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Abstract 
 
In this paper, we consider the determination of an unknown radiation term in the nonlinear 
boundary condition of a linear heat equation from an overspecified condition. First we study the 
existence and uniqueness of the solution via an auxiliary problem. Then a numerical method 
consisting of zeroth-, first-, and second-order Tikhonov regularization method to the matrix form 
of Duhamel's principle for solving the inverse heat conduction problem (IHCP) using 
temperature data containing significant noise is presented. The stability and accuracy of the 
scheme presented is evaluated by comparison with the Singular Value Decomposition (SVD) 
method. Some numerical experiments confirm the utility of this algorithm as the results are in 
good agreement with the exact data.  

 
Keywords: IHCP, Radiation term, Existence and Uniqueness, Stability, The Tikhonov    

regularization Method, SVD Method 
 
MSC 2010: 65M32, 35K05  

 
 

1. Introduction 
 

Inverse problems are encountered in many branches of engineering and science. In one particular 
branch, heat transfer, the inverse problem can be used under conditions such as temperature or 
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surface heat flux, or to determine important thermal properties such as the thermal conductivity 
or heat capacity of solids. 
 
Several functions and parameters can be estimated from the IHCP: static and moving heating 
sources, material properties, initial conditions, boundary conditions, optimal shape, etc. 
 
Fortunately, many methods have been reported to solve IHCPs (Alifanov, 1994; Beck et al., 
1985; Beck and Murio, 1986; Beck et al., 1996; Cabeza et al., 2005; Cannon and Duchateau, 
1980; Cannon and Duchateau, 1973; Cannon and Zachmann, 1982; Duchateau, 1981; Dowding  
and Beck, 1999; Molhem and Pourgholi, 2008; Murio and Paloschi, 1988; Pourgholi and 
Rostamian, 2010; Pourgholi et al., 2009; Shidfar and Azary, 1996; Shidfar and Azary, 1997; 
Shidfar and Nikoofar, 1989; Shidfar et al., 2006), and among the most versatile methods the 
following can be mentioned: Tikhonov regularization (Tikhonov and Arsenin, 1977), iterative 
regularization (Alifanov, 1994), mollification (Murio, 1993), BFM (Base Function Method) 
(Pourgholi and Rostamian, 2010), SFDM (Semi Finite Difference Method) (Molhem and 
Pourgholi, 2008) and the FSM (Function Specification Method ) (Beck et al., 1985). 
 
Shidfar (Shidfar et al., 2006) studied the existence and uniqueness of the solution for a one 
dimensional nonlinear inverse diffusion problem via an auxiliary problem and the Schauder fixed 
point theorem, furthermore applied a numerical algorithm based on finite differences method and 
least-squares scheme for solving a nonlinear inverse diffusion problem. Beck and Murio (Beck 
and Murio, 1986) presented a new method that combines the function specification method of 
Beck with the regularization technique of Tikhonov. Murio and Paloschi (Murio and Paloschi, 
1988) proposed a combined procedure based on a data filtering interpretation of the mollification 
method and FSM. Beck (Beck et al., 1996) compared the FSM, the Tikhonov regularization 
method and the iterative regularization method, using experimental data. Another effective 
technique to solve ill-posed problems is based on the Singular Value Decomposition (SVD) of an 
ill conditioned matrix (Golub and Van Loan, 1983). 
 
The plan of this paper is as follows: In section 2, we formulate a one-dimensional IHCP for a 
linear Heat equation with non-linear boundary condition. Existence and uniqueness of the 
solution via an auxiliary problem will be discussed in section 3. In section 4, a new method 
consisting of Tikhonov regularization to the matrix form of Duhamel's principle for solving this 
IHCP will be presented. Finally, some numerical experiment will be given in section 5. 

 
2. Description of the Problem  
 
When the radiation of heat from a solid is considered, the heat flux is often taken to be 
proportional to the fourth power of difference of the boundary temperature of the solid over the 
temperature of the surroundings (Cannon,  1984). 
 
In this paper, we consider the problem of determining an unknown function  , and a function 
T x t( , )  satisfying   

 

t xx MT x t T x t x t t( , ) ( , ), 0< <1, 0< < ,                                                                          (1) 
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T x f x x  ( ,0) ( ), 0 1,                                                                                        (2) 
 

x MT t T t t t t    (0, ) ( (0, )) ( ), 0 ,                                                                      (3) 
 

x MT t p t t t  (1, ) ( ), 0 ,                                                                                        (4) 
 
and the overspecified condition 
 

MT a t g t t t  ( , ) ( ), 0 ,                                                                                  (5) 

 
where 10  a  is a fixed point, Mt  is a given positive constant, )(xf  is the initial temperature 
of the solid and )())(0,( ttT    represents a general radiation law. In this context we consider 
that the functions )(xf , )(tp , )(tg  and )(t  are continuous known functions on their domains 
and the nonlinear terms ))(0,( tT  an unknown function to be determined with respect to the 
overspecified condition (5). 

 
3. Existence and Uniqueness 

 
If the function   in (3) is given, then the problem (1)-(4) is a direct problem with unique 
solution (see Theorem 3.1 below). For an unknown  , we must therefore provide additional 
information namely (5) to provide a unique solution ),( T  to the inverse problem (1)-(5). 
 
In this section, we give some results on the existence and uniqueness of solution of the IHCP (1)-
(5). First of all, let us define, for  x , 0>t , 
  

).,2(=),(),
4

(exp
2

1
=),(

=

2

tmxKtx
t

x

t
txK

m

 







                                                         (6) 

 
Theorem 3.1.  Suppose that )(xf , )(t , )(tp  are continuous functions, and that )(s   satisfies 
the following Lipschitz condition, 
  

|,||)()(| 2121 ssMss                                                                                                     (7) 
  
where M  is a positive constant, then problem (1)-(4) has a unique solution.  
 
Proof:  
 
Take )()(=),( tsstF   , then by Theorem 7.3.1 in (Cannon,  1984), problem (1)-(4) has a 
solution of the form  
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0 0
( , ) = ( , ) 2 ( , ) ( , ( )) 2 ( 1, ) ( ) ,

t t
T x t w x t x t F d x t p d                                          (8) 

where 
  

,)()},(),({=),(
1

0
 dftxtxtxw                                                                            (9) 

  
and   is defined by (6), if and only if   is a piecewise continuous solution of the following 
Volterra integral equation of the second kind:  
 

.)()1,(2))(,()(0,2)(0,=)(
00

 dptdFttwt
tt

                                       (10) 

  
Define )()(0,2=),,( ststH   , and 
  

,)()1,(2)()(0,2)(0,=)(
00

 dptdttwtG
tt

   

 
and write (10) in the following form  
 

.))(,,()(=)(
0

 dtHtGt
t

                                                                                            (11) 

 
Clearly, )(tG  and ),,( stH   are continuous functions and thus, by Theorem 8.2.1 in (Cannon, 
1984), the integral equation (11) possesses a unique solution if  
 

|,|),(|),,(),,(| 2121 sstLstHstH    
 
where  
 

),>(),(),( 00
0

ttttdtL
t

t
                                                                                       (12) 

 
for some monotone increasing function  , with 0=)(lim 0  , and if  

 

),>(),(|,0),(| 00
0

ttttdtH
t

t
                                                                                (13) 

 
for some nonnegative function  , with 0=)(lim 0  . Since )(s  satisfies (7), we have  

 
|,|)(0,2|),,(),,(| 2121 sstMstHstH    

 
moreover,  
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)(0,|(0)|2|=,0),(|  ttH . 

 

Using the inequality 
1xe
x

  , we have 

 
2 /

2
=1 =1

1 1 1 1
(0, ) = (1 2 ) < (1 2 ) < ( ).

2 2
m t

m m

t e t t
mt t t


 

 
     

 

So that (12) holds if we take /3)(14=)(  M  and (13) holds if we take  

 

/3)(1|(0)|4=)(   . 

 
Therefore, the integral equation (10) has a unique solution )(t  and thus problem (1)-(4) has a 
solution of the form (8) which is, in fact, unique because ),( stF  is Lipschitz continuous; see 
Theorem 7.3.1 in (Cannon,  1984). 

 
Theorem 3.2. Suppose that )(xf , )(tp  are continuous functions, that )(t  is a Lipschitz 

function, that )(= tgs  is an invertible function and that 1= g  satisfies the following Lipschitz 
condition,  
 

|,||)()(| srNsr                                                                                                         (14) 
  
where N  is a positive constant. Then the IHCP (1)-(5), with 0=a  in (5), has a unique solution 

),( T  and   satisfies (7) for some constant M . 
  
Proof:  
 
Consider the following auxiliary problem   

 

t xx MT x t T x t a x t t    ( , ) ( , ), 1, 0                                                                  (15) 

 
T x f x a x  ( ,0) ( ), 1,                                                                                     (16) 
 

MT t g t t t  (0, ) ( ), 0 ,                                                                                    (17) 

 

x MT t p t t t  (1, ) ( ), 0 .                                                                                    (18) 

 
By Theorem 7.1.1 in (Cannon,  1984) problem (15)-(18) has a solution of the form 
  

 dftxKtxT )(),(=),( 



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                     ,)()1,(2)(),(2 2010
 dtxKdtx

x

K tt





                                             (19) 

  
provided 1 , 2  satisfy the following conditions,  
 

,)()(1,2)(),(1)(=)(

,)()1,(2)(),()(=)(

12

2

02

201





dt
x

K
dft

x

K
ttp

dtKdftKttg

t

t























                                    (20) 

 
where K  is defined by (6). The system of integral equations (20) satisfies all conditions in 
Corollary 8.2.1 in (Cannon,  1984) and thus there are continuous functions 1  and 2  satisfying 
(20). Hence, problem (15)-(18) has a unique solution. Such a solution has the form (19). We 
impose the condition (5) to this solution and get )(0,=)())(( tTttg x   so that 

  




ds
x

K
dfs

x

K
s

s
)())((0,2)())(,(=)( 12

2
)(

0













 

 

)).(()())(1,(2 2

)(

0
sds

x

Ks








                                                              (21) 

  
Let )(= 11 tgs  and )(= 22 tgs . Then 
  

|)()(||)(0,)(0,||)()(| 212121 tttTtTss xx    

 

                       dft
x

K
t

x

K
|)(||),(),(| 21 








 



 

 

                              dt
x

K
t

x

Kt
|)(||)(0,)(0,|2 122

2

12

2
1

0









   

 

                            |)()(0,|2 122

2
2

1

 dt
x

Kt

t





   

 

                             dt
x

K
t

x

Kt
|)(||)1,()1,(|2 221

1

0









   

 

                            .|)()(||)()1,(|2 2122
2

1

ttdt
x

Kt

t
 




   
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As it is noted in Section 4.2 of (Cannon,  1984), )/( nmnm xtK    are bounded by constants that 

depend upon x , m  and n . Applying the mean value theorem to ),( t
x

K 



, )(0,
2

2





t
x

K
, and 

)1,( 



t
x

K
 as functions of ][0, Mtt  and using the fact that 1  and 2  are bounded on ][0, Mt , 

and that )(t  is a Lipschitz function, we get a constant R  such that 
  

.|)()(||=||)()(| 212121 ssRttRss    
 
Finally, using (14), we have  
 

|,||)()(| 2121 ssMss   
 
where NRM = . The uniqueness of ),( T  follows from the fact that problems (1)-(4) and (15) –
(18) have unique solutions.  
 

 
4.   Overview of the Method 
 
To solve the inverse problem (1)-(5), let us consider the following auxiliary inverse problem   

  

t xx MT x t T x t x t t    ( , ) ( , ), 0 1, 0 ,                                                              (22) 

 
T x f x x  ( ,0) ( ), 0 1,                                                                                (23) 

 

x MT t q t t t  (0, ) ( ), 0 ,                                                                               (24) 

 

x MT t p t t t  (1, ) ( ), 0 ,                                                                                (25) 

 
and the overspecified condition 
 

MT a t g t t t  ( , ) ( ), 0 ,                                                       (26) 

 
where Mt  is a given positive constant and )(xf , )(tg  and )(tp  are continuous known functions 
on their domains while the heat flux )(tq  is unknown which remains to be determined from 
overspecified condition (26). 
 
The solution of the problem (22)-(26) can be written as follows,  
 

),,(=),(
3

1=

txTtxT i
i
                                                                                                                 (27) 
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 where ),( txTi , for 1,2,3=i , satisfy the following problem:   

 

i i
M

T T
x t x t i x t t

t x

 
     

 

2

2
( , ) ( , ),  1,2,3, 0 1,0 ,  (28) 

 

otherwise
i

M

q t iT
t t t

x


   

( ), 1
(0, ) ,  0 ,

0,
 (29) 

otherwise
i

M

p t iT
t t t

x


   

( ), 2
(1, ) ,  0 ,

0,
 (30) 

 

otherwisei

f x i
T x x


  


( ), 3
( ,0) ,  0 1.

0,
 (31) 

 
In the linear problem (28)-(31) for 1=i , the relation between )(tq  and ),(1 txT  can be expressed 
analytically by the Duhamel's integral as follows (Beck et al., 1985) 

 

,0),(),()(=),( 101 xTdsstx
t

sqtxT
t





                                                                                (32) 

 
where ,0)(1 xT  is the initial condition for the problem (28)-(31), for 1=i , and ),( tx  is the 
temperature rise at location x  for a unit step change in the surface heat flux at 0=t  for the same 
partial differential equation and boundary conditions as the original problem except the 
differential equation and boundary conditions (other than 0=x ) are homogeneous. 
 
Equation (32) can be approximated at time Mt , by the following equation  

 

,=)(
1=

1 nMn

M

n
M qT                                                                                                               (33) 

 
where nq  represents the measured heat flux at time nt , and iii  1= . 

Note that 
j

i
ji q

T




 
1= , therefore, it represents the sensitivity coefficient measured at time it  

with respect to component jq . Obviously, the sensitivity coefficients will be zero when ji < . 

 
By writing the equation (33), for 1,2,=M  points, we obtain the following matrix equation  
 

,=1 XqT                                                                                                                                  (34) 
 
 where  
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T

MTTT ])(,,)[(= 1111  , T
Mqqq ],,[= 1  , )(= ii tqq   

 
and  
 

.
0

000

0000

=

01321

0132

01

0













































MMM

MM

X  

 
By solving the direct problem (28)-(31), for 2,3=i , and using the overspecified condition (5) 
and the equation (27), we have 
  

).,(=),(),()(=),( 132
* taTtaTtaTtgtaT   (35) 

 
Considering the Duhamel'theorem, for 1,2,=M , we obtain the following equation  

  
,=* XqT                                                                                                                                 (36) 

  
where 
 

 T
MTTT ],,[= **

1
*  , ),(= **

ii taTT . 

 
The Matrix X  is ill-conditioned. On the other hand, as g  is affected by measurement errors, the 
estimate of q  by (36) will be unstable. Therefore, the Tikhonov regularization method must be 
used to control this measurement errors. The Tikhonov regularized solution (Tikhonov and 
Arsenin, 1977; Hansen, 1992;Lawson and Hanson, 1974) to the system of linear algebraic 
equation (36) is given by 
  

*|| || || ||sq Xq T R q    2 ( ) 2
2 2( ) . 

 
On the case of the zeroth-, first-, and second-order Tikhonov regularization method the matrix 

)(sR , for 0,1,2,=s  is given by, see e.g. (Martin et al., 2006):  
  

(0) = ,M M
M MR I R 
   
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(1) ( 1)

1 1 0 0 0

0 1 1 0 0

= ,
0 0 1 1 0

0 0 0 1 1

M MR R  

 
  
 

 
 

 
  
 




     



 

 

(2) ( 2)

1 2 1 0 0 0

0 1 2 1 0 0

= .
0 0 1 2 1 0

0 0 0 1 2 1

M MR R  

 
  
 

 
 

 
  
 




      



 

 
Therefore, we obtain the Tikhonov regularized solution of the regularized equation as  
 

.])([= *1)()( TXRRXXq TsTsT   

 
In our computation, we use the GCV scheme to determine a suitable value of   (Elden, 1984; 
Golub et al. 1979; Wahba, 1990). 
 
For evaluating  , we use  
 

,0),())(0,(=)(0, TtttTtT kkkx   (37) 

 
where )(0, kx tT  can be obtained from the solution of the inverse problem (22)-(26). Therefore 

  
.0),()(=))(0,( TtttqtT kkk    (38) 

 
Finally, the MATLAB package is used for interpolating these values and reconstructing the 
function  .  
 
5.  Numerical Results and Discussion 

 
Mathematically, IHCPs belong to the class of ill-posed problems, i.e., small errors in the 
measured data can lead to large deviations in the estimated quantities. The physical reason for 
the ill-posedness of the estimation problem is that variations in the surface conditions of the solid 
body are damped towards the interior because of the diffusive nature of heat conduction. As a 
consequence, large-amplitude changes at the surface have to be inferred from small-amplitude 
changes in the measurements data. Errors and noise in the data can therefore be mistaken as 
significant variations of the surface state by the estimation procedure. Therefore the IHCP has a 
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unique solution, but this solution is unstable. This instability is overcome using the Tikhonov 
regularization method with the GCV criterion for the choice of the regularization parameter. 
 
In this section the stability and accuracy of the scheme presented in section 4 is evaluated by 
comparison with the Singular Value Decomposition method. All the computations are performed 
on the PC (pentium(R) 4 CPU 3.20 GHz). However, to further demonstrate the accuracy and 
efficiency of this method, the present problem is investigated and some examples are illustrated. 
 
Remark.  In an IHCP there are two sources of error in the estimation. The first source is the 
unavoidable bias deviation (or deterministic error). The second source of error is the variance 
due to the amplification of measurement errors (stochastic error). The global effect of 
deterministic and stochastic errors is considered in the mean squared error or total error, (Cabeza 
et al., 2005). 
 
Therefore, we compare Tikhonov regularization 0th, 1st and 2nd method and SVD method by 
considering total error S  defined by  

 

ˆ
N

i i
i

S q q
N

 
 

1
2 2

=1

1
[ ( ) ] ,

1
                                                                                                    (39) 

  
where N  is the total number of estimated values.  

 
 

Example 5.1. In this example, let us consider the following one-dimensional inverse problem, 
for estimating unknown boundary condition ))(0,( tT  when 0.1=a    

 

t xx MT x t T x t x t t    ( , ) ( , ), 0 1, 0 ,  (40) 

 
sinT x x x  ( ,0) , 0 1,  (41) 

 
t

x MT t T t e t t    (0, ) ( (0, )) , 0 ,  (42) 

 
cost

x MT t e t t  (1, ) 1, 0 ,  (43) 

 
and the overspecified condition 
 

sint
MT t e t t  (0.1, ) (0.1), 0 .                                                                (44)   

 
The exact solution of this problem is 
  

2( , ) sin , ( (0, )) ( (0, )) , 0 1, 0 .t
MT x t e x T t T t x t t       

 
Table 1 shows the comparison between the exact solution and approximate solution result from 
our method by Tikhonov regularization 0th, 1st and 2nd and SVD regularization with noiseless 
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data. Table 2 and figures 1, 2, 3 show this comparison with noisy data 
( noisy data=input data (0.01)rand(1) ). Finally, we compare two methods with computation 
total error by (39). 
   
   Table 1.  The comparison between exact and Tikhonov and SVD solutions for ))(0,( tT  with noiseless data 

when 0.01=t  and = 1/ 7x .  

  t    Exact   SVD  Tikhonov 
0th  

 Tikhonov 
1st  

Tikhonov 
2nd  

 0.0   0.000000   0.000000   0.000000   0.000000   0.000000   
0.1   0.000000   0.000000   0.000000   0.000000    0.000000   
0.2   0.000000   0.000000   0.000000   0.000000    0.000000   
0.3   0.000000   0.000001   0.000001   0.000001    0.000001   
0.4   0.000000   0.000001   0.000001   0.000001    0.000001   
0.5   0.000000   0.000001   0.000001   0.000001    0.000001   
0.6   0.000000   0.000001   0.000001   0.000001    0.000001   
0.7   0.000000   0.000001   0.000001   0.000001    0.000001   
0.8   0.000000   0.000002   0.000002   0.000002    0.000002   
0.9   0.000000   0.000002   0.000002   0.000002    0.000002   
1  0.000000   0.000002   0.000002   0.000002    0.000002   

  S    0061.00 e   0061.00 e   0061.00 e    0061.00 e  
 
 
 
 

   Table 2.   The comparison between exact and Tikhonov and SVD solutions for ))(0,( tT  with noisy data when 

0.01=t  and = 1/ 7x .  

  t    Exact   SVD  Tikhonov 
0th 

 Tikhonov 
1st  

Tikhonov 
2nd  

 0.0   0.000000   0.000000   0.000000   0.000000   0.000000   
0.1   0.000000   0.002550   0.005176   0.004625    0.004783   
0.2   0.000000   0.002571   0.005496   0.003546    0.003201   
0.3   0.000000   0.002889   0.005440   0.001661    0.001710   
0.4   0.000000   0.003585   0.004400   0.002558    0.002238   
0.5   0.000000   0.003761   0.003274   0.003223    0.003178   
0.6   0.000000   0.002845   0.003682   0.003114    0.003364   
0.7   0.000000   0.001608   0.004935   0.003414    0.003190   
0.8   0.000000   0.001218   0.002681   0.002559    0.002559   
0.9   0.000000   0.003167   0.000713   0.002298    0.002530   
1  0.000000   0.017198   0.013633   0.003042    0.003130   

  S   0034.016 e  0034.757 e  0033.108 e   0033.105 e  
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Figure 1. The comparison between the exact results and Tikhonov 0th and SVD of the problem (40)-(44) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  

 
Figure 2.  The comparison between the exact results and Tikhonov 1st and SVD of the problem (40)-(44) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  

 
 

13

Pourgholi et al.: A Duhamel Integral Based Approach to Identify an Unknown Radiation Term

Published by Digital Commons @PVAMU, 2012



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            65                                 
          

   

 
Figure 3.  The comparison between the exact results and Tikhonov 2nd and SVD of the problem (40)-(44) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  

 
Example 5.2. In this example let us consider the following one-dimensional inverse problem, for 
estimating unknown boundary condition ))(0,( tT  when 0.1=a .   

 

t xx MT x t T x t x t t    ( , ) ( , ),  0 1, 0 ,  (45) 

 
cosT x x x   ( ,0) ( 1), 0 1,  (46) 

 
sin cos cost t

x MT t T t e e t t          2 2(0, ) ( (0, )) ( ( 1) ( 1)) ( ( 1)) , 0 ,  (47) 

 

x MT t t t  (1, ) 0, 0 ,  (48) 

 
and the overspecified condition 
 

(0.1, ) cos( 0.9), 0 .t
MT t e t t                                                                                       (49) 

 
The exact solution of this problem is 
  

,<<1,001),(cos=),( M
t ttxxetxT   

 
and 

  
.<<1,00),(0,))(0,(=))(0,( 2

MttxtTtTtT   
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Table 3 shows the comparison between the exact solution and approximate solution result from 
our method by Tikhonov regularization 0th, 1st and 2nd and SVD regularization with noiseless 
data. Table 4 and figures 4, 5, 6 show this comparison with noisy data 
( noisy data = input data (0.001)rand(1) ). Finally, we compare two methods with computation 
total error by (39).  
 
Table 3.   The comparison between exact and Tikhonov and SVD solutions for ))(0,( tT  with noiseless data 

when 0.01=t  and = 1/ 7x .   

  t    Exact   SVD  Tikhonov    
0 th 

 Tikhonov 
1st  

Tikhonov 
2nd  

 0.0   0.832229   0.832229   0.832229   0.832229   0.832229   
0.1   0.727895   0.728347   0.728347   0.728347    0.728347   
0.2   0.638046   0.638325   0.638325   0.638325    0.638325   
0.3   0.560478   0.560524   0.560524   0.560524    0.560524   
0.4   0.493347   0.493168   0.493168   0.493168    0.493168   
0.5   0.435104   0.434729   0.434729   0.434729    0.434729   
0.6   0.384451   0.383909   0.383909   0.383909    0.383909   
0.7   0.340294   0.339613   0.339613   0.339613    0.339613   
0.8   0.301712   0.300914   0.300914   0.300914    0.300914   
0.9   0.267926   0.267030   0.267030   0.267030    0.267030   
1  0.071286   0.072142  0.071152   0.071276    0.071286  

  S    0045.61 e   0045.61 e   0045.61 e    0045.61 e  
 
 
Table 4.   The comparison between exact and Tikhonov and SVD solutions for ))(0,( tT  with noisy data when 

0.01=t  and = 1/ 7x .  

  t    Exact   SVD  Tikhonov 0th  Tikhonov 1st  Tikhonov 2nd 
 0.0   0.832229   0.832229   0.832229   0.832229   0.832229   
0.1   0.727895   0.723165   0.812798   0.732954    0.730531   
0.2   0.638046   0.639324   0.601871   0.638822    0.640095   
0.3   0.560478   0.563648   0.507716   0.564287    0.563256   
0.4   0.493347   0.499448   0.475097   0.495693    0.494678   
0.5   0.435104   0.427903   0.447593   0.431216    0.432604   
0.6   0.384451   0.381417   0.459008   0.379929    0.378869   
0.7   0.340294   0.335610   0.430699   0.334565    0.334364   
0.8   0.301712   0.293088   0.241095   0.298053    0.299987   
0.9   0.267926   0.272220   0.239352   0.272049    0.272890   
1  0.071286   0.296443   0.252615   0.244601    0.243964   

  S   0023.7557 e  0029.2607 e  0023.2015 e   0023.1757 e  
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Figure 4.  The comparison between the exact results and Tikhonov 0th and SVD of the problem (45)-(49) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  

  
Figure 5.   The comparison between the exact results and Tikhonov 1st and SVD of the problem (45)-(49) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  
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Figure 6.   The comparison between the exact results and Tikhonov 2nd and SVD of the problem (45)-(49) with 

discrete noisy data when 0.01=t  and = 1/ 7x .  

  
 

6.   Conclusion 
 

A numerical method, to estimate unknown radiation term is proposed for these kinds of IHCPs 
and the following results are obtained. 
1.  The present study, successfully applies the numerical method to IHCPs. 
2.  The Tikhonov regularization 0th, 1st and 2nd and SVD regularization give very similar 

results with noiseless data. 
3.  Numerical results show that, heat flux evolutions estimated by the Tikhonov regularization 

1st and 2nd are accurate that those obtained by the SVD regularization with noisy data. 
4.  Numerical results show that an excellent estimation can be obtained within a couple of 

minutes CPU time at pentium(R) 4 CPU 3.20 GHz. 
5.  The present method has been found stable with respect to small perturbation in the input 

data. 
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