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Abstract 

The flow induced by sinusoidal peristaltic waves of a particle-fluid suspension in a two-
dimensional diverging channel under low Reynolds number and long wavelength approximation 
has been investigated. The analytical expression for the flow characteristics-the flow rate, 
pressure rise and friction force have been derived. Moreover, we present some results concerning 
the dependence of these quantities on the geometrical parameters. 
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1.   Introduction 

 
Peristalsis, a well known phenomena to the engineers and physiologists and responsible for fluid 
transport in many biological organs [Srivastava and Srivastava (1984)], has been the subject of 
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scientific research for about four and half decades since the first investigation of Latham (1966). 
It is a form of fluid transport induced by a progressive wave of area contraction or expansion 
along the walls of a distensible duct containing a liquid or mixture. Besides its various 
engineering applications (e.g., heart-lung machines, finger and roller pumps, etc.), it is known to 
be a significant mechanism responsible for fluid transport in many biological organs including in 
swallowing food through esophagus, urine transport from kidney to bladder through the ureter, 
movement of chyme in gastrointestinal tract, transport of spermatozoa in the ductus efferentes of 
the male reproductive tracts and in cervical canal, in movement of ovum in the female fallopian 
tubes, transport of lymph in lymphatic vessels, and in the vasomotion of small blood vessels such 
as arterioles, venules and capillaries.  
 
Jaffrin and Shapiro (1971) explained the basic principles of peristaltic pumping in a two-
dimensional channel and brought out clearly the significance of the various parameters 
governing the flow. A review of most of the theoretical and experimental investigations reported 
up to the year 1994 has been presented in Srivastava and coworkers (1984, 1995).  Important 
contributions beyond this, and of recent years, include the studies of Srivastava and Srivastava 
(1997), Mekheimer et al. (1998), Hakeem et al. (2002), Srivastava (2002), Misra and Pandey 
(2002), Hayat and coworkers (2002; 2006a,b; 2008), Mekheimer (2003), Misra and Rao (2004), 
Srivastava (2007a), Ali and Hayat (2008), Medhavi and coworker (2008a,b, 2010), and a few 
others.  

The theoretical study of particle-fluid mixture is very useful in understanding a number of 
diverse physical problems concerned with powder technology, fluidization, transport of solid 
particles in liquid and liquid slurries in chemical and nuclear processing, and metalized liquid 
fuel slurries for rocketry. The sedimentation of particles in a liquid is of interest in many 
chemical engineering processes, in medicine where erythrocytes sedimentation has become a 
standard clinical test, and in oceanography as well as in other fields. Recently, interest is 
developing in applying the particulate suspension theory to physiological flows as it provides 
improved understanding of the subjects such as diffusion of protein, the rheology of blood, the 
swimming of microorganism, the particle deposition on respiratory tract, etc. 

Peristaltic transport of a particle-fluid mixture has been studied by Hung and Brown (1976), 
Srivastava and Srivastava (1989, 1997), Mekheimer et al. (1998), Srivastava (2002), Medhavi 
and Singh (2008b), and a few others. Barring a few [Gupta and Seshadri (1976); Srivastava and 
coworkers (1982, 1983, 1985, 1988); Mekheimer (2002); etc.)], most of the studies in the 
literature have been conducted in uniform geometry whereas it is known that in most of the 
practical applications, particularly, in physiological flows, the flow geometry is found to be non-
uniform. With increasing interest in particulate suspension flow due to its direct applications to 
diverse physical problems, the present investigation is devoted to study the flow of a particle-
fluid mixture in a non-uniform channel induced by sinusoidal peristaltic waves. In view of the 
theoretical model for blood flow proposed in Srivastava and Srivastava (1983) and discussed 
briefly in Srivastava and coworker (2007b, 2009), it is believed that the theoretical study 
presented here may be applied to study the peristaltic induced flow of blood in small vessels with 
varying cross-section. 
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                         Figure 1. Peristaltic pumping in a diverging channel 

 

2.  Formulation of the Problem     

 

Consider the flow of a particulate suspension through a two-dimensional channel of non-uniform 
width with a sinusoidal wave traveling down its wall. The geometry of the wall surface is 
described as (Figure 1) 

 H(x,t) = d(x) + b sin

2 (x - ct) ,                                                           (1) 

with   

d(x)  = do + k x ,                                                             (2)  

where d(x) is the half width of the channel at any axial distance x from inlet, do is the half width 
of the channel at inlet, k (<<1) is a constant whose magnitude depends on the length of the 
channel and exit and inlet dimensions, b is the amplitude of the wave,   is the wavelength, c is 
the wave propagation velocity and t is the time. 

 

We introduce the following dimensionless variables as 

x’= x/ , y’=y/do, t
’=ct/ , (u’

f, u
’
p) = ( pf ,uu )/c, (v’

f, v
’
p) =  ( pf vv , )/cdo, 

p’=pd 2
o / ocμ , ,os /μμμ   S’ =S d oo /μ2 ,  

where (x, y) are Cartesian coordinates with x measured in the direction of the wave and y 
measured in the direction normal to the mean position of the channel walls; (u f ,v f ) denotes the 

fluid phase and ( pp vu , ) particle phase velocity components along (x, y) directions respectively; 

f , p be the actual densities of the material constituting fluid and particulate phases 

respectively; (1-C) f  is the fluid phase density, C f  the particulate phase density; p denotes 

the pressure and C denotes the volume fraction of the particles; s (C)  s  is the suspension 

viscosity and S being the drag coefficient of interaction for the force exerted by one phase on the 
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other. The limitations of present theoretical model are well stated in Srivastava and coworkers 
(1983, 2009). An applications of the above mentioned non-dimensional variables and using a 
continuum approach, the equations governing the linear momentum and the mass for both the 
fluid and particle phases [Srivastava and Srivastava (1989)] after dropping the primes, are 
obtained as 
 

(1-C) 



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pp vC
y
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                                                                (8) 

 
R e = c oof /μdρ  and /λdδ o are Reynolds number and the wave number respectively. 

  
The empirical relation for the viscosity of suspension, s  and the expression for the drag 

coefficient of interaction, S are selected as [Srivastava and Srivastava (1989); Srivastava 
(2007b)] 

 

s (C)= o / (1–mC),   

 
m = 0.070 exp [2.49C+ (1107/T) exp (-1.69C)],                                                                (9)  
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9
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3]38[34
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(10)                         

 
where o  is the fluid viscosity (suspending medium), ao  is the radius of a particle and T is 

measured in absolute temperature (oK). The viscosity of the suspension expressed by the formula 
(9) is found to be reasonably accurate up to C=0.6 (i.e., 60% hematocrit in the case of blood). 
 
Jaffrin and Shapiro (1971) observed that the Reynolds number is quite small when the 
wavelength is large, and therefore, the inertial convective acceleration terms may be neglected in 
comparison to viscous terms. Under the long wavelength approximation of Jaffrin and Shapiro 
(1971), the equations (3)-(8) governing the flow in its non-dimensional form in the laboratory 
frame of reference reduce to  
 

(1-C) ),()1(
2

2

fp
f uuSC

dy

ud
C

dx

dp
                                          (11) 

  

                            C ,)( pf uuSC
dx

dp
                                              (12) 

 
The non-dimensional boundary conditions are   

 

 uf  = 0 , at    y = h = H/d o = 1+ 
od

xk 
+  sin 2  (x-t),                                           (13) 

00 








yat

y

u

y

u pf .                                                (14) 

  
with  
 

odb / . 

 
The boundary conditions given in equations (13) and (14) are respectively standard no-slip 
condition at the channel walls and the symmetric condition at the axis. 
 
 
3.   Analysis 
 
The expressions for the velocity profiles, uf  and up, obtained as the solution of the equations (11) 
and (12) subject to the boundary conditions (13) and (14) are given as 

 

)(
)1(2

1 22 yh
dx

dp

C
u f 





,                                              (15) 
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The flow flux, q(x, t) is now calculated as 
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3
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with   = SCC /)1(3  , a non-dimensional suspension parameter. 
 
The pressure rise )(tpL and the friction force at the wall, F )(tL  in the channel of length L in 
their non-dimensional form are obtained as 
 

)(tpL = dx
dx

dp
L

o

/
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)(
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Setting k = 0 in equations (19) and (20), one obtains the expressions for pressure rise and friction 
force for a particle-fluid suspension in a uniform channel. In the absence of the particulate phase 
(i.e., C = 0), the expressions given in equations (19) and (20) reduce to the results obtained in 
Gupta and Seshadri (1976) for a Newtonian fluid in a non-uniform channel. Also, with k = 0 and 
C = 0 in equations (19) and (20), one derives the results obtained in Jaffrin and Shapiro (1971) in 
the laboratory frame of reference. 
 
 
4.   Results and Discussion 
 
Computer codes are now developed to evaluate the analytical results obtained in equations (19) 
and (20) at the temperature of 25.5o C in order to observe the quantitative effects of the various 
parameters on the flow characteristics-the pressure rise and the friction force. We assume the 
form of instantaneous flow rate q(x, t), periodic in (x-t) as [Gupta and Seshadri (1976)] 
 

q (x, t)  = Q +  2sin  (x-t) ,                                                        (22) 
 
where Q is the time average of the flow over one period of the wave. This form of q(x, t) has 
been assumed in view of the fact that the constant value of q(x, t) gives )(tpL  always negative 
and hence there will be no pumping action. Using the form of   q(x, t) given in equation (22), we 
compute the dimensionless pressure rise )(tpL  and friction for )(tFL over the channel length 
for various values of the dimensionless flow average Q, amplitude ratio   and particle 

concentration, C. The average pressure rise Lp and the friction force FL are then evaluated by 

averaging )(tpL  and )(tFL , respectively, over one period of wave. Some of the critical results 
are displayed graphically in Figures 2-11. 
 
The various parameters values selected [Srivastava and Srivastava (1984); Mekheimer (2002)] 
are 

 

d o  = 0.01 cm,  L =   = 10 cm,     k = 
L

do5.0
 = 0.0005. 

For any given flow rate Q, the pressure rise, )(tΔpL  (hereafter denoted by Δp ) increases with 
particle concentration, C but for a given particle concentration, C the pressure rise, Δp decreases 
with increasing flow rate, Q (Figure 2). The flow characteristic, Δp  assumes much smaller 
magnitude in non-uniform channel than its corresponding magnitude in the uniform channel 
(Figures 2 and 3).  The average pressure rise Lp versus time average flow rate, Q has been 
plotted in Figure 4 in a non-uniform channel which indicates a linear relationship between 

Lp and Q and thus the maximum flow rate is achieved at zero pressure rise and maximum 

pressure occurs at zero flow rate. The flow characteristic, Lp is found to be indefinitely 
increasing with increasing amplitude ratio,   for any given flow rate, Q and the particle 
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concentration C (Figure 5). The magnitude of Lp assumes a very high asymptotic value at 
about   = 0.6 in both the uniform and non-uniform channels (Figures 5 and 6). 
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Fig.4 Pressure-flow rate relationship for different  and C in a 
         non-unioform channel.
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Fig. 5 Variation of pressure rise, p
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 with amplitude ratio,  for
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Fig. 6 Variation of pressure rise, p
L
 with amplitude ratio,  for

         different Q and C uniform channel.

p
L



   

However, as expected Lp assumes reasonably smaller value in non-uniform channel than its 

corresponding magnitude in uniform channel. The average pressure rise, Lp versus C has been 
displayed in Figures 7 and 8 for non-uniform and uniform channels, respectively. The flow 
characteristic, Lp increases with C at zero flow rate for any given amplitude ratio,  , however, 
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the nature in the variation of Lp with C is highly influenced with decreasing values of the 
amplitude ratio,   for any given non-zero value of the average flow rate, Q. It is noticed that for 

any given flow rate, Q, the flow characteristic, Lp increases with amplitude ratio,   (Figures 7 
and 8).  

 

For any particle concentration, C the friction force, )(tFL  increases with flow rate, Q but 
decreases with increasing particle concentration, C for a given flow rate, Q (Figure 9). The flow 
characteristic, )(tFL assumes higher magnitude in uniform channel than its corresponding 
magnitude in non-uniform channel (Figures 9 and 10). One notices that the average friction force 
FL increases with the flow rate, Q for any given particle concentration, C and the amplitude ratio, 
  retaining the linear relationships between the average friction force FL and the flow rate, Q 

(Figure11).The inspection of Figures 2 and 9 reveals that the flow characteristics, )(tFL  
possesses characteristics opposite to that of the pressure rise, Δp  for any given set of the 
parameters. The similar conclusion may be drawn in the case of their averaged values, FL and 

Lp from Figures 4 and 11.     
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