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Abstract 
 
In this paper the -distal notion is extended for fuzzy dynamical systems on fuzzy metric spaces. 
A method for constructing fuzzy metric spaces is studied. The product of -distal fuzzy 
dynamical systems is considered. It is proved that: a product of fuzzy dynamical systems is -
distal if and only if its components are -distal. The persistence of the -distal property up to a 
fuzzy factor map is proved. 
 
Keywords:   Fuzzy -distal; Fuzzy dynamical system; Fuzzy factor map; Cartesian product of   
   fuzzy metric spaces. 
 
MSC 2010:   37C70, 54A40 
 
1.  Introduction: 
 
In the theory of fuzzy dynamical systems, the fuzzy continuity [Chang (1968), George et al. 
(1997), George et al. (1994), Grabiec (1998)] and its extensions [Molaei (2004), Rahmat et al. 
(2008)] are essential means to describe the system behavior. Distal property is the other 
mathematical property which can describe the behavior of a system without paying attention to 
the continuity of a system. 
 
In this paper we are going to consider the dynamics on a fuzzy metric space without paying 
attention to its fuzzy continuity. We are going to define a property which can be a suitable 
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replacement for fuzzy continuity. By this property we can consider the behavior of fuzzy 
dynamical systems which may not be fuzzy continuous. In section 2 we recall the definition of 
fuzzy metric spaces and we present a method for constructing new fuzzy metric spaces. By a 
fuzzy dynamical system, we mean a bijection on a fuzzy metric space. We introduce the notion 
of -distal property [Host et al. (2010)] for fuzzy dynamical systems in addition. Intuitively a -
distal fuzzy dynamical system as a kind of dynamics that does not let the points of a fuzzy metric 
space converge to each other up to a fuzzy metric in the level . We prove that two fuzzy 
dynamical systems on two fuzzy metric spaces are -distal if and only if their product up to a 
special -norm is -distal. In addition we also introduce the notion of a fuzzy factor map as a 
kind of conjugate relation and show that the -distal property preserves under a fuzzy factor map. 
 
2.  Preliminaries 

 

A binary operation ]1,0[]1,0[]1,0[:   is a continuous -norm if it satisfies the following 
conditions: 
 
1)    is an associative and commutative operation; 
2)  aa 1  , for all ];1,0[a  
3)  dcba  ,  whenever dcba  ,   where ]1,0[,,, dcba . 

 
A fuzzy metric space ),,( MX  is a triple ),,( MX   where X , is a nonempty set, 

]1,0[]1,0[]1,0[:   is a continuous -norm and ]1,0[),0(:  XXM  is a mapping which 

has the following properties: 
 
For every Xzyx ,,  and , 0,t s   

1)  ( , , ) 0;M x y t   
2)  1),,( tyxM if and only if ;x y  
3)  ( , , ) ( , , );M x y t M y x t  
4)  ( , , ) ( , , )* ( , , );M x z t s M x y t M y z s   
5)  ]1,0[),0(:,.),( yxM  is a continuous map. 

 
Theorem 2.1. If ),,( MX  is a fuzzy metric space then: 

 i)  For given ]1,0[, ba 1ba implies 1;a b   
 ii)  The inequality st   implies ),,(),,( syxMtyxM   ,  where , .x y X                             

 
Proof:  
 
One can deduce the first property immediately .  To prove (ii) put rts  , then      

 
).,,(1),,(),,(),,(),,(),,( tyxMtyxMryyMtyxMrtyxMsyxM   

  
One can prove the following theorem by direct calculations. 
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 Theorem 2.2. If 21, are two -norms ,  then  

 
]1,0[]1,0[]1,0[: m  

 
},min{),( 21 bababa    

 
is a -norm. 
 
 Theorem 2.3. Let ),*,( 111 MX and ),*,( 222 MX be two fuzzy metric spaces .   Assume that the -
norm   has the following additional property: 
  

A: *a a  for all 0 .a , 
 
then 21 XX   with the mapping 
  

]1,0[),0()()(: 2121  XXXXM  
 

),,(),,()),,(),,(( 2221112121 tyxMtyxMtyyxx m  
  
is a fuzzy metric space .  
  
Proof:  
 
The property A of the -norm implies  is a positive function .  More precisely let 

0)),,(),,(( 2121 tyyxxM  for some 111, Xyx  , 222 , Xyx   and ),0( t  .  Without less of 

generality, we assume that 0),,(),,( 2221111  tyxMtyxM  and ),,(),,( 222111 tyxMtyxM   .  So  
 

0),,(),,( 1111111  tyxMtyxM  .   
 
Thus, 1 1 1( , , ) 0,M x y t   which is a contradiction. 

 
1)),,(),,(( 2121 tyyxxM if and only if 1),,( 111 tyxM and 1),,( 222 tyxM , which is equivalent 

to 1 1 2 2, .x y x y   

  
Now we want to prove the triangle inequality. 
 

1 2 1 2(( , ), ( , ), )M x x z z t s   

                   1 1 1 1 2 2 2 1 1 1 1 2 2 2min{ ( , , ) ( , , ), ( , , ) ( , , )}.M x z t s M x z t s M x z t s M x z t s        
  
Since  
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),,(),,( tzxMstzxM iiiiii   and ),,(),,( szxMstzxM iiiiii  , for 1,2,i   

  
there  
 

1 2 1 2(( , ), ( , ), )M x x z z t s  
             1 1 1 1 2 2 2 1 1 1 1 2 2 2min{ ( , , ) ( , , ), ( , , ) ( , , )}M x z t s M x z t s M x z t s M x z t s        
             1 1 1 1 2 2 2 1 1 1 2 2 2 2min{min{ ( , , ) ( , , ), ( , , ) ( , , )},M x y t M x y t M x y t M x y t    
 

 1 1 1 1 2 2 2 1 1 1 2 2 2 2min{ ( , , ) ( , , ), ( , , ) ( , , )}}M x y s M x y s M x y s M x y s   

                     1 1 1 2 2 2 1 1 1 2 2 2( ( , , ) ( , , )) ( ( , , ) ( , , ))m m mM x y t M x y t M x y s M x y s     
                     1 2 1 2 1 2 1 2(( , ), ( , ), ) (( , ), ( , ), ).mM x x y y t M x x y y s   
 

),,( 21 mMXX   , presented in Theorem 2.3 is called the Cartesian product of fuzzy metric 

spaces 1 2, .X X  
 
 3.   The Distal Property for Fuzzy Dynamics 
 
 Now let us to introduce the notion of distality for fuzzy dynamical systems. For this purpose we 

assume that : ( , , ,*)X T M is a fuzzy dynamical system ,  i.e. , ,*),( MX  is a fuzzy metric space and 
XXT :  is a bijection. 

  
Remark :  If 1 1 1 1( , , ,* )X T M , and 2 2 2 2( , , ,* )X T M are two fuzzy dynamical systems ,  then 

),,( 21 mMXX  is a fuzzy dynamical system. 

 
 Definition 3.1. Let ( , , , )X T M   be a fuzzy dynamical system .  Then a pair XXyx ),( is 
called a fuzzy -distal pair if  
 

sup { ( ( ), ( ), )} 1.n n
n z M T x T y t   

 
( , , , )X T M   is called -distal if for a given pair of distinct points ,x y X  ,  and (0, )t    , 

),( yx is a fuzzy -distal pair. 
 
 Theorem 3.1. If ),*,,( 1111 TMX  and ),*,,( 2222 TMX are two fuzzy dynamical systems ,  then 

),*,,( 1111 TMX and ),*,,( 2222 TMX are -distal fuzzy dynamical systems if and only if 

),*,,( 21 mMTXX   is a -distal fuzzy dynamical system ,  where 1 2T T T  . 
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Proof:  
 
Let ),*,,( 1111 TMX and ),*,,( 2222 TMX are -distal fuzzy dynamical systems and 

1 2 1 2( , ) ( , )x x y y , 1 2 1 2( , )x x X X  , 1 2 1 2( , )y y X X   .  Without less of generality let 

1 2.x x   Then, 
 

1 2 1 2sup { ( ( , ), ( , ), )}n n
n M T x x T y y t 1 1 2 2 1 1 2 2sup { (( ( ), ( )), ( ( ), ( )), )}n n n n

n M T x T x T y T y t  
                                              1 1 1 1 1 2 2 2 2 2sup { (( ( ), ( ), ) ( ( ), ( ), )}n n n n

n mM T x T y t M T x T y t   
                                              1 1 1 1 1 1 2 2 2 2 2sup {min{ (( ( ), ( ), ) ( ( ), ( ), ),n n n n

n M T x T y t M T x T y t   
 

1 1 1 1 1 2 2 2 2 2 2(( ( ), ( ), ) ( ( ), ( ), )}}n n n nM T x T y t M T x T y t  
                              1 1 1 1 1 1 2 2 2 2 2min{sup { (( ( ), ( ), ) ( ( ), ( ), )},n n n n

n M T x T y t M T x T y t   
 

1 1 1 1 1 2 2 2 2 2 2sup { (( ( ), ( ), ) ( ( ), ( ), )}} 1.n n n n
n M T x T y t M T x T y t   

 
 The last inequality holds because  
 

)),(),((( 11111 tyTxTM nn )}),(),((({sup 11111 tyTxTM nn
Zn  

 
and 

)),(),((( 22222 tyTxTM nn
2 2 2 2 2sup { (( ( ), ( ), )}.n n

n Z M T x T y t  
 
Thus, 

 

1 1 1 1 1 1 2 2 2 2 2(( ( ), ( ), ) ( ( ), ( ), )n n n nM T x T y t M T x T y t  

                               1 1 1 1 1 1 2 2 2 2 2sup { (( ( ), ( ), )} sup { ( ( ), ( ), )}.n n n n
n nM T x T y t M T x T y t   

 
So 

1 1 1 1 1 1 2 2 2 2 2sup { (( ( ), ( ), )} ( ( ), ( ), )}n n n n
n M T x T y t M T x T y t  

                           1 1 1 1 1 1 2 2 2 2 2sup { (( ( ), ( ), )} sup { ( ( ), ( ), )} 1n n n n
n nM T x T y t M T x T y t    

 
Thus, ),*,,( 21 mMTXX   is -distal. 

 
Conversely ,  let ),*,,( 21 mMTXX   be a -distal fuzzy dynamical system ,  111, Xyx   ,  and 

11 yx  . Let 2x  be a point in 2X  .  Then ),(),( 2121 xyxx  , where 212121 ),(),,( XXxyxx  . So  

1 1 2 2 1 1 2 2sup { (( ( ), ( )), ( ( ), ( )), )} 1n n n n
n M T x T x T y T x t  . 

  
Because 
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1 1 2 2 1 1 2 2(( ( ), ( )), ( ( ), ( )), )n n n nM T x T x T y T x t 1 1 1 1 1 2 2 2 2 2(( ( ), ( ), ) ( ( ), ( ), )n n n n
mM T x T y t M T x T x t   

                                                      1 1 1 1 1(( ( ), ( ), ) 1n n
mM T x T y t  1 1 1 1 1(( ( ), ( ), ).n nM T x T y t  

Hence, 
 

1 1 1 1 1sup{ (( ( ), ( ), )} 1.n nM T x T y t   
  
So ),*,,( 1111 TMX  is a -distal fuzzy dynamical system .  
  
Similarly ),*,,( 2222 TMX  is a -distal fuzzy dynamical system .  
 
Corollary 3.1. If },...,1,{ kiXi   is a family of fuzzy dynamical systems ,  then  

 
),*,...,...( 2121 mkk MTTTXXX    

 
is -distal if and only if ),*,,( iiii MTX is -distal for each ki 1 . 
  
In the above corollary kXXX  ...21 means 1 2 1( ... ) .k kX X X X     
 
Corollary 3.2. If ,*),,( MTX  is a fuzzy dynamical system ,  then the following properties are 
equivalent: 
 

 i)  ,*),,( MTX is a -distal fuzzy dynamical system, 

ii)  ,*),,( MTX mm is a -distal fuzzy dynamical system for all integer m. 

iii)  ,*),,( MTX mm  is a t-distal fuzzy dynamical system for some integer m. 
 
Definition 3.2.  Let 1 1 1 1( , , ,* )X T M and 2 2 2 2( , , ,* )X T M be two fuzzy dynamical systems ,  an 

isometry between 1 1 1 1( , , ,* )X T M and 2 2 2 2( , , ,* )X T M is a mapping 21: XXP   such that 

)),(),((),,( 21 tyPxPMtyxM  for all 1, Xyx  and (0, ).t    
 
Definition 3.3.  A fuzzy factor of a fuzzy dynamical system 1 1 1 1( , , ,* )X T M is another fuzzy 

dynamical system 2 2 2 2( , , ,* )X T M such that :  there is an onto isometry P from 1X onto 2 ,X  so 

that the following diagram commutes. 
 

 

1

2

1 1

2 2

T

T

X X

P P

X X



 


 

  
In this case, P is called a fuzzy factor map. 
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Lemma 3.1.  If 21: XXP   is a fuzzy factor map ,  then 21: XXP  is a one to one map. 
  
Proof:  
 
If ( ) ( ),P x P y  then 2 ( ( ), ( ), ) 1.M P x P y t  So 1),,(1 tyxM  .  Thus, yx   .  

 
Now let us to present the main theorem of this section, which prepare a method of congruence 
for distal fuzzy dynamical systems.  
 
Theorem 3.2.  If a fuzzy dynamical system 1 1 1 1( , , ,* )X T M has a fuzzy factor 

2 2 2 2( , , ,* )X T M ,  then 1 1 1 1( , , ,* )X T M  is a -distal fuzzy dynamical system if and only if 

2 2 2 2( , , ,* )X T M is a -distal fuzzy dynamical system. 

 
Proof:  
 
Let 1X be a -distal fuzzy dynamical system and 21: XXP  be a factor map .  Then  for given 

1 2 2, ,y y X   if 2 2 1 2 2sup { ( ( ), ( ), )} 1,n n
n M T y T y t  then there exists 121, Xxx  such that 

1 1 2 2( ), ( ),y P x y P x   and 2 2 1 2 2sup { ( ( ( )), ( ( )), )} 1.n n
n M T P x T P x t   Hence , 

2 1 1 1 2sup { ( ( ( )), ( ( )), )} 1.n n
n M p T x P T x t   Thus, 1 1 1 1 2sup { ( ( ), ( ), )} 1.n n

n M T x T x t  So, 1 2 ,x x Thus, 

1 2.y y Hence 2 2 2 2( , , ,* )X T M is a -distal fuzzy dynamical system. 

 
If 2 2 2 2( , , ,* )X T M  is a -distal fuzzy dynamical system, then by replacing P with 1P  we can 

show that 1 1 1 1( , , ,* )X T M  is a -distal fuzzy dynamical system .   

 
4.   Conclusion 

 
 In this paper we have successfully deduced a method for constructing fuzzy metric spaces. We 
considered the product of t-distal fuzzy dynamical systems. We have also studied the distal 
property for the product of fuzzy dynamical systems. We proved the persistence of t-distal 
property up to a fuzzy factor map. The fuzzy factor map is a kind of conjugate relation which 
leads us to the notion of stability for fuzzy dynamical system .  The consideration of fuzzy 
stability using fuzzy factor map can be a topic for further research. 
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