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Abstract 
 
Sequence A054391 in OEIS, which we will denote by na , counts a certain two-pattern avoidance 

class of the permutations of size n . In this paper, we provide additional combinatorial 
interpretations for these numbers in terms of finite set partitions. In particular, we identify six 
classes of the partitions of size n , all of which have cardinality na  and each avoiding two 

classical patterns. We use both algebraic and combinatorial methods to establish our results. In 
one apparently more difficult case, to show the result, we make use of the kernel method in 
solving a system of three functional equations which arises after a certain parameter is 
introduced. We also define an algorithmic bijection between the avoidance class in this case and 
another which systematically replaces the occurrences of a given pattern with those of another 
having the same length.  

 
Keywords:          Pattern avoidance, set partition, kernel method 
 
MSC 2010 No.: 05A15, 05A18 
 
 
1. Introduction 

 
If 1j , then let js denote the sequence (see Barcucci et al. (2000)) which counts the 

permutations of size n avoiding the patterns 321and 1)(3)2(12)(  jjj  . Letting j  vary 
produces different sequences, the 1=j  and 2=j  cases, for example, corresponding to the 
Motzkin numbers and to enumerators of Motzkin left factors (which was shown in Barcucci et al. 
(2000)). Letting j  go to infinity produces the Catalan sequence, and so there is a ``discrete 
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continuity'' between the Motzkin and Catalan sequences, as noted in Barcucci et al. (2000). In the 
present correspondence, we are concerned with the case 3=j , the terms of which we will 

denote by na . In particular, we will show that na  also counts certain avoidance classes of set 

partitions. The sequence na  occurs as A054391 in Sloane and has generating function given by 

  

.
321132

2
1=

22

2

0 xxxx

x
xa n

n
n 


                   

                                                          (1) 

  
The first few na  values, starting with 0=n , are given by 1, 1, 2, 5, 14, 41, 123, 374,  . 

 
If 1n , then a partition of },{1,2,=][ nn   is any collection of non-empty, pairwise disjoint 
subsets, called blocks, whose union is ][n . (If 0=n , then there is a single empty partition which 

has no blocks.) Let nP  denote the set of all partitions of ][n . A partition   is said to be in 

standard form if it is written as //= 21 BB , where the blocks are arranged in ascending order 

according to the size of the smallest elements. One may also represent nPBB  //= 21 , 

expressed in the standard form, equivalently as n 21= , wherein njBj
j

 1, , called 

the canonical sequential form; and, in such case, we will write = . For example, the partition 
4/6,81,5/2,3,7/=  has the canonical sequential form 12231424= . Note that n 21=  

possesses the restricted growth property (see, e.g., Stanton and White (1986) or Wagner (1996) 
for details), meaning that it satisfies the following three conditions: (i) 1=1 , (ii)   is onto ][k  

for some 1k , and (iii) 1},,,{max 211  ii    for all i , 11  ni . In what follows, we 

will represent set partitions as words using their canonical sequential forms and consider some 
particular cases of the general problem of counting the members of a partition class having 
various restrictions imposed on the order of the letters. 

 
A classical pattern   is a member of m][  which contains all of the letters in ][ . We say that a 

word nk][  contains the classical pattern   if   contains a subsequence isomorphic to  . 

Otherwise, we say that   avoids  . For example, a word n 21=  avoids the pattern 231 

if it has no subsequence kji   with kji <<  and jik  <<  and avoids the pattern 1221 if 

it has no subsequence  kji  with kji  =<=  . The pattern avoidance question has 

been the topic of much research in enumerative combinatorics, starting with Knuth (1974) and 
Simion and Schmidt (1985) on permutations and considered, more recently, on further structures 
such as words and compositions. The avoidance problem can be extended to set partitions upon 
considering the question on the associated canonical sequential forms. We refer the reader to the 
papers by Klazar (1996), Sagan (2010), and Jelínek and Mansour (2008) and to the references 
therein. We will use the following notation. If },,{ 21 ww  is a set of classical patterns, then let 

),,( 21 wwPn  be the subset of nP  which avoids all of the patterns, whose cardinality we will 

denote by ),,( 21 wwpn . 
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In this paper, we identify six classes of the partitions of ][n  each avoiding a classical pattern of 

length four and another of length five and each enumerated by the number na . In addition to 

providing new combinatorial interpretations for a sequence, this addresses specific cases of a 
general question raised by Goyt (2008), for example, regarding the enumeration of avoidance 
classes of partitions corresponding to two or more patterns. Analogous results concerning the 
avoidance of two patterns by a permutation have been given, for example, by West (1995). Our 
main result is the following theorem which we prove in the next section as a series of 
propositions.   

 
Theorem 1.1.  If 0n , then nn avup =),(  for the following sets ),( vu :   

 
1)(1212,1222 (1)   2)(1212,1122 (2)  2)(1212,1112 (3)  
1)(1221,1231 (4)  2)(1221,1211 (5)  2)(1221,1212 (6) . 

   
To show this, we give algebraic proofs for cases (1), (3), (4), and (6) and find one-to-one 
correspondences between cases (1) and (2) and (5) and (6). To establish (4) and (6), we make use 
of the kernel method (see Banderier et al. (2002) and Hou and Mansour (2011)), in the latter case, 
to solve a system of functional equations which arises once a certain parameter has been 
introduced. Our bijection between cases (5) and (6) is of an algorithmic nature and 
systematically replaces occurrences of 12122 with ones of 12112 without introducing 1221. 

 
 

2. Proof of the Main Result 
 
 
2.1. The cases 1}{1212,1222 , 2}{1212,1122 , and 2}{1212,1112  

 
In this section, we consider the cases of avoiding 1}{1212,1222 , 2}{1212,1122 , and 

2}{1212,1112 . 
  

 Proposition 2.1. The generating function for 1)(1212,1222np  and 2)(1212,1112np , where 

0n , is given by  

 

.
321132

2
1

22

2

xxxx

x


  

  
 
Proof:  
 
Note first that each non-empty partition 1)(1212,1222nP  may be decomposed as either 

 1= , where    contains no 1's, or as r 111= 21  , for some 2r , where the i  contain 

no 1 's. The i  must avoid {1212,111}  if 11  ri , with r  avoiding 1}{1212,1222 . 
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Furthermore, note that each letter in i  is greater than each letter in j  if ji >  in order to avoid 

an occurrence of 1212 . Let n
nn

xpxf 1)(1212,1222=)(
0 

 and n
nn

xpxg (1212,111)=)(
0 

. 

From the foregoing observations, we obtain the relation  
 

,
)(1

)()(
)(1=)(

2

xxg

xgxfx
xxfxf


  

 
or  

 

.
)(1

)(1
=)(

xxgx

xxg
xf




                                                                                                               (2) 

 
To compute )(xg , observe that (1212,111)= nP  must be of the form  1=  or  11= , 

where    and    contain no 1's and avoid {1212,111}. Furthermore, all of the letters of    are 
greater than all of the letters of    in the second case. This implies  
 

),()(1=)( 22 xgxxxgxg   
 
or  
 

.
2

3211
=)(

2

2

x

xxx
xg


                                                                                                   (3) 

 
Substituting (3) into (2) and simplifying yields the first case above. 
 
To compute the generating function )(xh  for 2)(1212,1112np , we use the same cases as we did 

for finding 2)(1212,1122np . In the second case, however, consider further whether or not 2  

contains a repeated letter. Note that if it does, then 1  must avoid {1212,111}. Furthermore, no 
letters greater than one occurring after the third 1 can be repeated. This yields the relation 
  

,
21

1
1

1
)()(

21
1)(

1
)(1=)( 2

2



































x

x

x
xhxgx

x

x
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x
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or  

 

,
)()(131

)(21
=)(

22

2

xgxxxx

xgxx
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from which the desired result follows from (3).  
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There is a direct bijection showing the equivalence of the pairs 1}{1212,1222  and 2}{1212,1122 . 
  

Proposition 2.2.  If 0n , then 2)(1212,1122=1)(1212,1222 nn pp .   

  
Proof:  
 
Let 1)(1212,1222= nn PA  and 2)(1212,1122= nn PB . We will define a bijection f  between the 

sets nA  and nB  in an inductive manner, the cases 1,2,3=n  clear. Suppose 4n  and nA . If 

n12= , then nB  and let  =)(f . If n12 , then let 1m  be the smallest letter of 

  which occurs at least twice. Thus, we may write ,1)(12= 21 rmmmm    where 2r  

and the i  contain only letters in }2,1,{  mm  but are otherwise just as in the proof of 

Proposition 2.1 above. 
 
Given a finite word w  on the alphabet of positive integers having m  distinct letters, let stan( w ) 
denote the equivalent word on ][m  having all of the same relative comparisons with regard to its 

positions (often called the standardization of w ). Let (= fr stan ))( r  and o
r  be obtained 

from r  by adding m  to each letter. If 11  ri , then let i'  be obtained from i  by adding 

  to each letter, where   is the number of distinct letters of r . Let )(f  be given by  
 

.'''1)(12=)( 121  r
o
r mmmmmf    

 
Then )(f  belongs to nB  since o

r  avoids 2}{1212,1122  and each i'  avoids {1212,111}. One 

may verify that the mapping f  is a bijection, which completes the proof.                                                               
 

Remark: The mapping f  is seen to preserve the number of blocks; thus the members of 

1)(1212,1222nP  and 2)(1212,1122nP  having the same prescribed number of blocks are 

equinumerous. 
 

 
2.2.  The Case 1}{1221,1231  

 
Let n 21=  denote a partition of ][n , represented canonically. Recall that empty sums 

take the value zero, by convention. To establish this case, we divide up the set of partitions in 
question according to a certain statistic, namely, the one which records the length of the maximal 
increasing initial run. To do so, given 1k , let )(xfk  denote the generating function for the 

number of partitions   of ][n  having at least k  letters and avoiding the patterns 1221  and 

12311 such that kk  12=21   with kk 1  (if there is a 1)( k -st letter). We have the 

following relation involving the generating functions )(xfk . 
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Lemma 2.3.  If 2k , then  
 

),()()(=)( 1
1

2=
2

1
1 xfxxfxxfxxxf j

jk
k

j

kkk
k




   (4) 

 
with initial conditions 1=)(0 xf  and )(=)( 11 xfxxxf  , where )(=)( xfxf ikik 

.   

  
Proof:  
 
Note that )(=)( 11 xfxxxf  , since a partition in this case may just have one letter or start 11. If 

2=k , then a partition   enumerated by )(2 xf  must either be 12  or start with 121 or 122 , 
which implies  
 

).()(=)( 1
2

2
2

2 xfxxfxxxf   

 
Note that in the second case, the second letter 1 is extraneous (concerning possible occurrences 
of 12311 or 1221) and therefore can be removed without affecting the enumeration, while in the 
third case, the letters 1 and 2  at the beginning are extraneous. 
 
If 3k , then we consider the following cases concerning the partitions enumerated by )(xfk : 

  

.12)( 

,1)(12)(

2,1  where  ,12)( 

,12)(  











kkiv

kkiii

kjkjii

ki






 

 
The first case contributes kx . Note that in the second case, the word    contains no letters in ][ j , 
for otherwise there would be an occurrence of 1221  if it contained a letter in 1][ j  or an 
occurrence of 12311 if it contained the letter j . Thus, the letters   kjj 2)1)(( , taken 

together, comprise a partition of the form enumerated by )(xf jk , which implies the 

contribution in this case is )(1 xfx jk
j


 . Similar reasoning in the third case yields a contribution 

of )(2
1 xfxk , since    can contain no letters in 2][ k  and thus   kk 1)(  is a partition of the 

form enumerated by )(2 xf  (the factor of 1kx  accounts for the letters 2)(12 k  as well as the 

second occurrence of 1k ). Finally, in the fourth case, no member of 1][ k  can occur in   , 
with the second k  extraneous, which implies a contribution of )(1 xfxk . Combining all of the 

cases yields (4), which is also seen to hold in the case 2=k  as well.                                                                      
 
  

Proposition 2.4.  The generating function for 1)(1221,1231np , 0n , is given by 
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.
321132

2
1

22

2

xxxx

x


  

  
Proof:  
 
Define the generating function 
  

k
kk

yxfyxF )(=),(
0 

.  

 
First note that 
  

1,1)(=)()(=)( 211  xFxfxfxf  , ,1)(=)(=)( 11 xxFxfxxxf  , and  

1,1)()(1=1)(,1)(=)( 12  xFxxfxFxf .  

 
Multiplying (4) by ky  and summing over 2k  yields  
 

1
1 1

1 1 2
2 =2

2 2 2 2 2

1
1

2 =2

( , ) = 1 ( ) ( ) ( ) ( )

= 1 ( ,1) [ ( ,1) 1] [(1 ) ( ,1) 1]
1 1 1

  ( )

k
k k k k j k

j
k j

k
k j k

j
k j

F x y f x y x x f x x f x x f x y

x y x y xy
xyF x F x x F x

xy xy xy

x f x y


  




 



 
     

 

      
  

 
  

 

 

 

 

  
2 2

2

2 2

2 =2

2

2 2

1 1

= 1 ( ,1) [ ( ,1) 1] ( )
1 1

= 1 ( ,1) [ ( ,1) 1] ( )
1 1

= 1 ( ,1) [ ( ,1) 1]
1

  ( ( ,1) ( ) 1) ( ( , ) ( ) 1) ,
1 1 1

j
j

j

i
j

i
i j

xy x y
xyF x F x f x y

xy xy

xy x y
xyF x F x f x y

xy xy

xy
xyF x F x

xy

x y y y
F x f x F x y f x y

xy y y





   
 

   
 

  


 
         



 
 

 
which implies  
 

,1).(
))(1(1

)2(1

1

1
=),(

))(1(1
1

2222222

xF
yxy

xyyxyxy

xy

yxxyxy
yxF

yxy

yx


















  (5) 
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This type of functional equation can be solved systematically using the  kernel method (see 
Banderier et al. (2002)). In this case, if we assume that 0= yy  in (5), where 0y  satisfies  

 

0=
))(1(1

1
00

2
0

2

yxy

yx


 , i.e.,  

 

,
)(12

3211
=

2

0 xx

xxx
y




 

 
then  

2 2 2
0 0 0 0

2 2
0 0 0 0 0

2

2 2

(1 )(1 )
(12311,1221) = ( ,1) =

(1 2 )

2
= 1 ,

2 3 1 1 2 3

n
n

n

y xy xy x y
p x F x

xy xy y xy

x

x x x x



   


  


    


 

 
as required. (Note that 1=(0,1)F  dictates our choice of root for 0y .)  

 
Remark: Substituting the expression above for ,1)(xF  into (5) recovers the expression for 

),( yxF , from which one can compute an explicit formula for the coefficient of kn yx .  
 

 
2.3.  The Cases 2}{1221,1211  and 2}{1221,1212  

 
For these cases, we show first that 2)(1221,1211=2)(1221,1212 nn pp  through a direct bijection 

and then show that the generating function for 2)(1221,1212np  is given by (1) above. Before 

defining the bijection, we will need the following two lemmas. 
  

Lemma 2.5.  Suppose 2)(1221,1212nP  has at least one occurrence of the pattern 12112. Let 

2b  be the smallest letter such that there exists 1][  ba  for which there is a subsequence in 
  given by abaab . Then (i) the element b  occurs exactly twice in   and (ii) the element a  is 
uniquely determined.   

  
Proof: 
 
For (i), suppose, to the contrary, that b  occurs at least three times in  . Let   denote an 
occurrence of the subsequence abaab  in  ; we may assume that a  and b  in   correspond to 
initial occurrences of letters of their kind. If an additional b  occurs to the right of the third a  in 
 , then there would be an occurrence of 12122 in  , which is not allowed. If an additional b  
occurs to the left of the third a  in  , then there would be an occurrence of 1221, which is also 
not allowed. Thus, there are exactly two b 's in   and they correspond to an occurrence of 
12112. Note that the minimality of b  is not needed for this part. 
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To show (ii), suppose, to the contrary, that there exists a subsequence   in   involving the two 
b 's given by cbccb=  for some acbc  1],[ . Suppose first ac < . If the third c  of   
occurs to the right of the second a  in   above, then there would be an occurrence of 1221, and 
if it occurs to the left of the second a  in  , then there would be an occurrence of 12122. Thus, 
there are no occurrences of cbccb with bc <  (in fact, this shows that any letter ac <  in   can 
only occur prior to the left-most b  in  ). 
 
Now suppose bca <<  and let   again denote a possible occurrence of cbccb. If the third c  of 
  occurs after the third a  in  , then there would be an occurrence of 12112 of the form acaac , 
with bc < , contradicting the assumed minimality of b . On the other hand, if the third c  of   
occurs before the third a  of  , then there would be an occurrence of 1221 of the form acca . 
Thus, no element of 1][ b  can form an occurrence of 12112 with b , which completes the proof 
of (ii). 

 
  

Lemma 2.6.  Suppose 2)(1221,1212= 21 nn P   contains at least one occurrence of the 

pattern 12112 and let a  and b  be as defined in Lemma 2.5  above. Write 321= bWbWW , where 

3W  is possibly empty. Then we have the following: (i) only letters greater than b  can occur in 

2W , with the exception of a , and no letter other than a  can occur more than once in 2W ; and (ii) 

any letter occurring in 2W  can occur at most once in 3W , all of whose letters are greater than b .   

  
Proof:  
 
To prove (i), write rr aaaW  1212 =   for some 3r , where the i  are possibly empty and 

contain no a 's. Suppose, to the contrary, that bc <  occurs in 2W , where ac  . If ac <  is in i  

for some 2i , then there would be an occurrence of 1221, whereas if it is in 1 , then there 

would be an occurrence of 12122 . If bca <<  and c  belongs to i  for some ri <1 , then 

there would be an occurrence of 1221 with acca , whereas if c  belongs to r , then there would 
be an occurrence of 12112 of the form acaac  with bc < , contradicting the minimality of b . 
Thus, only letters greater than b  can occur in 2W , with the exception of a , and each letter 

greater than b  can occur in 2W  at most once so as to avoid 1221 . Statement (ii) is also a 

consequence of   belonging to 2)(1221,1212nP .                              

 
We now establish the equivalence of avoiding 2}{1221,1212  and 2}{1221,1211 . 

  
Proposition 2.7.  If 0n , then 2)(1221,1211=2)(1221,1212 nn pp .   
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Proof:  
 
Let 2)(1221,1212= nPA  and 2)(1221,1211= nPB . We will describe a bijection f  between the 

sets A  and B , algorithmically, as follows. Suppose A . If B , then let  =)(f . 

Otherwise,  =0  contains at least one occurrence of the pattern 12112 . Let 0b  denote the 

smallest letter b  in 0  for which there exists a subsequence abaab  for some ba <  and let 0a  

denote the corresponding letter a , which is uniquely determined, by Lemma 2.5. Suppose we 
write 0  as 302010 = WbWbW  as in Lemma 2.6 above, where rr aaaW  0102012 =  . Let 

302011 '= WbWbW , where rr bbaW  0102012 ='   in which we have changed all but the first 

0a  occurring in 2W  to 0b . Note that this replaces all of the occurrences of 12112 involving 0a  

and 0b  with ones of 12122. Using Lemma 2.6, one can verify that no occurrences of 1221 are 

introduced. 
 
If 1  has no occurrences of 12112 , then let 1=)( f . Otherwise, let 1b  denote the smallest 

letter b  in 1  for which there exists a subsequence abaab  for some ba < . One can verify 

01 > bb . By reasoning similar to that used in the proof of Lemma 2.5 above, one can also show 

that a letter 1< ba  for which the subsequence 11aabab  occurs in 1  is uniquely determined, 

which we'll denote by 1a . Let 2  denote the partition obtained by changing all of the letters 1a , 

except the first, coming after the leftmost 1b  to 1b . No 1221 subsequences are introduced, which 

follows from the minimality of 1b . Now repeat the above process, considering 2 . 
 
Since <<< 210 bbb , the procedure described must end in a finite number, say t , of steps, with 

the resulting partition t  belonging to 2)(1221,1211nP . Let tf  =)( . Note that the largest b  

for which there exists ba <  such that ababb  occurs in t  is 1= tbb  whenever 1t . This 

follows from the fact one can verify that no occurrences of 12122 in which the 2  corresponds to 
a letter greater than ib  are introduced in the transition from i  to 1i  for all i . If 1t , then one 

can also verify that the largest 1< tba  for which there is a subsequence of the form 111  ttt babab  

in t  is 1= taa . So to reverse the algorithm, we first consider the largest letter b  (if it exists) for 

which ababb  occurs in t  for some ba <  and then consider the largest such a  corresponding to 

this b . One can then change the letters accordingly to reverse the final step of the algorithm 
describing f  and the other steps can be similarly reversed, going from last to first.  

 
Note that the above bijection preserves the number of blocks. Below we provide an example 
when 15=n :  
 

).(=576771232343546=576671232343546=575671232343546=

475671232343546=475671232343536=475671232242536==

543

210




f
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We now find an explicit formula for the generating function for the number of partitions in 
2)(1221,1212nP . In order to achieve this, we will consider the following three types of 

generating functions: 
   

 •  For all 1k , let )(xFk  be the generating function for the number of partitions 

2)(1221,1212= 21 nn P   such that kk  12=21   and kk 1 . We define 

1=)(0 xF . 

 
 •  For all 2k , let )(xHk  be the generating function for the number of partitions 

2)(1221,1212= 21 nn P   such that kk  12=21   and 1=1k . 

 
 •  For all 2k , let )(xGk  be the generating function for the number of partitions 

2)(1221,1212= 21 nn P   such that kk  12=21  , 1=1k  and 1j  for 

all nkj ,2,=  .  
 

We define the further generating functions k
kk

yxFyxF )(=),(
0 

, k
kk

yxHyxH )(=),(
2 

, and 
k

kk
yxGyxG )(=),(

2 
. Our goal will be to find ,1)(xF , which is the generating function for the 

sequence 2)(1221,1212np , 0n . The next three lemmas provide relations which we will need 

between these generating functions. 
  

 
Lemma 2.8.  We have  
 

).,(
1

1
,1)(

1
1=),( yxH

xy
xF

xy

xy
yxF





  

  
Proof:  
 
Let )(xa  be the generating function for the number of partitions 

2)(1221,1212= 21 nn P   such that  =21 k , where   is some word. By the 

definitions, we have  
 

0

1 11
1

1
1

12 12 ( 1 )1 1
=1 =1

1
1

1
=1

( ) = 1,

( ) = ( ) = ( ) = ( ( ,1) 1),

( ) = ( ) = ( ) ( )

= ( ) ( ( ,1) 1), 2.

j
j

k k
k k j k

k kj k j
j j

k
k j k

k j
j

F x

F x x a x x x F x x x F x

F x x a x x x a x x a x

x x H x x F x k






 




 

   

  

   



 



 
 

Hence, 
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1),,1)((
1

)(
11

1
=),(

2








 



xF
xy

xy
xH

xy

y

xy
yxF j

j

j

 

 
which is equivalent to  
 

),,(
1

1
,1)(

1
1=),( yxH

xy
xF

xy

xy
yxF





  

 
as required.  

 
  

Lemma 2.9.  We have 
  

)).,(,1)((
1

),(=),( yxHxyH
y

xy
yxGyxH 


  

  
Proof:  
 
Let us write an equation for the generating function )(xHk . Suppose n 21=  is any 

member of 2)(1221,1212nP  such that 112=121 kk   . Consider the following two cases: 

(1) 1j  for all nkkj ,3,,2=   or (2) there exists at least one index 1> kj  such that 

1=j . Clearly, the first case contributes )(xGk . For the second case, we write  1112= k , 

observing that since   avoids 1221, there exists some   such that 1)(=  k . Since the 

members of 2)(1221,1212nP  of the form   11)1(12  kk  are in one-to-one correspondence 

with the members of 2)(1221,12121nP  of the form  112  , we see that the second case 

contributes )(xHx
k  

. Thus,  

 
2.),()(=)(  



kxHxxGxH
k

kk 


 

 
Multiplying this relation by ky , and summing over all 2k , yields 
  

),(
1

),(=),(
12

2

xH
y

yy
xyxGyxH j

j

j 






  

 
which is equivalent to 
  

)),,(,1)((
1

),(=),( yxHxyH
y

xy
yxGyxH 
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as required.  
 
  

Lemma 2.10.  We have 
 

,1).(
))(1(1

,1)(
))(1(1

)(2
,1)(

))(1(11
=

),(
))(1(1

1

23242223

22

xH
xyx

yx
xF

xyx

xyx
xG

xyy

yx

xy

yx

yxG
xyy

yx
























 

   
Proof:  
 
Let )(xa  (respectively, )(xb ) be the generating function for the number of partitions 

2)(1221,1212= 21 nn P   such that  =21 k  (respectively,  =21 k  and 

1j  for all 1 kj ). From the definitions, we have  

 
1

1
12 1 12 1 12 1( 1)

=2

1
1 2

1 12 1( 1)
=2

( ) = ( ) ( ) ( )

= ( ) ( ,1) ( ),

k
k

k k j k k k k
j

k
k j k

k j k k
j

G x x b x b x b x

x x G x x F x b x







 

  

  

  





  



 

 
and for all 1 k ,  
 

12 1( 1)

1
12 1( 1) 12 1( 1) 12 1( 1) ( 1)

=2 = 1

1
1 1

1 1 12 1( 1) ( 1)
=2 = 1

( )

= ( ) ( ) ( )

= ( ) ( ) ( ( ,1) 1) ( ).

k k

k

k k j k k j k k
j j k

k
j j

j j k k
j j k

b x

x b x b x b x

x x G x x H x x F x b x




   




 

     


  

    

 

 

 




      


 

    

 

 
Hence, by summing over all 1 k , we obtain 
  

1 2 1
2

1 2 11

1 2
=2 =3

( ) = ( ,1) ( ( ,1) 1) ( ,1)
1 1 1

( ) ( ) ( ).
1 1

k k k
k

k

j k kk k
j

k j k j
j j k

x x x
G x x F x F x H x

x x x

x x x x
x G x G x G x

x x

  


 

   


   
  

 
  

    


 

 
Multiplying the above recurrence by ky , and summing over all 2k , yields 
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3 2 4 2 4 2

3 2 2 3

2 3 2

( , ) = ( ,1) ( ( ,1) 1)
(1 )(1 ) 1 (1 )(1 )

( ,1) ( , ) ( , )
(1 )(1 ) 1 1

( ( ,1) ( , )) ( ,1),
(1 )(1 ) (1 )(1 )

x y x y x y
G x y F x F x

x xy xy x xy

x y x y x y
H x G x y G x y

x xy xy xy

x y x y
yG x G x y G x

x y x xy

  
    

  
   

  
   

 

 
which leads to the required result.  

 
Now we are ready to find an explicit formula for the generating function ,1)(xF  for the number 

of partitions in 2)(1221,1212nP . Lemmas 2.8, 2.9, and 2.10 give rise to a system of functional 

equations which we will solve using the kernel method (see Hou and Mansour (2011)). Lemma 
2.8 implies  
 

,1),(
21

1

21

1
=,1)( xH

xx

x
xF







                                                (6) 

 

and replacing y  by 
x1

1
 in Lemma 2.9 gives  

 

.
1

1
,)(1=,1)( 











x
xGxxH                                                                                                    (7) 

 

Replacing y  first by 
)(12

3211
=

2

1 xx

xxx
y




 and then by 
x

y
1

1
=2  in Lemma 2.10 gives 

 

 
3 2 4 2 3 2

1 1 1

1 1 1

(2 )
( ,1) = ( ,1) ( ,1),

1 (1 )(1 ) (1 )(1 )

x y x y x x y
G x F x H x

xy x xy x xy


 

    
 (8) 

 
3 4 2 3 2

2 2 2(2 )1
, = ( ,1) ( ,1) ( ,1).
1 1 3 1 3 1 3 1 3

x y x y x x y x
G x F x H x G x

x x x x x

          
 (9) 

 
 
Solving the system of equations (6)-(9) yields the following result. 

  
Proposition 2.11.  The generating function for 2)(1221,1212np , 0n , is given by  

 

.
321132

2
1=,1)(

22

2

xxxx

x
xF
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3.  Conclusion 
 
In this paper, we have identified six subsets of the partitions of size n, each avoiding a classical 
pattern of length four and another of length five and each enumerated by the sequence an.  We 
have thereby obtained new classes of combinatorial structures enumerated by an, apparently the 
first such examples related to set partitions. Furthermore, numerical evidence shows that there 
are no other members of the (4, 5) Wilf-equivalence class for set partitions corresponding to the 
sequence an.  We have used both algebraic and combinatorial methods to establish our results.  In 
a couple of the seemingly more difficult cases, we make use of the kernel method to solve the 
functional equations that are satisfied by the related generating functions.  It would be interesting 
to see if any of the other sequences in the ''discrete continuity'' mentioned in the introduction 
enumerate restricted subsets of partitions when j > 3 (such as those avoiding three or more 
patterns).  Finally, it seems that the technique of introducing an auxiliary parameter and solving 
the functional equations which arise as a result using the kernel method would have wider 
applicability to other questions of avoidance not only for set partitions but also for other finite 
discrete structures, such as k-array words or permutations. 
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