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Abstract 
 
In this paper, a user friendly algorithm based on the homotopy perturbation method (HPM) is 
proposed to solve a system of generalized Abel’s integral equations. The stability of the solution 
under the influence of noise in the input data is analyzed. It is observed that the approximate 
solutions converge to the exact solutions. Illustrative numerical examples are given to 
demonstrate the efficiency and simplicity of the proposed method in solving such types of 
systems of Abel’s integral equations.  
 
Keywords: Homotopy Perturbation Method, System of Generalized Abel’s Integral 
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1. Introduction 
 
The Volterra integral equations were studied by Traian Lalescu in his thesis, Sur les equations de 
Volterra, written under the supervision of Emile Picard. Lalescu (1912) wrote the first book ever 
on integral equations. These equations find applications in demography, the study of viscoelastic 
materials, and in insurance mathematics through renewal equation. Volterra integral equations 
arise in many problems pertaining to mathematical physics like heat conduction problems. Many 
interesting problems of mechanics and physics lead to an integral equation in which the kernel 

),( txK  is of convolution type, that is, ),(),( txktxK  where k  is a certain function of one 
variable. Recently, systems of Volterra integral equations of convolution type have attracted the 
attention of many authors and several different methods have been developed to solve these 
numerically. In particular, we consider the following system of singular Volterra integral 
equation of convolution type 

 

)()()()()(
0

xfdttyatxkxyxc
x

  ,              ,10  x                                                 (1) 

 
where jiji xcxc ))(()(  , jijiaa )( are square matrices of order n , 

 

 T
n xyxyxyxy )(,),(),()( 21   and  Tn xfxfxfxf )(,),(),()( 21          (2) 

 
are column vectors and iiii )(   and iiii txktxk ))(()(   are diagonal matrices of order n .                          

 
In equation (1), the functions k  and f  are given and y  is the vector function of the solution of 
the system (1) to be determined. Here, we assume that the system (1) has a unique solution. If the 
domain of definition of the kernel is infinite, or if the kernel has a singularity within its domain 
of definition, then the integral equation is said to be singular. In certain cases, the kernel is only 
weakly singular as the singularity may be transformed away by a change of variable. In the 
Volterra integral equations system of convolution type, if at least one of the integral equations is 
singular, then the system is called system of singular Volterra integral equations of convolution 
type. There are several numerical method for solving equation (1) for example, Galerkin, 
collocation, Taylor series and Taylor polynomials Methods, [Burton (2005), Maleknejad and 
Kajani (2004), Maleknejad and Aghazadeh (2005) and Yalsinbas (2002)]. Recently a number of 
algorithms have been proposed based on Legendre wavelets [Malekkejad and Kajani (2003)] 
Chebyshev polynomials [Malekkejad et al. (2007)], Bernstein polynomials [Pandey et al. 
(2009)], Expansion method [Rabbani (2007)], Power Series method [Tahmasbi and Fard (2008)] 
and almost Bernstein operational matrix method [Singh et al. (2010)]. 

For the special case when the kernel ,
)(

1
)( tx

txk


 where is a diagonal matrix of order n  

with all the entries lying in (0, 1): the system (1) reduces to a system of generalized Abel’s 
integral equations. 
  
In this paper, we have developed a simple algorithm based on homotopy perturbation method for 
the numerical solution of system of generalized Abel’s integral equations.   
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2.  Basic Idea of Homotopy Perturbation Method  
 
In this method, using the homotopy technique of topology, a homotopy is constructed with an 
embedding parameter  1,0p , which is considered as a “small parameter”. This method 
became very popular amongst the scientists and engineers, even though it involves continuous 
deformation of a simple problem into a more difficult problem under consideration. Most of the 
perturbation methods depend on the existence of a small perturbation parameter but many 
nonlinear problems have no small perturbation parameter at all. Many new methods have been 
proposed in the late nineties to solve such nonlinear equation devoid of such small parameters 
[Dehghan and Shakeri (2008, 2008), Ganji and Rajabi (2006), He (1999, 1999), Lio (1999, 
1997)]. Late 1990s saw a surge in applications of homotopy theory in the scientific and 
engineering computations [Abbasbandy (2006, 2007), Aminikhah and Salahi (2009), Biazar et 
al. (2009), Biazar and Eslami (2010)].When the homotopy theory is coupled with perturbation 
theory it provides a powerful mathematical tool [Ganji et al. (2007), He (1998, 2004), Shakeri 
and Dehghan (2008)]. A review of recently developed methods of nonlinear analysis can be 
found in He (2000). To illustrate the basic concept of HPM, consider the following nonlinear 
functional equation 
 

,),()(  rrfuA with the boundary conditions:  ,,0, 










r
n

u
uB             (3)                        

 
where A  is a general functional operator, B is a boundary operator, )(rf is a known analytic 
function, and  is the boundary of the domain . The operator A is decomposed as ,NLA   
where L is the linear and N is the nonlinear operator. Hence, Equation )3(  can be written as  
 

.,0)()()(  rrfuNuL  
 
We construct a homotopy   ,1,0:),( Rpr   satisfying 
  

     rprfApuLLppH ],1,0[,0)()()()()1(),( 0  .                        (4) 
  
Hence,  

 
  ,0)()()()()(),( 00  rfvNpupLuLLpH                                                               (5) 

 
where 0u is an initial approximation for the solution  of equation (3). As 

 
)()()0,( 0uLvLvH       and       ),()()1,( rfvAvH   
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it shows that ),( pvH continuously traces an implicitly defined curve from a starting point 

)0,( 0uH  to a solution  )1,(vH .The embedding parameter p increases monotonously from zero to 

one as the trivial linear part 0)( uL  deforms continuously to the original problem 
).()( rfuA  The embedding parameter  1,0p  can be considered as an expanding parameter 

[He (1999)] to obtain  
 

 ...2
2

10  vppvvv                                                                                      (6) 

 
The solution is obtained by taking the limit as p tends to 1 in equation (6). Hence, 
 

0 1 2
1

lim .
p

u v v v v


    
                                                                                  

(7)
 

 
The series )7( converges for most cases and the rate of convergence depends on ( ) ( )A u f r , He 
(1999).  
 
3.  Method of Solution 

 
We consider the following system of generalized Abel’s integral equation 

 

,10,
)(

)(
)()(

0




  xdt
tx

tya
xfxcy

x

                                                                (8) 

 
which is equivalent to the following set of n equations  

 

.1,
)(

)(
)()(

0 1

nidt
tx

tya
xfxyc

x n

j

jij
iiii jj




  


                                                                  (9) 

 
To solve the above equation, a convex homotopy is constructed as 

 

  .0
)(

)(
)()()()()1(

0 1
0 










 



dt
tx

tLa
xfxLpxyxLp

x n

j

jiij
iiiii jj                                  (10) 

 
We seek the solution of (10) in the following form, 

 

,,...3,2,1,)()(
0

nixLpxL
j

ij
j

i  



                                                                              (11) 
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where ,...3,2,1,),( jixLij , are the functions to be determined. After choosing the initial 

approximations )()( 00 xyxL ii   appropriately for ,1 ni  the following iterative scheme is 

used to evaluate ).( xLij   

Substituting equation (11) in (10) and equating the coefficients of p with the same power, we 
get   
 

  













x n

j

jji
ii dt

tx

tLa
xLp

ij

0 1

0
1

1 ,
)(

)(
)(: 

 

  













x n

j

jji
ii dt

tx

tLa
xLp

ij

0 1

1
2

2 ,
)(

)(
)(: 

 

  













x n

j

jji
ii dt

tx

tLa
xLp

ij

0 1

2
3

3 ,
)(

)(
)(: 

 

        
.

.

.

 

  














x n

j

mjji
iim

m dt
tx

tLa
xLp

ij

0 1

)1( ,
)(

)(
)(: 

                                                                       
(12) 

 
Hence, the solution vector y  of equation (8) is given by ),,...,,( 321 nyyyyy  where 

 

.)(lim)(lim)(
0

1






m

j
ij

m
i

p
i xLxLxy                                                                                (13) 

 
4.  Stability Analysis 
 
We consider the stability of the solution components iy as given by (13) under the influence of 

noise in the input data ).(xf  That is, we wish to investigate the effect on the solution )(xy when 

the input )(xf is corrupted with noise )(xf where )(xf is unknown apart from some 

restriction on its magnitude relative to ).(xf  
 
Assuming )(~ xy to be the solution of equation (8) under the influence of noise 
  

 ,)(),...,(),(),()( 321 xfxfxfxfxf n    
 
then 

 

.10,
)(

)(~
)()()(~

0



  xdt

tx

tya
xfxfxy

x

                                                         (14) 
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Choosing the initial approximation ,)()()(
~

00000   LxxyxL  where 

 
 ,~

,...,
~

,
~

,
~~

03020100 nLLLLL   03020100 ,...,,,)( nyyyyxy   and   ),(,...,,,)( 03020100 xfx n     

 
we have, by equation (12) 
 

 
),()(

)(

)()(
)(

~
110

00
1 xxLdt

tx

ttya
xL

x
  




   

 

),()()(
~

222 xxLxL   

.

.

.

 

 
( ) ( ) ( ),m m mL x L x x   

 
where the various components of )(xLm are given by equation (12) and  

 

1

0

( )
( ) , 1, 2,3, .

( )

x
m

m

a t
x dt m

x t   
 

   

Thus, the perturbed solution )(~ xy is given by .)(
~

lim)(~
0






m

j
j

m
xLxy  

 
The effect of the noise term )(0 x in the input data )(xf deviates the solution by  

 

0 0

( ) ( ) ( ) lim ( ) ( ) lim ( ).
m n

i i i
m n

i i

y x y x y x L x L x x 
 

 

                                           (15) 

 
From equation (15), we conclude that )(xy and )(xf are connected via the following 
generalized Abel integral equation 
  

.
)(

)(
)()(

0
dt

tx

ty
xfxyc

x

 
 

                                                                                       (16) 

 
Thus, we have proved the following theorem: 
 
Theorem:  
 
The presence of the noise )(xf in the input function )(xf perturbs the solution vector )(xy by an 
amount equivalent to the solution of the Abel integral equation (16) with input equal to the noise 

)(xf itself. 
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As )(xf is not known before hand, we take an upper bound for ).(xf Let ,)(sup

10
 


xf

x
 then 

(16) reduces to ,
)(

)(
)(

0
dt

tx

ty
xyc

x

 
 

 which can be readily solved. 

 
 
5.  Illustrative Examples 
 
In this section, we discuss the implementation of our proposed algorithm and investigate its 
accuracy by applying the homotopy perturbation method. The simplicity and accuracy of the 
proposed method is illustrated through the following numerical examples by computing the 

absolute error ,1,)(~)()( nixyxyxE miii   where )(xyi is the exact solution and 

)(~ xy mi is the approximate solution of the problem when the series (13) is truncated at level 

.mj    
 
Example 1.  
 
As the first examples, we consider the following system of generalized Abel’s integral equations 
 

 

 

 

























,
2

2)(
1

)()(2

,
3

4

2
)()(

1
)()(

0

212

2
3

0

2121

x
xxdtty

tx
xyxy

xx
xxdttyty

tx
xyxy

x

x





                                    (17) 

 

with the exact solutions ,)(1 xxy   and .)(2 xxy  This is a weakly singular system of 
Volterra integral equations of convolution type.  

Choosing the initial approximations
3

4

2
)(

2
3

01

xx
xxL 


, 

4
)(02

x
xxL


  and using the 

iterative scheme (12), we obtain the various iterates as follows: 
 

,
64

)(

,
23

4

2
)(:

2
3

12

2
2

32
3

11
1

xx
xL

x
x

xx
xLp








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,
326

)(

,
15

8

16

7

2
)(:

222
3

22

2
5222

2
3

21
2

xx
xL

xxx
xxLp









 

 

.,...
3260

)(

.,...
6215

8

16

7
)(:

222
52

32

322
522

522

31
3

xx
xL

xxxx
xLp









 

 
Figures 1 and 2 show the absolute error between the exact solution )( xyi and the approximate 

solution (x)~
28iy  obtained by truncating (13) at level 28n for 1, 2,i   respectively, for 

example.  
 

0.2 0.4 0.6 0.8 1.0

2.�10  6

4.�10  6

6.�10  6

8.�10  6

 
Figure 1. The absolute error )(1 xE for Example 1 

 
 

0.2 0.4 0.6 0.8 1.0

2.�10  15

4.�10  15

6.�10  15

8.�10  15

1.�10  14

1.2�10  14

 
Figure 2. The absolute error )(2 xE for Example 1 

 
 
 

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 6 [2011], Iss. 1, Art. 22

https://digitalcommons.pvamu.edu/aam/vol6/iss1/22



276                                                                                                                                                   Sunil Kumar et al.                                  
            

Example 2.  
 
In this example, the following system of generalized Abel’s integral equations of the second kind 
is considered.  






















































 

,

12

25
3

4

4

3

1)(
)(

)(
)()(

,
33

2
4

)(

)()(2
)()(2

12
13

3
1

0 4
1

2
12

3
1

0 0 3
1

21
21

x
xerfcexdt

tx

ty
xyxy

x
xxdt

tx

ty
dt

tx

ty
xyxy

x
x

x x






                   (18) 

 

with the exact solutions )(1)(1 xerfcexy x   and .)( 3
1

2 xxy    
 

Taking, 
33

2)(01

x
xxL


  and ,

12
25

3
4

4
3

)(

12
13

02

3
1

























x

xxL  the iteration formula (12) gives 

the various )(xLij as  

 

,

6

17
4

3

12

25
1

3

4

4

3
)(

,
363

16

39

4

33
)(:

4
3

12
13

12

4
7

2
3

11
1





























































x
xxL

xxx
xxLp



 

 

,

12

43
4

3

6

17
1

3

4

4

3
)(

,

4

13
363

4

11
16

4

3

345

8

36363

16

39

4

3

4
)(:

4
3

2

6
11

22

4
9

2
3

2
2

5224
7

2
3
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Figures 3 and 4 show the absolute errors between the exact solution )( xyi and the approximate 

solution (x)~
30iy  for 1, 2,i  respectively, for Example 2. 
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Example 3.  
 
In this example, we consider the following system of generalized Abel’s integral equations 
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with the exact solutions xxy sin)(1   and .)(2 xxy    
 
What follows is self explanatory.  
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Figures 5 and 6 show the absolute errors between the exact solution )( xyi and the approximate 

solution (x)~
10iy  obtained by truncating (13) at level 10n for 1, 2,i  respectively, for 

Example 3. 
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Figures 7 and 9 show the absolute errors between the exact solution )( xyi and the approximate 

solution (x)~
7iy  obtained by truncating (13) at level 7n for 1, 2, 3,i  respectively, for 

Example 4. 
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5.  Conclusion 
 
The Homotopy perturbation method proposed is a new and efficient algorithm for the numerical 
solution of system of generalized Abel’s integral equations. It is proved that the change 

),(xy in the solution )(xy caused by the presence of noise )( xf in the observable data 

),( xf is the solution of the generalized Abel integral equation with input data equal to the 

noise )( xf itself. From the given numerical examples, and Figs 1-9, we conclude that the 
method is accurate and easy to implement for solving systems of generalized Abel’s integral 
equations especially of the second kind. 
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