some derivatives of the 
function ( )y z  in the form 

 

0 1

2
1 1

2 3
1 1 1

2 3 4
1 1 1 1

,

,

3 2 ,

7 12 6 .

z

zz

zzz

y a a Q

y a Q a Q

y a Q a Q a Q

y a Q a Q a Q a Q

 

  

  

    

                                                                                    (7) 

 
 

Step 4.  
 

We substitute expressions (5)-(7) to Equation (3). Then we collect all terms with the same 
powers of function ( )Q z and equate expressions to zero. As a result we obtain algebraic 
system of equations. Solving this system we get the values of unknown parameters. 

 
3. Konopelchenko-Dubrovsky Equation 
 
The wave variable z kx ly wt   transforms the KD equation (1) into a system of ODEs: 
 

3 2 23
6 3 3 0, (8 )

2
, (8 )

z zzz z z z z

z z

wu k u bkuu a ku u lv aku v a

lu kv b

      

 

                                            (8) 

 
Integrating Equation (8b) with respect to z  and neglecting the constant of integration we obtain 
 

( ) ( ).
l

v z u z
k

                                                                                                                                     (9) 

 
Substituting (9) into Equation (8a), we obtain the ordinary differential equation: 
 

   2 4 2 2 23
3 3 2 0.

2z zzz z zkw l u k u k bk al uu a k u u                                                       (10) 
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Integrating Equation (10) with respect to z , we have 
 

   
2 2

2 4 2 3
1

3
3 2 0,

2 2zz

k a k
C kw l u k u bk al u u                                                           (11) 

where 1C  is integration constant. 

 
The pole order of Equation (11) is 1N  . So we look for solution of Equation (11) in the 
following form 
 

0 1( ) ( ).u z a a Q z                                                                                                                 (12) 

 
Substituting (12) into Equation (11) and taking into account relations (7) we obtain the system of 
algebraic equations in the form 
 

 

   

   

4 2 2 3
1 1

4 2 2 2 2
1 1 0 1

4 2 2 2 2
1 1 0 1 0 1

2 2 2 2 3
1 0 0 0

1
2 0,

2
3 3

3 2 0,
2 2

3
3 3 2 0,

2
3 1

3 2 0.
2 2

k a a k a

k a k bk al a a k a a

k a kw l a k bk al a a a k a a

C kw l a k bk al a a k a

  

    

      


      


                                                    (13) 

 
From (13) we have following values of coefficients 0 1,a a  and parameters 1,C w  

 

  

2 4 2 2 2 2 2 2

0 12 2

2 2 2 2 3 2 2

1 4

2 2 6 12 12 3
, , ,

2

2 4 4 21
.

2

k a bk al k k a l a b k kal al
a a w

ka a ka

k a bk al b k bkal al bk a a lk
C

ka

      
   


        

              (14) 

 

  

2 4 2 2 2 2 2 2

0 12 2

2 2 2 2 3 2 2

1 4

2 2 6 12 12 3
, , ,

2

2 4 4 21
.

2

k a bk al k k a l a b k kal al
a a w

ka a ka

k a bk al b k bkal al bk a a lk
C

ka

      
   


       

              (15) 

 
Using the values of parameters (14) we have the following solution of Equations. (12), (9) 
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2

2

2 2

2 2

2 2
( ) ( ),

2 2
( ) ( ).

k a bk al k
u z Q z

ka a

lk a lbk al l
v z Q z

k a a

  
  


    

                                                                               (16) 

 
Combining (16) with (6), we obtain the exact solution to Equation (11) and the exact solution to 
the KD equation can be written as 
 

4 2 2 2 2 2 2

2

4 2 2 2 2 2 2

2

2

2 6 12 12 3

2

2 2

2 2 6 12 12 3

2

2 2 1
( , , ) ,

1

2 2 1
( , , ) .

1

k a l a b k kal al
kx ly t

ka

k a l a b k kal al
kx ly t

ka

k a bk al k
u x y t

ka a
ce

lk a lbk al l
v x y t

k a a
ce

     
       

     
       

  
  


 


    
 

                      (17) 

 
Using the values of parameters (15) we have following solution of Eqs. (12), (9) 
 

2

2

2 2

2 2

2 2
( ) ( ),

2 2
( ) ( ).

k a bk al k
u z Q z

ka a

lk a lbk al l
v z Q z

k a a

  
 


   

                                                                                  (18) 

 
Combining (18) with (6), we obtain the exact solution to Equation (11) and the exact solution to 
the KD equation can be written as 
 

4 2 2 2 2 2 2

2

4 2 2 2 2 2 2

2

2

2 6 12 12 3

2

2 2

2 2 6 12 12 3

2

2 2 1
( , , ) ,

1

2 2 1
( , , ) .

1

k a l a b k kal al
kx ly t

ka

k a l a b k kal al
kx ly t

ka

k a bk al k
u x y t

ka a
ce

lk a lbk al l
v x y t

k a a
ce

     
       

     
       

  
 


 


   
 

                         (19) 

 
 
4. The (N+1)-Dimensional Combined Sinh-Cosh-Gordon Equation 

 
Let us consider the (n+1)-dimensional combined sinh-cosh-Gordon equation in the form 
 

   
2

2
1

sinh cosh 0.
n

tt
i i

u
u u u

x
 




   

                                                                            (20) 
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By using the wave variable 
1

n

i i
i

z k x wt


   we transform the (n+1)-dimensional combined 

sinh-cosh-Gordon equation (20) into the ODE: 
 

   2 2

1

sinh cosh 0.
n

i zz
i

w k u u u 


     
 

                                                                    (21) 

 
Engaging the Painleve property 
 

 exp ,v u                                                                                                                          (22) 

 
or equivalently 
 

 ln ,u v  

 
we find 
 

2

, .z zz

v v v
u u

v v v

       
 

 

 
The transformation (22) also gives 

 

   
1 1

sinh , cosh ,
2 2

v v v v
u u

  
                                                                                       (23) 

 

Equivalently 

 

 
1

1cosh .
2

v v
u z


  

  
 

                                                                                                     (24) 

 
Substituting the transformations introduced above into Equation (21) yields the ODE 
 

     22 2 2 2 3

1 1

2 2 0.
n n

i i
i i

k w v k w vv v v   
 

              
   
                                (25) 

 
The pole order of Equation (25) is 2N  . So we look for solution of Equation (25) in the 
following form 

 

     2
0 1 2 .v z a aQ z a Q z                                                                                              (26) 
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We substitute Equation (26) into Equation (25) and collect all terms with the same power in 

 0,1, 2, ... .iQ i   Equating each coefficient of the polynomial to zero yields a set of 

simultaneous algebraic equations omitted here for the sake of brevity. Solving these algebraic 
equations by either Maple or Mathematica, we obtain 

 

 2 2
0 1 2

1

, 4 , 4 , .
n

i
i

a a a w k
       
      

    
             

            (27) 

Using values of parameters (27) we have the following solution of Equation (26) 
 

      24 4 1 .v z Q z Q z
 
 


  


                                                                                      (28) 

 
Combining (28) with (6), we obtain the exact solution to Equation (25) in the form 
 

 
   2

4 4
1 .

11
zz

v z
cece

 
 

     
   

                                                                              (29) 

 
By using (24), we have the exact solution of the (n+1)-dimensional combined sinh-cosh-Gordon 
equation in the form 
 

 
       

1

2 2

1

4 4 4 4
1 1

1 11 1
, cosh ,

2

z zz zce cece ce
u x t

   
   





                              
 
 
 
 

            (30) 

 

where     2 2
1 2

1 1

, ,..., , .
n n

n i i i
i i

x x x x z k x k t 
 

          
   

 
5. The Maccari System 

 
 
For the system [Bekir (2009)] 
 

 2

0,

| | 0.

t xx

t y x

iu u uv

v v u

  
   

                                                                                                         (31) 

 
In order to find traveling wave solutions of Equation (31), we set 
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         , , , , , ,

2 ,

i px qy rtu x y t e u z v x y t v z

z x y pt

  

  
                                                           (32) 

 
where , ,p q r and   are constants. 
 
Substituting (32) into (31), which is then reduced to the following nonlinear ordinary differential 
equation: 
 

 
 

2 0, (33 )

2 2 0. (33 )

zz

z z

r p u u uv a

p v uu b

    


  
                                                            (33) 

 
Integrating Equation (33b) with respect to z  and neglecting the constant of integration we obtain 
 

     21
.

2
v z u z

p
 


                                                                                                            (34) 

 
Substituting (34) into Equation (33a), we obtain ordinary differential equation: 
 

    2 32 2 0.zzp r p u p u u                                                                              (35) 

 
The pole order of Equation (35) is 1N  . So we look for solution of Equation (35) in the 
following 
form 
 

   0 1 .u z a aQ z                                                                                                              (36) 

 
We substitute Equation (36) into Equation (35) and collect all terms with the same power in 

 0,1, 2, ... .iQ i  Equating each coefficient of the polynomial to zero yields a set of 

simultaneous algebraic equations omitted here for the sake of brevity. Solving these algebraic 
equations by either Maple or Mathematica, we obtain 
 

2
2 1 1

0

1
, 2 , ,

2 2 2

a a
r p p a        

 
                                                                                (37) 

 
where 1a  is arbitrary constant. 

 
Using the values of parameters (37) we have following solution of Eqs. (36), (34) 
 

9

Taghizadeh and Mirzazadeh: Modification of Truncated Expansion Method for Solving Some

Published by Digital Commons @PVAMU, 2012



AAM: Intern. J., Vol. 7, Issue 2 (December 2012)                                                                                                     497                              
          

   

   

     

1

2

1
,

2

1
2 2 .

2

u z a Q z

v z Q z Q z

      
   

                                                                                           (38) 

 
Combining (38) with (6), we obtain the exact solution to Equation (35) and the exact solution to 
the Maccari system can be written as 
 
 

 

 

2

2
1

2
2 1
1

1

2
1

2 2
2

2
2 22 2 22

1 1
, , ,

2
1

2 2 1
, , .

2
11

i px qy p t

a
x p y pt

aa x p y ptx p y pt

u x y t a e

ce

v x y t

cece

      
  

  
        

                        

  
  

    
  

 


   
 
   
     

                                        (39) 

 
6. Conclusion 
 
We have thus obtained exact solutions of Konopelchenko-Dubrovsky equation and (n+1)-
dimensional combined sinh-cosh-Gordon equation and the Maccari system by using the 
modification of truncated expansion method. The efficiency of this method was aptly 
demonstrated. The solutions obtained are potentially significant and important for the 
explanation of some practical physical problems. The method may also be applied to other 
nonlinear partial differential equations. 
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