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Abstract 
 
The thermal instability of a layer of Rivlin-Ericksen elastico-viscous rotating fluid in a porous 
medium in hydromagnetics is considered. For stationary convection, the Rivlin-Ericksen 
elastico-viscous fluid behaves like an ordinary (Newtonian) fluid. The magnetic field is found to 
have a stabilizing effect on the thermal instability of a layer of Rivlin-Ericksen fluid in the 
absence of rotation whereas the medium permeability has a destabilizing effect on thermal 
instability of Rivlin-Ericksen fluid in the absence of rotation. Rotation always has a stabilizing 
effect. The magnetic field, medium permeability and rotation introduce oscillatory modes in the 
system, which were non-existent in their absence. The case of over stability is also considered 
and the sufficient conditions for the non-existence of over stability are obtained in the process. 
The study finds applications in geophysics, chemical technology and engineering. Among the 
applications in engineering disciplines one can find the food process industry, chemical process 
industry, solidification and centrifugal casting of metals and rotating machinery.  
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1.    Introduction 
 
Thermal convection in a Newtonian fluid layer in the presence of magnetic field and rotation was 
discussed in detail by Chandrasekhar (1981). Bhatia and Steiner (1972) studied the problem of 
thermal instability of a Maxwell fluid in the presence of rotation and found that rotation has a 
destabilizing influence in contrast to the stabilizing effect on an ordinary (Newtonian) fluid. 
Bhatia and Steiner (1973) also studied the thermal instability of a Maxwell fluid in the presence 
of a magnetic field while the thermal convection in an Oldroyd fluid in hydromagnetics was 
studied by Sharma (1975).         
         
In the physical world, the investigation of the flow of the Rivlin-Ericksen fluid through a porous 
medium has become an important topic due to the recovery of crude oil from the pores of 
reservoir rocks. Flows in porous regions are a creeping flow. When a fluid permeates a porous 
material, the actual path of the individual particles cannot be followed analytically. When the 
density of a stratified layer of a single-component fluid decreases upwards, the configuration is 
stable. This is not necessarily the case for a fluid consisting of two or more components which 
can diffuse relative to each other. The reason lies in the fact that the diffusivity of heat is usually 
much greater than the diffusivity of a solute. A displaced particle of fluid thus loses excess heat, 
if any, more rapidly than the excess solute. The resulting buoyancy force may tend to increase 
the displacement of the particle from its original position and thus cause instability. 
       
There are many elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive 
relations or Oldroyd’s constitutive relations. Two such classes of elastico-viscous fluids are the 
Rivlin-Ericksen fluid (1955) and the Walters’ B' fluid (1960). Walters proposed the constitutive 
equations of such elastico-viscous fluids. Walters (1962) reported that the mixture of polymethyl 
methacrylate and pyridine at 25˚C containing 30.5g of polymer per litre behaves very nearly as 
the Walters’ B' elastico-viscous fluid. Rivlin-Ericksen (1955) proposed a theoretical model for 
yet another elastico-viscous fluid. Such types of polymers are used in agriculture, 
communication appliances and in bio-medical applications. Specific examples of these include 
the filtration process, packed bed reactor, insulation system, ceramic processing, enhanced oil 
recovery, chromatography etc. These polymers are also used in the manufacture of parts of 
space-crafts, aero plane parts, tires, belt conveyers, ropes, cushions, seat foams, plastics, 
engineering equipments, adhesives and contact lens. Sharma and Kumar (1996) studied the effect 
of rotation on thermal instability in the Rivlin-Ericksen elastico-viscous fluid whereas the 
thermal convection in electrically conducting Rivlin-Ericksen fluid in the presence of magnetic 
field was studied by Sharma and Kumar (1997).Thermal convection in the Rivlin-Ericksen 
elastico-viscous fluid in a porous medium in hydromagnetics was studied by Sharma and Kango 
(1999). 
          
Thermal convection in a rotating layer of a porous medium saturated by a homogeneous fluid is a 
subject of practical interest for its applications in engineering. Among the applications in 
engineering disciplines one can find the food process industry, chemical process industry, 
solidification and centrifugal casting of metals and rotating machinery. An application of the 
result of flow through a porous medium in the presence of a magnetic field is in the geothermal 
regions. The rotation of the Earth distorts the boundaries of a hexagonal convection cells in fluid 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 7 [2012], Iss. 1, Art. 17

https://digitalcommons.pvamu.edu/aam/vol7/iss1/17



250                                                                                                                                   S. K. Kango and Vikram Singh 
 

through a porous medium and the distortion plays an important role in the extraction of energy in 
the geothermal regions.                                     
          
Keeping in mind the relevance and growing importance of non-Newtonian fluids in geophysical 
fluid dynamics, chemical technology and industry; the present paper attempts to study the 
thermal instability of the Rivlin-Ericksen elastico-viscous rotating fluid in a porous medium in 
hydromagnetics.  
 
2.   Formulation of the Problem and Perturbation Equations 
                   
Consider an infinite, horizontal, incompressible layer of an electrically conducting Rivlin-
Ericksen elastico-viscous fluid of depth d in a porous medium which is acted on by a uniform 
horizontal magnetic field ( ,0,0)HH , gravity force (0,0, )g g  and uniform 
rotation (0,0, )  . This layer is heated from below such that a steady adverse temperature 

gradient β (= dT/dz ) is maintained.  
 
Let p, ρ, T, , g, ,  , e , 1k  and ( , , )u v wq denote, respectively, the fluid pressure, density, 

temperature, thermal coefficient of expansion, gravitational acceleration, medium porosity, 
electrical resistivity, magnetic permeability, medium permeability and fluid velocity. The 
hydromagnetic equations [Chandrasekhar (1981), Joseph (1976), Rivlin-Ericksen (1955)] are 
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Here, E = ε + (1- ε) s sC /( 0 C) is a constant ;  is the thermal diffusivity ; s , sC  and 0 , C 

stand for the density and heat capacity  for solid and fluid, respectively. The equation of state is  
 

 0 0 1 T T       ,                                                                                                          (6) 
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where the suffix zero refers to values at the reference level z = 0 and in writing eqn.(1), use has 
been made of the Boussinesq approximation. 
 
The steady state solution is 
 

 0,0,0 ,q     0T T z  ,     0 1 z    ,                                                                  (7) 

 
where  0 1 /T T d    is the magnitude of the uniform temperature gradient and is  positive as 

temperature decreases upwards. 
 
Here, we use the linearized stability theory and normal mode analysis method. Consider a small 
perturbation on the steady state solution and let ( , , )u v wq , p , , θ and ,( , , )x y zh h hh denote 

the perturbations in velocity (0,0,0), pressure p, density ρ, temperature T and magnetic field 
( ,0,0)HH  respectively. The change in the density  , caused by the perturbation θ in 

temperature, is given by 
 

0     .                                                                                                                         (8) 

 
Then the linearized hydromagnetic perturbation eqns. become 
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Writing Equations (9)-(13) in scalar form, using (8) and eliminating u,v, , ,x yh h p  between them, 

we obtain 
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 stands for the z-components of the vorticity and current density, 

respectively.    
 
 
3.    Dispersion Relation 
 
Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of 
the form 
 

           [ , , , , ] [ , , , , ]exp ,z x yw h W z z K z Z z X z ik x ik y nt                                  (19)                         

 

where xk , yk   are the wave numbers along the x  and y directions, respectively; k = 2 2
x yk k  

is the resultant wave number and n is, in general, a complex constant. 
Using expression (19), Equations (14) – (18), in non-dimensional form, become 
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where we have put ,a kd 2 / ,nd  * / ,x x d * / ,y y d * /z z d and 

 / *D d dz . 1 /p    is Prandtl number, 2 /p    is magnetic Prandtl number, 2
1 /lP k d  is 

the dimensionless medium permeability and 2/F d   is the dimensionless kinematic 
viscoelasticity. 
  
Elimination Θ, K, Z and X between Equations (20)-(24), we obtain 
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where Q =  2 2

0/ 4eH d    is the Chandrasekhar number, R =  4 /g d   is the Rayleigh 

number and 2 4 24 /AT d    is the Taylor number. 

                 
Consider the case where both boundaries are free as well as maintained at constant temperatures 
while the adjoining medium is perfectly conducting. The case of two free boundaries is a little 
artificial but it enables us to find analytical solutions and to make some qualitative conclusions. 
The appropriate boundary conditions, with respect to which Equations (20)-(24) must be solved, 
are (Chandrasekhar (1981)): 
 

2 0, 0, 0,W D W DZ         at 0z   and 1z                       
 
and 0,DX  0K   on the perfectly conducting boundaries.                                                     (26) 
       
The case of two free boundaries, though little artificial, is the most appropriate for stellar 
atmospheres (Spiegel (1965)).Using the above boundary conditions, it can be shown that all the 
even order derivatives of W must vanish for 0z   and 1z   and hence the proper solution of (25) 
characterizing the lowest mode is 
 

0 sinW W z ,                                                                                                                     (27) 
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where 0W  is a constant. Substituting (27) in (25) and letting 2 2 ,a x 4
1 / ,R R   
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  (28)                  

 
Equation (28) is the required dispersion relation studying the effects of magnetic field, kinematic 
viscoelasticity, medium permeability and rotation on thermal instability of Rivlin-Ericksen fluid. 
 
4.   The Stationary Convection 
 
For the case of stationary convection,   = 0 and Equation (28) reduces to 
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which expresses the modified Rayleigh number 1R  as a function of the dimensionless wave 

number x  and the parameters 1Q , P and 
1AT . For stationary convection the parameter F 

accounting for the kinematic viscoelasticity effect vanishes and thus the Rivlin-Ericksen elastico-
viscous fluid behaves like an ordinary Newtonian fluid. 
 
To investigate the effects of magnetic field, medium permeability and rotation, we examine the 
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In the absence of rotation, 
  21

1

1
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xdR

dQ





 , which is always positive. The magnetic field, 

therefore, has a stabilizing effect on thermal instability of Rivlin-Ericksen fluid in the absence of 
rotation. This stabilizing effect of magnetic field is in good agreement with earlier work of 
Sharma and Kango (1999). In the presence of rotation, the system is stable if 
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Similarly, it can be shown from eqn. (29) that  
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.                                                              (31) 

 

In the absence of rotation, 
 2

1
2

1 xdR

dP xP

 
 , which is always negative. There is an analogous 

relation for thermal convection in Rivlin-Ericksen elastico-viscous fluid in porous medium in 
hydromagnetics as derived by Sharma and Kango (1999). The medium permeability, therefore, 
has a destabilizing effect on thermal instability of Rivlin-Ericksen fluid in the absence of rotation. 
In the presence of rotation, the system is stable if 
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Similarly, it can be shown from eqn. (29) that  
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 ,                                                                                        (32)                        

 
which is always positive. The rotation, therefore, always has a stabilizing effect on thermal 
instability of Rivlin-Ericksen fluid.  
 
The kinematic viscoelasticity has no effect for stationary convection. 
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5.   Stability of the System and Oscillatory Modes 
 
Here we examine the possibility of oscillatory modes, if any, in the stability problem due to the 
presence of magnetic field, kinematic viscoelasticity and rotation. Multiplying Equation (20) by 
W*, the complex conjugate of W, integrating over the range of z and making use of Equations 
(21) - (24) together with the boundary conditions (26), we obtain 
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The integrals 1 8, ,I I  are all positive definite. Putting r ii     and equating the real and 

imaginary parts of Equation (33), we obtain 
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It follows from Equation (35) that r  may be positive or negative which means that the system 

may be stable or unstable. It is clear from (36) that i  may be zero or non-zero, meaning that the 

modes may be non-oscillatory or oscillatory. The oscillatory modes are introduced due to the 
presence of kinematic viscoelasticity, magnetic field and rotation which were non-existent in 
their absence. 
 
6.   The Case of Over Stability 
 
Here we discuss the possibility of whether instability may occur as over stability. Since we wish 
to determine the Rayleigh number for the onset of instability via a state of pure oscillations, it 
suffices to find conditions for which (28) will admit of solutions with 1  real. 

 
If we equate real and imaginary parts of (28) and eliminate 1R  between them, we obtain 
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3 1 2 1 1 1 0 0A c A c A c A    ,                                                                                                  (37) 
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As 1  is real for over stability, the three values of  2
1 1c   must be positive. The product of the 

roots of (37) is 0

3

A

A
  and this has to be positive. 
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It is clear from Equations (38) and (39) that 0A  and 3A  are always positive if  
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 and   
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


.                                                                                                                (41) 

  
Equations (40) and (41) are, therefore, the sufficient conditions for non-existence of over 
stability, the violation of which does not necessarily imply the occurrence of over stability.  
 
 
7.   Nomenclature 
 
p    = pressure                                                   = fluid density 

p  = the perturbation in pressure                   = the perturbation in density 
     = kinematic viscosity                                  = kinematic viscoelasticity 
     = medium porosity                                 1k    = medium permeability 

g     = acceleration due to gravity                  H    = magnetic field 
    = electrical resistivity                             e    = magnetic permeability 

   = rotation vector                                          = thermal diffusivity 

 , ,q u v w


= perturbation in fluid velocity q


(0, 0, 0) 

xk , yk  = wave numbers in the x and y directions, respectively 

 1/22 2
x yk k k  = wave number of the disturbance                                                          

 
 
8.   Conclusion 
 
The study of viscoelastic fluids finds applications in geophysics and chemical technology. There 
are many elastico-viscous fluids that cannot be characterized by Maxwell’s constitutive relations 
or Oldroyd’s constitutive relations. Rivlin-Ericksen is one such class of elastico-viscous fluids. 
         
A layer of electrically conducting Rivlin-Ericksen elastico-viscous fluid heated from below has 
been considered in the presence of a uniform horizontal magnetic field and uniform rotation in a 
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porous medium. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves 
like an ordinary (Newtonian) fluid. The magnetic field is found to have a stabilizing effect on the 
thermal instability of the layer of Rivlin-Ericksen fluid in the absence of rotation whereas the 
medium permeability has a destabilizing effect on thermal instability of Rivlin-Ericksen fluid in 
the absence of rotation. Rotation always has a stabilizing effect. The magnetic field, medium 
permeability and rotation generate oscillatory modes in the system that were non-existent in their 
absence. The case of over stability is also considered and the sufficient conditions for the non-
existence of over stability are determined. 
        
The sufficient conditions for the non-existence of over stability for thermal instability in Rivlin-
Ericksen elastico-viscous fluid in the presence of magnetic field and rotation in porous medium 
are, respectively, 
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are, therefore, the sufficient conditions for nonexistence of over stability, the violation of which 
does not necessarily imply the occurrence of over stability.  
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