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Abstract  
 
In this paper a prey-predator model involving parasitic infectious disease is proposed and 
analyzed. It is assumed that the life cycle of predator species is divided into two stages immature 
and mature. The analysis of local and global stability of all possible subsystems is carried out. 
The dynamical behaviors of the model system around biologically feasible equilibria are studied. 
The global dynamics of the model are investigated with the help of Suitable Lyapunov functions. 
Conditions for which the model persists are established. Finally, to nationalize our analytical 
results, numerical simulations are worked out for a hypothetical set of parameter values.      
 
Keywords: Stage structure, Prey-Predator model, Parasitic Infectious disease, Stability, 

Lyapunov function, Persistence 
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1.  Introduction 
 
It is well known that, in nature species do not exist in exclusion. In fact, any given habitat may 
contain dozens or hundreds of species, sometimes thousands. Since any species has at least the 
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potential to interact with any other species in its habitat, the spread of a disease in a community 
may rapidly become astronomical as the number of infected species in the habitat increases. 
Therefore, it is more of a biological significance to study the effect of disease on the dynamical 
behavior of interacting species. In the last two decades, some prey- predator models with 
infectious disease have been considered. Freedman (1990) discussed a prey-predator model with 
parasitic infection and obtained conditions for persistence. Anderson and May (1986) remarked 
that a new strain of parasite could change the dynamics of a resident prey-predator or host-
parasite system. Mukherjee (1998) studied a generalized prey-predator system with parasitic 
infection and derived a condition for persistence and impermanence. Xiao and Chen (2001) 
investigated a prey-predator system with disease in the prey. They showed boundedness of 
solutions, the nature of equilibria, permanence and global stability, and observed Hopf-
bifurcation when the delay increases. Mukherjee (2003) considered delayed prey-predator model 
with disease in the prey and derived persistence conditions. Recently, Mukherjee (2006) 
analyzed a prey-predator model in which some members of a prey population and all predators 
are subjected to infection by a parasite. All these studies converged at one conclusion: that 
disease may cause vital changes in the dynamics of an ecosystem. 
  
On the other hand, it is well known that, the age factor is importance for the dynamics and 
evolution of many mammals. The rate of survival, growth and reproduction almost depend on 
age or development stage and it has been noticed that the life history of many species is 
composed of at least two stages, immature and mature, and the species in the first stage may 
often neither interact with other species nor reproduce, being raised by their mature parents. 
Most of classical prey-predator models of two species in the literature assumed that all predators 
are able to attack their prey and reproduce, ignoring the fact that the life cycle of most animals 
consists of at least two stages (immature and mature). In the last three decades several of the 
prey-predator models with stage-structure are proposed and analyzed [Wang (1997), Wang and 
Chen (1997), Wang et al (2001), Xiao and Chen (2003), Georgescu and Hsieh (2007)]. 
 
In this paper, a prey-predator model involving both stage structure and parasitic infectious 
disease is proposed and analyzed. The effects of the parasite infection disease and the stage 
structure on the dynamical behavior of prey-predator model are considered analytically as well 
as numerically.     
 
2.  Mathematical Model 
 
In this section, an eco-epidemiological model is proposed for study. The model consists of a 
prey, whose total population density is denoted by )(tX , interacting with predator whose total 
population density is denoted by )(tY . It is assumed that some members of the prey population 
and all predators are subjected to infection by a parasite. In addition, the formulation of the 
proposed eco-epidemiological model depends on the following assumptions: 
 
1.  In the absence of parasites and predators, the prey population grows                        

logistically with carrying capacity  )0( kk   and an intrinsic birth                         
rate constant )0( rr .  Then the evolution of the prey can be represented as: 
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2.  In the presence of parasites, the total prey population is divided into two classes, namely, the 

susceptible prey )(ts  and the infected prey )(ti , so that at any time t  we have 
)()()( titstX  .  Further, susceptible prey becomes infected, due to existence of parasites, 

at a specific infection rate of )0( 00  .  

 
3.  It is assumed that only susceptible prey are capable of reproducing logistically and that the 

infected prey population dies, with specific death rate constant )0( cc , before having the 
chance to reproduce. However, the infected prey population still contributes along with 
susceptible prey population to population growth towards the carrying capacity. Hence, the 
evolution equations of prey population become 
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4.  In the case of the existence predator, it is assumed that, the predator population   is divided 

in to two classes, immature predator, whose total population density is denoted by )(1 ty  and 

the other mature, whose total population density is denoted by )(2 ty . Moreover, only the 
mature predator can attack prey population (without distinguish between infected i  and 
healthy s  prey) according to Holling type-П functional response with maximum attack rate 

)0( aa  and half saturation constant )0( bb , and have reproduction ability. While, the 
immature predator does not attack prey and has no reproductive ability, instead of that, it 
depends completely on the food supplied by mature predator. 

 
5.  In addition to the above, it is assumed that, the immature predator becomes mature predator 

at a specific rate constant )0( DD , and the predator populations (immature and mature) 

decrease due to the natural death rates )0( 11 dd  and )0( 22 dd  respectively. 
 
6.  Finally, it is assumed that, susceptible prey individuals that infected by mature predators 

parasites are removed from the susceptible class at a specific rate proportional with mature 
predator population (i.e. 21y  where 01   is infection rate due to predator) and an 
equivalent number of prey are added to the infected class. 

 
Consequently, the dynamics of a stage structured prey-predator model with parasitic infection 
can be represented in the following set of equations: 
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In order to simplifying the proposed model represented by system (3), the following 
dimensionless variables and parameters are used: 
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Consequently, the proposed model can be written in the following dimensionless form:  
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The initial condition for system (4) may be taken as any point in the region  

 0,0,0,0:),,,( 21
4

21
4  YYISRYYISR . Obviously, the interaction functions in the 

right hand side of system (4) are continuously differentiable functions on 4
R , hence   they are 

Lipschitizian. Therefore the solution of system (4) exists and is unique. Further,   all the 
solutions of system (4) with non-negative initial condition are uniformly bounded   as shown in 
the following theorem.      
 

Theorem 1.   All the solutions of system (4), which initiate in 4
R   are uniformly bounded. 

 
Proof:  
Let ))(),(),(),(( 21 TYTYTITS  be any solution of system (4) with non negative initial condition 

),,,( 201000 YYIS . Since we have 
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 )1( SS
dT

dS
 .  

 
Then according to the theory of differential inequality [Birkhoof and Rota (1982)], we have 

 
0,)(  TMTSSup , where }1,max{ 0SM  .           

 
Now, consider the function:  )()()()()( 21 TYTYTITSTW  . Then the time derivative of  

)(TW  along the solution of the system (4) is: 

2918654 )(2 YwYwwwIwSS
dT

dW
 . 

 
Note that since the parameters 5w  and  6w  stand for the natural death rate of immature predator 

and the grown up rate of immature predator to mature predator respectively. While, 8w  

represents the conversion rate from immature predator to mature predator. Therefore the 
following condition always satisfied. 
 

865 www   .                                                                                                                        (5)  

 
Hence, we obtain: 
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dT
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where },,,1{min 98654 wwwwwm  .      

 
Again, due to the theory of differential inequalities we obtain 
    

mTmT e

W

me

M

m

M
TW 022

)(  , where ))0(),0(),0(),0(( 210 YYISW  . 

 
Thus, 0T  we have that 1)(0 MTW  , where  0

2
1 ,max WM m

M . Thus all solutions of 

system (4) are uniformly bounded, and then the proof is complete.                   
 
 
Keeping the above in view, since the dynamical system is said to be dissipative if and only if it is 
uniformly bounded, then system (4) is dissipative. 
 
3. Stability Analysis of 2D Predator Free Subsystem 
 
It is well known that according to the prey-predator interaction, the prey species can survive in 
the absence of predator,   and since the prey population is divided into two   classes namely 
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susceptible prey population S  and the infected prey population I . Hence, the following 2D 
predator free subsystem is obtained: 
 

 

),(

),(1

24
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ISgw
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 .                                                                                     (6)   

 
The analysis of local and global stability of subsystem (6) is carried out and the following results 
are obtained:  
 
1. The vanishing equilibrium point )0,0(0 P  always exists and its locally asymptotically 

stable provided that  
 
 11 w  .                                                                                                                                  (7) 
  

2. There is no axial equilibrium point such as 0ˆ);0,ˆ(1  SSP  on the S axis due to the fact 

that 01 w . However )0,1(1 P  exists if we set 01 w . 
 

3. The interior equilibrium point )
~

,
~
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)(. SIRInt   ,  where  
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exists under the following condition: 

  
11 w .                                                                                                                                    (9)  

 

Obviously, from a biological point of view the above condition 1)( 0
1 

r
w  , which means that 

the disease contact rate 0  is less than the reproduction rate r , is the necessary condition for the 

existence of (endemic) equilibrium point 2P  otherwise (i.e. when r0 ) 0dT
dS  and hence the 

prey species will face extinction. In addition, the equilibrium point 2P  is locally asymptotically 

stable whenever it exists. Further, the global dynamics of 2P  is carried out in the next theorem.             

   

Theorem 2.  The equilibrium point )
~

,
~

(2 ISP   is globally asymptotically stable in the 

 0,0;),(. 22
)(  ISRISRInt SI . 

 
Proof:    
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Consider the function SIISH 1),(  ; clearly ),( ISH  is 1C  function and is positive for all 

2
)(.),( SIRIntIS  . Note that  
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Hence ),( IS does not change sign and is not identically zero in the 2
)(. SIRInt  . Then according 

to Bendixon-Dulic criterion, there is no periodic solution in the 2
)(. SIRInt  . So, since all the 

solutions of the subsystem (6) are uniformly bounded and 2P  is unique equilibrium point in the 
2

)(. SIRInt  .  Hence by using the Poincare-Bendixon theorem 2P  is a globally asymptotically 

stable and hence the proof is complete.   
 
                                            
4.  Stability Analysis of 3D Disease Free Subsystem 
  
In the absence of disease the prey population contains only susceptible individuals and the 
following 3D disease free subsystem of system (4) appears: 
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Our analysis of subsystem (10) gave the following results: 
 
1. The vanishing equilibrium point  )0,0,0(0F  always exists and is unstable saddle point 

provided that condition (9) holds, while it is locally asymptotically stable provided that 
condition (7) holds. 

 
2. The axial equilibrium point )0,0,1( 11 wF  , exists under condition (9) and is locally 

asymptotically stable in the 3
)( 21YSYR  if and only if the following condition holds: 
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While it is unstable saddle point provided that 
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9873  wSww   Moreover, the global stability 

of 2F  is investigated in the following theorem.      
 

Theorem 3.  Assume that ),,( 212 YYSF   is locally asymptotically stable in the 3
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let the following conditions are hold 
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where )( 221 Ywa    and )( 3 Sw  . Then 2F  is globally asymptotically stable in the 
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Proof:  
 
Consider the following function:  
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along the trajectory of subsystem (10) can be written as 
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Therefore, according to conditions (15a-15c) we obtain that: 
                        

        

    .
2

222112

2

1122

2

2222

2

9

191

87

191

87

12

9

1





 





 

YYYY

YYSSYYSS
dT

dU

Y
w

Yw
Sww

Yw
Swwa

Y
wa





 

 

Hence, 0dT
dU , and then U  is strictly Lyapunov function. Therefore, 2F  is globally 

asymptotically stable in the 3
)( 21

. YSYRInt  .                                                                                

 
5.  Local Stability Analysis of System (4) 
 
In this section, the existence and local stability analysis of all possible equilibrium points of 
system (4) are discussed and the following results are obtained: 
 
1. The vanishing equilibrium point )0,0,0,0(0 E  always exists. 

2. There is no axial equilibrium point such as 0ˆ);0,0,0,ˆ(1  SSE  on the S -axis due to the 

fact that 01 w . However )0,0,0,1(1 E  exists if we set 01 w . 

3. The predator free equilibrium point )0,0,
~

,
~

(2 ISE  ; where S
~

 and I
~

 are given in 
Equation(8), exists under the condition (9) . 
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4. The disease free equilibrium point ),,0,( 213 YYSE  ; where S , 1Y  and 2Y  are given in 

Equation(12), exists under the conditions (13a-13b).  

5. The positive equilibrium point ),,,( 214
 YYISE ; where  

 

 
2

11*
2

*
2

8

9*
1

1

*
211*

1

*
2214* 1

,,
)(

,
)(

M

wS
YY

w

w
Y

M

Ywh
I

M

Ywwh
S











 ,            (16) 

 

with  *
22

*
24111 )( YwYwwM   ,  122  wM , )( ** ISS   and S  is given in 

Equation (12), exists uniquely in the 4. RInt  provided that conditions (13a-13b) hold.  
 
In addition, it is observed that, the eigenvalues of the Jacobian matrix of system (4) at 0E , say 

)( 0EJ , are: 

 
0,0)(,0,1 906504010 21

 wwwww YYIS   .                       (17) 

 

Therefore, 0E   is  unstable  saddle  point  with  locally stable  manifold  in  the 3
)( 21YIYR    

(i.e. 3)(dim s )   and  with  locally  unstable manifold in the S direction (i.e. 1)dim( u ) 

provided that condition (9) holds. However, it is locally asymptotically stable provided that 
condition (7) holds. 
The eigenvalues of Jacobian matrix of system (4) at 2E , say )( 2EJ ,  satisfy the following 
relations:   
 

 0)
~

( 422  wSIS                                                                                                 (18a) 

 

 0
~

)(. 4122  SwwIS                                                                                                 (18b)  

                                                                                                                                                                            
 0)( 96522 21

 wwwYY                                                                                   (18c) 

  

 
)1(
)1(

65922
13

187
21

)(.
ww
www

YY www 
   .                                                                           (18d) 

 
Note that, it is easy to verify that, according to Eqs. (18a-18d) all the eigenvalues of )( 2EJ  have 

negative real parts and hence  2E   is locally asymptotically stable in the 4
R  if and only if 

condition (11a) holds. However, 2E  is an unstable saddle point in the 4
R  with locally unstable 

manifold of dimension one (i.e. 1dim u ) and with locally stable manifold of dimension three 

(i.e. 3dim s ) if condition (11b) holds. 
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Now, the Jacobian matrix at the disease free equilibrium point ),,0,( 213 YYSE   can be written 

as: 
 

 3 4 4( ) [ ] ; , 1, 2,3,4,ijJ E b i j                                                                                         (19) 

 

where 2
1

232
2

1 )(
111 21


 YwwwSb  , 






  2

1

22112 
YwSb , 013 b ,   01

1

2
14  

wSb , 

02121  Ywb ,   0
1

22
422  

Ywwb , 023 b , 024  Sb ,  02
1

273
3231 


Ywwbb , 

0)( 6533  wwb , 0
1

7
34  

Swb , 04241  bb , 0843  wb , 0944  wb . Then the 

characteristic equation of the Jacobian matrix )( 3EJ is given by: 

 

043
2

2
3

1
4  AAAA                                                                                      (20a)  

 
Here, )( 211  A , 2132  A , 44331323  bbA  , )( 6543314   bbA  with 

22111 bb  , 44332 bb  , 221121123 bbbb  , 24144 bb  , 241222145 bbbb   and 

211424116 bbbb  . 

 
Note that, according to the elements of )( 3EJ , it is easy to verify that: 

 

  12214232
2

11
2

1
1

1 )()()21(2
1




YwwYwwwS  , 

 
0)( 9652  www , 

 

  )()()21())(( 2214232
2

11
2

121
2

122
1

3 2
1

YwwYwwwSYwYwS  


,  

 

0
1

2
4   Sw ,                                                                                                                                                  

 

 )())(( 2
1222214215 2

1




 YwSYwwwS , 

 

 22121
2

16 )21(2
1

YSwwwSS  


. 

 
Further 
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   
  .)()()( 433165

2
2144433132431

214243313
2
2414331321

2
3

4
2
1

2
3321

bbbb

bbbb

AAAAAA











                 (20b) 

 
Now, from the Routh-Hurwitz criterion all the eigenvalues of the )( 3EJ  have roots with 

negative real parts and hence 3E  is locally asymptotically stable in the 4
R , if and only if 

0)4,3,1( iAi  and 0 .  

 
Straight forward computations show that, 1  and 3  are negative while 5  and  6  are positive 

under the following condition: 
 

2

2
1

2
2

2111

32
2

1

2
11 0,

])12[(
,

)21(
max

w
Y

Sw

wwS

ww

wS 















 




.                                        (21a) 

 
Consequently, we obtain that 0iA  for 4,3,1i . Moreover, in addition to condition (21a), it is 

observed that 0  provided that:  
   

 )()()(
1

65
2

2144433132
43

1 


  bb  .                                             (21b) 

 
Hence, from to the above analysis, the following theorem can be proved easily.     
 

Theorem 4. Assume that the disease free equilibrium point ),,0,( 213 YYSE   exists in the 4
R , 

then 3E  is locally asymptotically stable if and only if conditions (21a-21b) are hold.                                             

 
 
Finally, the Jacobian matrix of system (4) at the positive equilibrium point 

),,,( *
2

*
1

**
4 YYISE  can be written as: 

 

4 4 4( ) [ ] ; , 1, 2,3,4,ijJ E c i j                                                                                             (22) 

  

where 





  2

1

*
221*

1211 
YwScc , 0,0 21413

1

*
  Mcc S

 , 02
1

**
22*

2121 


IYwYwc , 

2
1

**
22

*

**
21 )(

22 
IYw

I

SYwc   , 
1

*
2*

2423 ,0 
IwScc  , 02

1

*
273

3231 


Ywwcc , 0
19

87
33  

w
Swwc , 

0
1

7
34  

Swc , 04241  cc , 0843  wc , 0944  wc . Accordingly the characteristic 

equation of )( 4EJ  is given by: 
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043
2

2
3

1
4  BBBB  .                                                                                     (23) 

  
Here, )( 211  B , 2132  B , 44331323  ccB  , )( 6543314   ccB , with 

22111 cc  , 44332 cc  , 221121123 cccc  , 24144 cc  , 241222145 cccc  , 

211424116 cccc  , and 

             
* 2 2

1 2 3 3 1 4

2 2
3 1 2 3 31 43 1 4 2 3 31 43 2 4 1 2

2
1 3 4 2 3 31 43 4 4 1 2 5 6 31 43( ) ( ) ( ) .

B B B B B B

c c c c

c c c c

           

          

   

      
        

 

  
So, due to the elements of )( 4EJ , it is easy to verify that: 
 

   2
1

*
2

*
2

*

**
21

2
1

* )(2
1

*
221 

 YIw

I

SYwS Yw   , 092
19

87  w
w

Sww
 ,  

  







 





  

*

**
21

2
1

*
22 )(*

21
*

3 1
I

SYwYw YwS


 , 0
1

2
4   Sw , 

 

 





 





 






  

1

*
2

2
1

*
22

*

**
21

2
1

**
22

1

2
*

**)(
5 1  IwYw

I

SYwIYwMS SS , 

 

 





 






 





  2

1

*
2

*
2

1

2
*

2
1

*
22

1

*
2 *

21
**

6 1
 YIwMSYwIw YwSS . 

 
Therefore, in the following theorem, the local stability conditions for the positive equilibrium 

point 4E  in the 4. RInt  is established.  
 

Theorem 5.   Assume that ),,,( *
2

*
1

**
4 YYISE   exists in the 4. RInt  and the following conditions 

are satisfied: 
 

1

*
2*


Iw

S  ,                                                                                                                      (24a)       

 

2

2
1*

2
212

1
*

2211
*2

1 0,
)]()([

max
w

Y
MSw

wIwSwwS 




















,                                        (24b) 

 

 )()()(
1

65
2

2144433132
43

1 


  bb .                                                    (24c) 
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Then, 4E  is locally asymptotically stable in the 4. RInt  . 
 
 
Proof:  
 
According to the Routh-Hurwitz criterion the proof follows   if and only if 0)4,3,1( iBi  and 

0*  . Now, straightforward computations show that under the conditions (24a-24b) we obtain 
that 1  and 3  are negative while 5  and  6  are positive.  

 
Consequently, due to the coefficients of Equation(23) and elements of )( 4EJ , we get that 0iB  

for 4,3,1i . Moreover, it is easy to verify that 0*   if and only if in addition to the conditions 

(24a-24b), condition (24c) holds too. Hence, )( 4EJ  have eigenvalues with negative real parts. 

Therefore 4E  is locally asymptotically stable in the 4. RInt  and the proof is complete.                                  
                   
 
6.  Global Dynamical Behavior of System (4) 
 
In this section the global stability for the equilibrium points of system (4) is investigated using 
the Lyapunov method as shown in the following theorems.  
 
Theorem 6. Assume that the vanishing equilibrium point 0E  of system (4) is locally 

asymptotically stable in the 4
R . Then 0E  is globally asymptotically stable in the 4

R . 

 
Proof:     
 
Consider the function  
  

241321210 ),,,( YcYcIcScYYISV  .                  (25) 

 

Clearly RRV 
4

0 :  is 1C  positive definite function, where )4,3,2,1(, ici  are nonnegative 

constants to be determined. Now, since the derivative of  0V  along the trajectory of system (4) 

can be written as: 
 

 

0 1 2 3 7

1 2 3 7

2
1 1 1 2 1 1 1 1 2 2 2

2 4 2 3 5 6 4 8 1 4 9 2

( ) ( )

( ) ,

dV c w c w
dT

c w c w

c c w c w S c S c SI c c SY SY

c w I IY c w w c w Y c w Y









       

     
 

   

where )( 3 ISw  . Now choosing the positive constants 11 c , 02 c , 
71

2
3 ww

wc   and 

871

652 )(
4 www

wwwc  , yield that 
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    .11 22
1

1
1

20 IYSYSw
w

w
dT
dV    

 

Clearly 00 dT
dV  under the local stability condition (7), hence 0V  is strictly Lyapunov function. 

Therefore 0E  is globally asymptotically stable in the 4
R .         

 
 
Now, in the following theorem we will study the global behavior of 2E . 
 
Theorem 7.  Assume that the predator free equilibrium point 2E  is locally asymptotically stable 

in the 4
R , and let the following conditions:  

 

I

w

I

Iw 41 2


 ,                                                                                                               (26) 

 

7

9222
~

)(
~

w

wwIwwS






                                                                                                 (27) 

  

hold, then 2E  is globally asymptotically stable in the 4
R . 

 
Proof:  
 

Let     21~~212
7

2

7

2ln
~~

ln
~~

),,,( YYIIISSSYYISV
w
w

w
w

I
I

S
S  . Clearly RRV 

4
2 :  is 1C  

positive definite function. Now, according to conditions (26) it is easy to verify that: 
              

    .
~~~

2
)(

~

2
)

~~
(

2

7

86522

7

92242 YYSIISS
w

wwww
I

SYI
w

wwISw
I

w
dT
dV  





 






    

 

Therefore, 02 
dT
dV

 under condition (27), and hence 2V  is strictly Lyapunov function. Therefore, 

2E  is globally asymptotically stable in the 4
R .          

 
Theorem 8.   Assume that the disease free equilibrium point 3E  is locally asymptotically stable 

in the 4
R . Then 3E  is globally asymptotically stable in the following region  

 

 1 2 2 1 2

4 1

( ) ( )
1 2 1 1 2( , , , ) : , , , .w Y S w Y

wS I Y Y S S I Y Y Y 


        

Proof:     
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Consider the following function:  
 

  




 





 

2

2

1

1 lnlnln),,,( 2224111321213 Y
Y

Y
Y

S
S YYYcYYYcIcSSScYYISV . 

 

Clearly RRV 
4

3 :  is 1C  positive definite function, where )4,3,2,1( ici  are positive constants 

to be determined. Note that, simple mathematical manipulations give that:  
  

 

     
         

     

3 3 7 8 2 2

9 1 1

4 9 3 3 7 22 1 2

2 1 1 1

3 7 1 4 8 3 3 7 2

1 1 2 1 1

2 2

1 1 2 1 2 1 2 4 1 1 2

2

2 2 1 2 2 1 1

( )
1 1 2 2 1 1

( )

1

.

dV c w w S c w
dT w Y

c w c w w IYw w
Y Y

c w S SI c w c w w Y
Y Y Y

c S S c I c w Y S c S c w I Y Y IY

Y Y c Y Y S S Y Y

Y Y Y Y S S Y Y

 


  


 





            

         
        

  

 

So, choosing the positive constants as 41 wc  , Sc 2 , 
7

1
3 w

c   and 14 c  gives: 
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       

     

 

Clearly 03 
dT
dV

 in   , and then 3V  is a strictly Lyapunov function. Therefore 3E  is globally 

asymptotically stable in the region .                                                  
 

Obviously,   in the above theorem represents the basin of attraction for 3E  in 4
R . Finally, in 

the following theorem, the conditions of global asymptotic stability of the positive equilibrium 
point 4E  are established.  
 

Theorem 9.  Assume that the positive equilibrium point ),,,( *
2

*
1

**
4 YYISE   is locally 

asymptotically stable in the 4. RInt  with  
 
 2,1;0  iei                                                                                                            (28a) 
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where )( *
2211 Ywe    and  *

2
*

2
*
21

*
12 )( YIIwYwSe   . Then 4E  is globally 

asymptotically stable in the 4. RInt . 
 
Proof:     
 
Consider the following function 
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Therefore, according to conditions (28a-28d), it is easy to verify that: 
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So, 04 dT
dV , and then 4V  is strictly Lyapunov function. Therefore, 4E  is globally asymptotically 

stable in the 4. RInt .                                                                                         
 
In the following section, the persistence condition for system (4) is established. 
 
 

17

Naji and Al-Jaf: The Dynamics of Stage Structured Prey-Predator Model

Published by Digital Commons @PVAMU, 2011



546                                                                                                                    Raid Kamel Naji and Dina Sultan Al-Jaf 
 

7.  Persistence Analysis  
 
In this section, the persistence of system (4) is studied. It is well known that the system is said to 
persist if and only if each species persists. Mathematically, this means that, system (4) persists if 
the solution of the system with positive initial condition does not have omega limit set on the 
boundary of its domain [see Xiao and Chen (2003)]. In the following theorem the persistence 
conditions of system (4) are established. 
 
Theorem 10. Assume that the equilibrium points 2E  and 3E  are globally asymptotically stable 

in the interior of 2
)(SIR  and 3

)( 21YSYR  respectively. In addition, if conditions (9) and (11b) are 

hold together with the following condition: 
 

03 I  .                                                                                                                               (29)  

  
Here, I3  represents the eigenvalue of )( 3EJ  that describe the dynamics in the positive 

direction of I . Then system (4) persists.  
 
Proof:  
 

Suppose that q  is a point in the 4. RInt  and )(qo  is the orbit through q . Let )(q  is the omega 
limit set of the )(qo . Note that )(q  is bounded, due to the boundedness of system (4). 
 
We first claim that )(0 qE  . Assume the contrary, then since 0E  is a saddle point due to 

condition (9), thus 0E  cannot be the only point in )(q , and hence by Butler-McGhee lemma 

[Freedman and Waltman (1984)] there is at least one other point, say p , such that 

)()(
0

qEp s  , where )(
0

Es  is the stable manifold of 0E . Now, since )(
0

Es  is the 

space 3
)( 21YIYR  and the entire orbit through p , which denoted by )( po , is contained in )(q . 

Then, if 3
)( 21YIYRp   (i.e. on the boundary axes of 3

)( 21YIYR ), we obtain that the positive 

specific axis (that containing p ) is contained in )(q  contradicting its boundedness. Now, let 
3

)( 21
. YIYRIntp   . Since there is no equilibrium point in the 3

)( 21
. YIYRInt   , the orbit through p  

which is contained in )(q  must be unbounded. Giving a contradiction too, this shows that 

)(
0

qE  .   

 
Now, we show that )0,0,0,1( 11 wE   cannot be in )(q . Since 1E  is saddle point under 

condition (11b). Then again by Butler-McGhee Lemma )()( 11 xEp s   , Also, since 

)( 1Es  could be either the space 3
)( 1SIYR  or the space  3

)( 2SIYR . Suppose that )( 1Es  is the 

space 3
)( 1SIYR  (similar proof for the space 3

)( 2SIYR ). Note that, if 3
)(1

1SIYRp  , then we get 
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contradiction as in the first part of proof. Let now, 3
)(1 1

. SIYRIntp  , again since there is no 

equilibrium point in the 3
)( 1

. SIYRInt  , then the )()( 1 qpo   is unbounded, which gives a 

contradiction to the boundedness of )(q . Thus, )(1 qE  . 
 

Now, since the points 32   and  EE  are saddle points in the 4
R  under the conditions (11b) and 

(29) respectively. Then by using argument completely analogous to the above yields 32 , EE  

cannot contained in )(q . Thus )(q  must be in the 4. RInt , which proves persistence of  the 
system (4).    
                        
8.  Numerical Simulation  
 
In this section the global dynamics of system (4) is studied numerically by solving it, for 
different sets of parameters and for different sets of initial conditions, using predictor-corrector 
method with six order Runge-Kutta method, and then the time series for the trajectories of 
system (4) are drown. Note that, we will use solid line type for S ; dash line type for I ;  dot line 
type for 1Y  and dash-dot line type for 2Y  in the all of the following figures. Now, for the 
following set of hypothetical set of parameter values: 
  

1.0,3.0,1.0,3.0,1.0,4.0,2.0,2.0,35.0 987654321  wwwwwwwww      (30) 

 
It is observed that the equilibrium points 43  and EE  do not exist, while 2E  is a global 

asymptotically stable point, as shown in Figure (1). 
 

 
Figure 1: Time series of the trajectories of system (4), for data given in 

Equation (30), which shows Global asymptotically stable point 
(0.346, 0.3, 0, 0).  
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In order to investigate the effect of the infection rate (i.e., parameter 1w ) on the dynamics of 

system (4) in case of existence of 4E , the system is solved numerically for different values of 1w  

with 3.0 and 4.0 72  ww , while the rest of parameters kept constant as given in Equation (30) 

and then the trajectories of system (4) are drown in the Figure (2a-2d). 
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Figure. 2: Time series of the trajectories of system (4), for data given in 

Equation (30) with 4.02 w and 3.07 w , which shows that: 

(a) Periodic attractor for 35.01 w  (b) Global asymptotically 

stable point )2.0,069.0,078.0,08.0(  for 5.01 w . (c) Global 

asymptotically stable point )0,0,08.0,037.0(  for 84.01 w . 

(d) Global asymptotically stable point )0,0,0,0(  for .11 w  

 
 
According to the above results, it is observed that the trajectory of system (4) approaches 
periodic dynamics for 39.01 w  as shown in the typical Figure(2a), while it approaches globally 

asymptotically stable point in the 4. RInt  for 84.039.0 1  w  as shown in Figure (2b).  However 

for the 184.0 1  w  and  11 w , system (4) losses the persistence and the trajectory approaches 

to the equilibrium point )0,0,08.0,037.0()0,0,
~

,
~

( IS  in the 2
)(. SIRInt   and the vanishing  

equilibrium point )0,0,0,0(  respectively as shown in  Figures (2c-2d) .      
     
Finally, the effect of the conversion rate, at which the immature predator becomes mature (i.e. 
parameter 8w ), on the dynamics of system (4) is investigated. Here the system is solved 

numerically for the values  3.0,4.0,5.0 721  www  while the rest of parameters kept 

constant as given in Equation (30) and then the trajectories of system (4) are drown in the 
Figures (3) and (4a-4b) for 38.0and34.0,18.0 888  www  respectively. 
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Figure 3: Time series of the trajectories of system (4) with 18.08 w , which 

shows global asymptotically stable point (0.22, 0.27, 0, 0). 
 

 
Figure 4: Time series for the trajectories of system (4) which shows that:  (a) 

Periodic attractor for 34.08 w . (b) Periodic attractor for 38.08 w . 
 
Obviously, as 8w  increases, our numerical analysis shows that for 18.08 w  the trajectory of 

system (4) approaches to the equilibrium point )0,0,27.0,22.0()0,0,
~

,
~

( IS  in the 2
)(. SIRInt   as 

shown in Figure (3) and hence system (4) is not persists. However the trajectory of system (4) 
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approaches to globally asymptotically stable point for 33.018.0 8  w   as shown in Figure (2b), 

while it is approaches to periodic dynamics for 33.08 w  as shown in Figures (4a-4b). 

 
9.  Conclusions and Discussion 
 
In this paper, an eco-epidemiological model has been proposed and analyzed. Our main objective 
is to understand the effect of parasite infection disease and stage structure on the dynamics of the 
prey-predator system. As such, the dynamical behavior of system (4) and all possible subsystems 
have been investigated analytically. The persistence conditions of system (4) have been derived. 
Moreover, the effects of changing the parameters on the dynamical behavior of system (4) are 
discussed numerically and the following results are obtained:  
 
1.  For the effect of varying 1w , keeping other parameters fixed as in Equation (30) with 

3.0,4.0 72  ww , it is obtained that, for small value of infection rate say ( 39.01 w ) the 

trajectory of system (4) approaches a periodic dynamics in the 4. RInt . As the infection rate 

increases 84.039.0 1  w  the trajectory of system (4) approaches a globally asymptotically 

stable point in the 4. RInt . Finally, system (4) losses persistence for 84.01 w . Consequently, for 

84.01 w  the disease is under control and the system persists, for 184.0 1  w  the disease is 

still under control but the system losses its persistence; finally for 11 w  the disease is 
uncontrolled.     
2.  For the effect of varying 8w ,  keeping other parameters fixed as, in Equation (30) with 

3.0,4.0,5.0 721  www , it is obtained that, for small value of conversion rate say 18.08 w  

system (4) losses the persistence, as the conversion rate increases 33.018.0 8  w   the 

trajectory of system (4) approaches to globally asymptotically stable point in the 4. RInt  finally 

the trajectory of system (4) transfers to periodic dynamics in the 4. RInt  for  33.08 w . 

Consequently, for 18.08 w ,  system (4) is not persists, while for 18.08 w  the system is 

persists.  
 
3. Keeping the above in view, mathematically it is observed that, as the infection rate 1w  

decreases and passing through the value 39.01 w  the positive equilibrium points losses its 

global stability and the trajectory of system (4) approaches periodic dynamics in the 4. RInt  and 
hence a hopf bifurcation occurs at this value. Similarly as shown in Figure (4), a hopf bifurcation 
occurs as the value of conversion rate passes through 33.08 w . 
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