
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 7 Issue 1 Article 7 

6-2012 

The First Integral Method to Nonlinear Partial Differential The First Integral Method to Nonlinear Partial Differential 

Equations Equations 

N. Taghizadeh 
University of Guilan 

M. Mirzazadeh 
University of Guilan 

A. S. Paghaleh 
University of Guilan 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Partial Differential Equations Commons 

Recommended Citation Recommended Citation 
Taghizadeh, N.; Mirzazadeh, M.; and Paghaleh, A. S. (2012). The First Integral Method to Nonlinear Partial 
Differential Equations, Applications and Applied Mathematics: An International Journal (AAM), Vol. 7, Iss. 
1, Article 7. 
Available at: https://digitalcommons.pvamu.edu/aam/vol7/iss1/7 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol7
https://digitalcommons.pvamu.edu/aam/vol7/iss1
https://digitalcommons.pvamu.edu/aam/vol7/iss1/7
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol7%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol7%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol7/iss1/7?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol7%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


117 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 7, Issue 1 (June 2012), pp.  117 – 132  

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
The First Integral Method to Nonlinear  

Partial Differential Equations 
 
 

N. Taghizadeh, M. Mirzazadeh and A. Samiei Paghaleh  
Department of Mathematics  

University of Guilan   
P.O. Box 1914, Rasht, Iran 
mirzazadehs2@guilan.ac.ir 

 
 

Received: November 06, 2010; Accepted: March 27, 2012  
 
Abstract 
 
In this paper, we show the applicability of the first integral method for obtaining exact solutions 
of some nonlinear partial differential equations. By using this method, we found some exact 
solutions of the Landau-Ginburg-Higgs equation and generalized form of the nonlinear 
Schrödinger equation and approximate long water wave equations. The first integral method is a 
direct algebraic method for obtaining exact solutions of nonlinear partial differential equations. 
This method can be applied to nonintegrable equations as well as to integrable ones. This method 
is based on the theory of commutative algebra. 
 
 Keywords:  First integral method; Landau-Ginburg-Higgs equation; Generalized form of the  
   nonlinear Schrödinger equation; Approximate long water wave equations 
 
MSC 2010:  35Q53; 35Q80; 35Q55; 35G25 
 
 
1.   Introduction 
 
Many phenomena in physics and engineering are described by nonlinear partial differential 
equations (NPDEs). When we want to understand the physical mechanism of phenomena in 
nature, described by nonlinear PDEs, exact solution for the nonlinear PDEs have to be explored. 
Thus the methods for deriving exact solutions for the governing equations are important and 
have to be developed. To study exact solutions of nonlinear PDEs has become one of the most 
important topics in mathematical physics. For instances, the nonlinear wave phenomena 
observed in fluid dynamics, plasma, and optical fiber are often modeled by the bell-shaped sech 
solutions and the kink-shaped tanh solutions. The availability of these exact solutions for those 
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nonlinear equations can greatly facilitate the verification of numerical solvers on the stability 
analysis of their solutions. Nonlinear differential equations have a wide array of applications in 
many fields.  They could describe the motion of isolated waves, localized in a small part of space. 
Their applications could extend to magnetofluid dynamics, water surface gravity waves, 
electromagnetic radiation reactions, and ion acoustic waves in plasmas. Looking for exact 
solitary wave solutions to nonlinear evolution equations has long been a major concern for both 
mathematicians and physicists. These solutions may well describe various phenomena in physics 
and other fields, such as solitons and propagation with a finite speed, and thus they may give 
more insight into the physical aspects of the problems. In order to obtain the periodic wave and 
soliton solutions of nonlinear evolution equations, a number of methods have been proposed, 
such as tanh-sech function method, extended tanh function method , hyperbolic function method, 
sine-cosine method, Jacobi elliptic function expansion method, F-expansion method, transformed 
rational function method and the first integral method. 
 
The first integral method is a powerful solution method for the computation of exact traveling 
wave solutions. This method is one of the most direct and effective algebraic methods for finding 
exact solutions of nonlinear partial differential equations. Different from other traditional 
methods, the first integral method has many advantages, which is the avoidance of a great deal of 
complicated and tedious calculations resulting in more exact and explicit traveling solitary 
solutions with high accuracy. 
  
In the pioneer work, Feng (2002) introduced the first integral method for a reliable treatment of 
the nonlinear PDEs. The first integral method is widely used by many such as in [Taghizadeh et 
al. (2011), Taghizadeh and Mirzazadeh (2011), Taghizadeh et al. (2012), Moosaei et al. (2011) 
and by the reference therein]. Taghizadeh et al. (2011) proposed the first integral method to solve 
the modified KdV–KP equation and the Burgers–KP equation. The method was utilized to 
construct exact solutions of the nonlinear Schrödinger equation. Taghizadeh and Mirzazadeh 
(2011) used the first integral method to obtain the exact solutions of some complex nonlinear 
partial differential equations and Konopelchenko-Dubrovsky equation. Moosaei et al. (2011) 
solved the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by using the 
first integral method. Recently, it was successfully used for constructing the exact solutions of 
the Eckhaus equation [Taghizadeh et al. (2012)]. 
 
The paper is arranged as follows. In section 2, we describe briefly the first integral method. In 
section 3, we apply this method to the Landau-Ginburg-Higgs equation and generalized form of 
the nonlinear Schrödinger equation and approximate long water wave equation. 
 
2.  The First Integral Method 
 
Step 1.  Consider a general nonlinear PDE in the form 
 

 ( , , , , ,...) 0.x t xx xtE u u u u u                                                                                                   (1) 

 
To find the travelling wave solutions to Equation (1), we introduce the wave variable 
 

,x ct                                                                                                                                (2) 
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so that 
 

( , ) ( ).u x t u                                                                                                                         (3)    

     
 Based on this we use the following changes    

2 2

2 2

2 2

2

(.) (.),

(.) (.),

(.) (.),

(.) (.),

x

c
t

x

c
t x









 


 
 

 
 

 


 

 
 

  

                                                                                                           (4)          

and so on for the other derivatives.   
             
Using (4) changes the PDE (1) to an ODE 
 

2

2( , , ,...) 0,
u u

H u
 
 


 

                                                                                                        (5) 

 
where ( )u u   is an unknown function, H  is a polynomial in the variable u  and its 

derivatives. 
 
Step 2.  Suppose the solution of ODE (5) can be written as follows: 
 

( , ) ( ),u x t f                                                                                                                        (6) 

  
and furthermore,  we introduce a new independent variable 
  

( )
( ) ( ), ( ) .

f
X f Y

  



 


                                                                                         (7) 

 
Step 3.  Under the conditions of  Step 2, Equation  (5) can be converted to a system of nonlinear 
ODEs as follows 
 

( ) ( ),

( ) ( ( ), ( )).

X Y

Y F X Y

 
  
 
 

                                                                                                     (8) 
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If we can find the integrals to Equation (8), then the general solutions to Equation (8) can be 
solved directly. However, in general, it is really difficult for us to realize this even for one first 
integral, because for a given plane autonomous system, there is neither a systematic theory that 
can tell us how to find its first integrals, nor a logical way for telling us what these first integrals 
are. We will apply the so-called Division Theorem to obtain one first integral to Equation (8) 
which reduces Equation (5) to a first order integrable ODE.  An exact solution to Equation (1) is 
then obtained by solving this equation. 
 
 Division Theorem.  Suppose  that   ( , )P w z  and   ( , )Q w z  are  polynomials in [ , ],C w z  and 

( , )P w z  is irreducible  in [ , ].C w z  If   ( , )Q w z vanishes at  all zero points of   ( , ),P w z  then 

there exists  a  polynomial  ( , )G w z  in [ , ]C w z  such that 

 
( , ) ( , ) ( , ).Q w z P w z G w z  

 
The Divisor Theorem follows immediately from the Hilbert–Nullstellensatz Theorem. 
 
Hilbert–Nullstellensatz Theorem. Let K  be a field and L  be an algebraic closure of K . Then: 
 
(i) Every ideal of 1 2[ , ,..., ]nK X X X not containing 1 admits at least one zero in nL . 

 

(ii) Let 1 2( , ,..., )nx x x x  and 1 2( , ,..., )ny y y y be two elements of nL . For the set of polynomials of 

1 2[ , ,..., ]nK X X X zero at x  to be identical with the set of polynomials of 1 2[ , ,..., ]nK X X X zero at 

y , it is necessary and sufficient that there exists a K  automorphism S  of L  such that ( )i iy S x  

for 1 .i n   
 
(iii) For an ideal   of 1 2[ , ,..., ]nK X X X to be maximal, it is necessary and sufficient that there exists an 

x  in nL  such that   is the set of polynomials of 1 2[ , ,..., ]nK X X X zero at x . 
 

(iv) For a polynomial Q of 1 2[ , ,..., ]nK X X X to be zero on the set of zeros in nL of an ideal 

 of 1 2[ , ,..., ],nK X X X  it is necessary and sufficient that there exists an integer 0m  such 

that .mQ   
 
3.   Application of the First Integral Method to Npdes 
 
3.1. The first integral method for obtaining exact solutions of NPDEs 
 
3.1. A. Landau-Ginburg-Higgs equations 
 
Consider the Landau-Ginburg-Higgs equations [Khuri (2008)]: 
 

2 2 3 0,tt xxu u m u n u                                                                                                   (9)   
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where m and n  are real constants. By make the transformation ( , ) ( ) ( ( )),u x t f f k x t     
where  is the wave speed and ( ),k x t   Equation (9) becomes 
 

2
2 2 2 2 3

2

( )
( 1) ( ) ( ( )) 0.

f
k m f n f

  



   

                                                           (10)      

If we let 
( )

( ), ,
df

X f Y
d




  the Equation (10) is equivalent to the two dimensional 

autonomous system 
 

2 2
3

2 2 2 2

,

( ) ( ).
( 1) ( 1)

X Y

m n
Y X X

k k
 

 

 

     

                                                                 (11) 

 
According to the first integral method, we suppose the  X( )  and   ( ),Y   are the nontrivial 
solutions of (11) also 
 

0

( , ) ( ) 0,
m

i
i

i

q X Y a X Y


   

 
is an irreducible polynomial in the complex domain [ , ],C X Y   such that 
 

0

( ( ), ( )) ( ( )) ( ) 0,
m

i
i

i

q X Y a X Y   


                                                                         (12) 

 
where  ( )( 0,1,..., ),ia X i m  are polynomials of  X and  ( ) 0.ma X   Equation  (12)  is 

called the first integral to (11).   Suppose that 1m   in (12). Note that  
dq

d
 is a polynomial in 

X and ,Y  and [ ( ), ( )] 0q X Y    implies 
(11)

0.
dq

d
  According to the Division Theorem, 

there exists a polynomial ( ) ( )g X h X Y in [ , ]C X Y  such that 

 

(11) (11)

( . . )
dq dq dX dq dY

d dX d dY d  
   

2 21 1
1 3

2 2 2 2
0 0

( ( ) )( ) ( ( ) ) ( )
( 1) ( 1)

i i
i i

i i

m n
a X Y Y ia X Y X X

k k 


 

   
    
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1

0

( ( ) ( ) ) ( ) ,i
i

i

g X h X Y a X Y


                                             (13) 

where prime denotes differentiation with respect to the variable .X  By comparing with  the  

coefficients of  ( 2,1,0)iY i  of  both sides of (13), we have 

 

1 1( ) ( ) ( ),a X h X a X                                                                                                          (14)  

  

0 1 0( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                 (15) 

 
2 2

3
1 02 2 2 2( )[ ] ( ) ( ).

( 1) ( 1)

m n
a X X X g X a X

k k 
 

 
                                               (16) 

 
Since ( )( 0,1)ia X i   are  polynomials, then from (14) we deduce that  1( )a X  is constant  and  

( ) 0.h X    For simplicity, take 1( ) 1.a X   Balancing  the  degrees  of  ( )g X   and 

0 ( ),a X we conclude that deg( ( )) 1g X   only. Suppose that 0 1( ) ,g X B A X   then we 

find 0 ( ).a X  
 

2
0 1 0 0

1
( ) ,

2
a X A X B X A                                                                                            (17) 

 
where  0A   is the arbitrary integration constant.  Substituting 0 1( ), ( )a X a X  and ( )g X    in the 

last equation in (16) and setting all the coefficients of powers X  to be zero, then we obtain a 
system of nonlinear algebraic equations and by solving it, we obtain 
 

2

0 0 12 2

2
0, , ,

2(1 ) 2(1 )

m n
B A A

kn k 
   

 
                                                  (18) 

 
where   is an arbitrary constant. 
 
Using the conditions (18) in (12), we obtain 
 

2
2

2

1
( ) ( ( )) 0.

2(1 )

m
Y nX

nk
 


 


                                                                   (19) 

 
Combining (19) with (11), we obtain the exact solution to equation (10) and then the exact 
solution to Landau-Ginburg-Higgs equation can be written as 
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02
( , ) tanh ( ( ) ) ,

2(1 )

m m
u x t k x t

n k
 



 
    
  

                                                   (20) 

 
for 2 1.   
 

02
( , ) tan ( ( ) ) ,

2( 1)

im m
u x t k x t

n k
 



 
    
  

                                                    (21) 

 
for 2 1.   
 
3.1. B. The Non-integrable Equation 
 
The nonintegrable equation 
 

2 3 2 2ˆ ˆ( , ) ( , ) 3 , ( , ) 2,t x t x t xM D D v t x v v M D D D D                                             (22) 

 
is given by Baikov and Khusnutdinova (1996). We are interested in the exact solution to 
Equation (22). 
 
Substituting  ( , ) ( ) ( ),v t x f f x ct    into Equation  (22), we obtain 
 

2 2 3( 1) ( ) 2 ( ) 3 ( ) ( ) 0.c f f f f                                                                        (23) 
 

If we let 
( )

( ), ,
df

X f Y
d




  the Equation (23) is equivalent to the two dimensional 

autonomous system 
 

2 3
2 2 2

,

2 3 1
( ) ( ) ( ).

1 1 1

X Y

Y X X X
c c c

  

 

       

                                                       (24) 

 
According to the first integral method, we suppose the  X( )  and   ( ),Y   are the nontrivial 
solutions of (24) also 
 

0

( , ) ( ) 0,
m

i
i

i

q X Y a X Y


   

 
is an irreducible polynomial in the complex domain [ , ],C X Y   such that 
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0

( ( ), ( )) ( ( )) ( ) 0,
m

i
i

i

q X Y a X Y   


                                                                         (25) 

where  ( )( 0,1,..., ),ia X i m  are polynomials of  X and  ( ) 0.ma X   Equation  (25)  is 

called the first integral to (10).   Due to the Division Theorem, there exists a polynomial 
( ) ( ) ,g X h X Y  in the complex domain [ , ],C X Y  such that 

 

0

. . ( ( ) ( ) ) ( ) .
m

i
i

i

dq dq dX dq dY
g X h X Y a X Y

d dX d dY d   

                                               (26) 

 

Assuming that 1,m  by comparing with the coefficients of ( 2,1,0)iY i  of both sides of (26), 

we have 
 

1 1( ) ( ) ( ),a X h X a X                                                                                                          (27)   

 

0 1 0( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                (28) 

 

 2 3
1 02 2 2

2 3 1
( )[ ] ( ) ( ).

1 1 1
a X X X X g X a X

c c c
  

  
                                          (29) 

 
Since ( )( 0,1)ia X i   are  polynomials,   then from (27) we deduce that  1( )a X  is constant  

and  ( ) 0.h X      For simplicity, take 1( ) 1.a X   Balancing  the  degrees  of  ( )g X   and 

0 ( ),a X  we conclude that deg( ( )) 1,g X   only.  Suppose that  1 0( ) ,g X A X B   then we 

find  0 ( ).a X  

2
0 0 0 1

1
( ) ,

2
a X A B X A X                                                                                          (30) 

where  0A   is arbitrary integration constant.  Substituting 0 1( ), ( )a X a X  and ( )g X  in the  last 

equation in (29) and setting all the coefficients of powers X to be zero, then we obtain a system 
of nonlinear algebraic equations and by solving it, we obtain 
 

0 0 12 2

2 2
0, , ,

2( 1) 2( 1)
A B A

c c
   

 
                                                          (31) 

 
where c  is arbitrary constant. 
 
Using the conditions (31) in (25), we obtain 

2

2

1
( ) ( ( ) 2 ( )) 0.

2( 1)
Y X X

c
   


                                                                  (32) 
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Combining (32) with (24), we obtain the exact solution to Equation (23) and then the exact 
solution to the nonintegrable equation (22) can be written as 
 

02

02

2
( )

1

2
( )

1

2
( , ) ,

1

x ct
c

x ct
c

e
v t x

e





 


 


 


 

 
where 2 1.c   
 
Comparing our results with Baikov’s results [Baikov and Khusnutdinova (1996)], it can be seen 
that the results are same. 
 
3.2. The first integral method for obtaining exact solutions of complex NPDEs 
 
In this section we study the GNLS equation [Moghaddam et al. (2009)]: 
 

2 2 ( ( ) )| | ( | | ) ,i t
t xx xxx xiu au bu u icu id u u ke                                           (33) 

 

where ( )x vt   a real is function and  , , , , , ,a b c d v   are non-zero constants and 
( , )u u x t  is a complex-valued function of two real variables , .x t  

 
We use the wave transformation 
 

( ( ) )
0( , ) ( ), ( ) , ( ),i tu x t e f x x vt                                           (34) 

 
where  0, , , ,v x    are constants. 

 
By replacing Equation (34) into Equation (33) and separating the real and imaginary parts of the 
result, we obtain the two following ordinary differential equations: 
 

3 2 3 2 2( ) (2 3 ) ( ) 3 ( ) ( ) 0,c f a v c f d f f                                   (35) 
 

2 3 2 2 3 3

3

( 3 ) ( ) ( ) ( )

( ) ( ) 0.

a c f v a c f

b d f k

          

 

    

                    (36) 

 
Integrating Equation (35) once, with respect to , yields: 
 

2 2 2 3( ) (2 3 ) ( ) ( ) 0,c f a v c f df R                                                  (37)     
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where R  is an integration constant. 
 
Since the same function ( )f  satisfies two Equations (35) and (37), we obtain the following 
constraint condition: 
 

2 2 2

2 3 2 2 3 3

2 3
.

3

c a v c d R

a c v a c b d k

   
         

 
  

      

 

If we let 
( )

( ), ,
df

X f Y
d




  the Equation (37) is equivalent to the two dimensional 

autonomous system 
 

2 2
3

2 2 2

,

3 2
( ) ( ) .

X Y

c v a d R
Y X X

c c c

    
  

 


       
 

                                          (38) 

 
Equation  (12)  is called the first integral to (38). According to the Division Theorem, there exists 
a polynomial ( ) ( )g X h X Y in [ , ]C X Y  such that 

 

(38) (38)

1

0 0

2 2
3

2 2 2

0

( . . )

( ( ) )( ) ( ( ) )

3 2
( ( ) ( ) )

( ( ) ( ) ) ( ) ,

m m
i i

i i
i i

m
i

i
i

dq dq dX dq dY

d dX d dY d

a X Y Y ia X Y

c v a d R
X X

c c c

g X h X Y a X Y

  

    
  



 



 

 

  
   
 

 

 



                           (39) 

 
where prime denotes differentiation with respect to the variable .X Assuming that 2,m  by 

comparing with the coefficients of ( 3,2,1,0)iY i  of both sides of (39), we have 

 

2 2( ) ( ) ( ),a X h X a X                                                                                                       (40) 

                

1 2 1( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                             (41) 
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2 2
3

0 2 2 2 2

1 0

3 2
( ) 2 ( )

( ) ( ) ( ) ( ),

c v a d R
a X a X X X

c c c

g X a X h X a X

  
  

   
     

  
 


                            (42)     

 
2 2

3
1 02 2 2

3 2
( ) ( ) ( ).

c v a d R
a X X X g X a X

c c c

  
  

   
    

  
                       (43) 

 
Since ( )( 0,1,2)ia X i   are  polynomials, then from (40) we deduce that 2 ( ),a X  is constant 

and ( ) 0.h X   For simplicity, take 2 ( ) 1.a X   Balancing the degrees 1( ), ( )g X a X  and 

0 ( ),a X  we conclude that deg( ( )) 1,g X   only. Suppose that 1 0( ) ,g X A X B   then we 

find  0 ( )a X  and 1( )a X  as 

 

2
1 0 0 1

1
( ) ,

2
a X A B X A X                                                                                           (44) 

 
2 2 2

20 0 1
0 0 0 2 2

2
3 41

1 0 2

2 3 2
( )

2 2

1
,

2 8 2

R B A A c v a
a X p B A X X

c c

A d
A B X X

c

  
 



          
   

 
   

 

             (45) 

     
 where p  is arbitrary integration constant. Substituting 0 1 2( ), ( ), ( )a X a X a X  and ( ),g X  in 

the last equation in (43) and setting all the coefficients of powers X  to be zero, then we obtain a 
system of nonlinear algebraic equations and by solving it with aid Maple, we obtain 
                          

2 2

0 0 1

2 2 2 3 3 2 4 4 2 2 2

2

2 (2 3 ) 2 2
0, , , 0,

4 12 4 9 6
,

cd a c v cd
B A A R

c d c

a a c a v c c v v
p

c d

  
 

        


   
     

    
 

            (46)     

 
 where ,   and  v  are arbitrary constants. 
  
Using the conditions (46) into (12), we get 
 

2 2 22 (2 3 ( ))
( ) .

2

cd a c v dX
Y

cd

   


   
                                                (47) 
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Combining (47) with (38), we obtain the exact solution to (37) and then the exact solutions to the 
GNLS equations can be written as 
 

 0

2 2 2 2
( )

02

2 3 2 3
( , ) tanh ( ( ) ) .

2
i x vt t xv a c a c v

u x t e x vt
d c

        


  
    

    
  

 

 
3.3. The first integral method for obtaining exact solutions of systems of NPDEs 
 
 Consider the following systems of partial differential equations: 
 

1

2

( , , , , , , , , , ,...) 0,

( , , , , , , , , , ,...) 0.
t t x x tt tt xx xx

t t x x tt tt xx xx

u v u v u v u v u v

u v u v u v u v u v

 

 
                                                                      (48)   

 
We use the transformations 
 

( , ) ( ), ( , ) ( ), .u x t f v x t g x ct                                                                 (49)   
 
Using Equation (4) to transfer the systems of NPDEs (48) to the systems of ODEs 
 

1

2

( , , , ,...) 0,

( , , , ,...) 0.

f g f g

f g f g

  
  

                                                                                                       (50) 

 
Using some mathematical operations, the systems of ODEs (50) is converted into a second-order 
ODE as 
               

( , , ,...) 0.f f f                                                                                                             (51) 
 
If we let ( ) ( ), ( ) ( ),X f Y f      the Equation (51) is equivalent to the two dimensional 

autonomous system 
 

,

( , ).

X Y

Y X Y

 
   

                                                                                                                   (52) 

 
New, we will apply Division Theorem to obtain one first integral to Equation (52) which reduces 
Equation (51) to a first order integrable ODE.  An exact solution to systems of NPDEs (48) is 
then obtained by solving this equation. 
 
3.3. A. Now, we will consider the approximate long water wave equations [Wang et al. (2008)]: 
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0,

( ) 0.
t x x xx

t x xx

u uu v u

v uv v




   
   

                                                                                                (53) 

 
Making the transformation  ( , ) ( ), ( , ) ( ), ,u x t u v x t v kx lt        we change the ALWW 
system (53) to the following system of ODEs         
 

2

2

0,

( ) 0.

lu kuu kv k u

lv k uv k v





       


    
                                                                                            (54) 

 
By integrating the first equation we have 
 

2 2
1,2

k
lu u kv k u R                                                                                                         (55) 

 
where 1R  is integration constant. Rewrite this equation as follows 

 
2

1( ) .
2

Rl u
v u ku

k k
                                                                                              (56) 

  
Inserting Equation (56) into the second system (54) and integrating the resulting equation, we 
obtain 
 

2
2 3 2 3

1 2

3
( ) ,

2 2

l l k
R u u u k u R

k
                                                                         (57) 

 
where 2R  is integration constant. 

 

If we let 
( )

( ), ,
df

X f Y
d




  the Equation (57) is equivalent to the two dimensional 

autonomous system 
 

2
3 2 1 2

2 2 2 3 2 4 2 3 2 3

,

1 3
( ) ( ) ( ) .

2 2

X Y

l l R R
Y X X X

k k k k k
  

    

 


              

                        (58) 

 
Equation (12) is called the first integral to (58). According to the Division Theorem, there exists 
a polynomial ( ) ( )g X h X Y in [ , ]C X Y  such that 
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(58) (58)

1 1
1

0 0

2
3 2 1 2

2 2 2 3 2 4 2 3 2 3

1

0

( . . )

( ( ) )( ) ( ( ) )

1 3
( )

2 2

( ( ) ( ) ) ( ) ,

i i
i i

i i

i
i

i

dq dq dX dq dY

d dX d dY d

a X Y Y ia X Y

l l R R
X X X

k k k k k

g X h X Y a X Y

  

    



 



 

 

        
   

 

 



          (59) 

where prime denotes differentiation with respect to the variable .X  By comparing with  the  

coefficients of  ( 2,1,0)iY i  of  both sides of (59), we have 

 

 
1 1( ) ( ) ( ),a X h X a X                                                                                                         (60) 

   
 0 1 0( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                (61) 

 
2

3 2 1 2
1 02 2 2 3 2 4 2 3 2 3

1 3
( ) ( ) ( ).

2 2

l l R R
a X X X X g X a X

k k k k k    
           
    

                   (62) 

 
Since ( )( 0,1)ia X i   are  polynomials, then from (60) we deduce that  1( )a X  is constant  and  

( ) 0.h X    For simplicity, take 1( ) 1.a X   Balancing  the  degrees  of  ( )g X   and 0 ( ),a X  
we conclude that deg( ( )) 1g X   only. Suppose that 0 1( ) ,g X B A X   then we find 0 ( ).a X  

2
0 1 0 0

1
( ) ,

2
a X A X B X A                                                                                            (63) 

where  0A   is arbitrary integration constant.  Substituting 0 1( ), ( )a X a X  and ( )g X    in the 

last equation in (62) and setting all the coefficients of powers X  to be zero, then we obtain a 
system of nonlinear algebraic equations and by solving it, we obtain 
 

2
0 1 1 0 2 02

1
, , , ,

l
B A R k A R l kA

k ka
 


                                                                  (64) 

 
where ,k l  and 0A are arbitrary constant. 

 
Using the conditions (64), we obtain 
 

2
0 2

1
( ) ( ) ( ).

2

l
Y A X X

k k
  

 
                                                                                 (65) 
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Combining (65) with (58), we obtain the exact solution to equation (57) and then the exact 
solution to the ALWW system (53) can be written as 
 

3 2 3 2
0 0

02

3 23 2 3 22
020 0

0 02 2 2 2

2 2
( , ) tan ( ) ,

2

22 2
( , ) tan ( ) ,

2 2 2

k A l k A ll
u x t kx lt

k k k

k A lk A l k A ll
v x t kA kx lt

k k k k

 




  


   
     
    


    
        
    

    

 
for    3 2

02 k A l  .  

 
2 3 2 3

0 0
02

2 33 2 2 32
020 0

0 02 2 2 2

2 2
( , ) tanh ( ) ,

2

22 2
( , ) tanh ( ) ,

2 2 2

l k A l k Al
u x t kx lt

k k k

l k Ak A l l k Al
v x t kA kx lt

k k k k

 




  


   
     
    


    
        
    

    

 
for    3 2

02 k A l  .    

                                                   
4.  Conclusion 
 
In this paper, the first integral method has been used to construct exact traveling wave solutions 
of nonlinear partial differential equations, the Landau-Ginburg-Higgs equation and generalized 
form of the nonlinear Schrödinger equation and approximate long water wave equations. The 
performance of this method is found to be reliable and effective and it gives more solutions. The 
method has the advantages of being direct and concise. The method proposed in this paper can 
also be extended to solve some nonlinear evolution equations in mathematical physics. 
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