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Abstract 
 
In this paper we study the steady flow, at low Reynolds number R , past a pervious sphere with a 
source at its centre. Assuming the source strength s  also to be small, we use the method of 
matched asymptotic expansions to generate the inner and outer solutions pertaining to the 
problem. Graphs depicting the streamlines have been drawn to exhibit the effects of s  and R . 
Also, the expression of the calculated drag experienced by the sphere shows that the effect of a 
source ( )s o  is to decrease the drag. 
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1.  Introduction 
 
Denoting by daU ,,  and  , respectively, a characteristic velocity, a characteristic length, fluid 

density and coefficient of kinematic viscosity, we have Reynolds number /R Ua  . As 
Reynolds number is small when U  is small, the flow is also known as slow viscous flow. But it 
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may be remembered that R  will also be small when characteristic length a  is small or when 
kinematic viscosity   is large. In recent times the study of slow flow phenomena has come into 
prominence, particularly in the fields of biomechanics, microfluidics and chemical engineering 
for studying important and useful problems such as  locomotion of micro-organisms, movement 
of mucus in lung, motion of blood cells, flow of dusty gas, smoke dyes and electrophoresis and 
Brownian movement. Amongst a host of recent papers, we may cite those of Ayoubi and 
Longuski (2008) Bandyopadhyay (2006), Chadwick (2002), Charalambopoulos and Dassios 
(2002), Felderhof (2005), Pozrikidis and Farrow (2003), Ranger (2004) and Usha and Vimala 
(2003). The paper by Veysey and Goldenfeld (2007) very well expounds the theory of low 
Reynolds number flow past a sphere and a circular cylinder. 
       
The problem of slow steady flow past a sphere placed in a uniform stream of viscous 
incompressible fluid was considered first by Stokes (1851) under the assumption that the inertia 
terms are negligible. Later on it was extended by Oseen (1910) by linearizing the inertia terms. A 
regular perturbation solution of Navier-Stokes equations is non-existent for slow flow problems. 
The method of singular perturbation/matched asymptotic expansions was introduced by Kaplun 
(1957) and then used by Kaplun and Lagerstrom (1957). Proudman and Pearson (1957) also 
employed the same technique to study the flow past a sphere at small Reynolds number R . The 
method of matched asymptotic expansions is of continuing interest as exhibited in the article by 
Veysey and Goldenfeld (2007), wherein its development and extension is discussed. 
      
Some years back the problem of slow flow past a pervious sphere with a source at its centre was 
considered by Datta (1973) by taking into account the effect of source in the inertia terms of 
Navier-Stokes equations and suitably linearizing them, under the assumption that the interaction 
between the source flow and the Stokes flow is small. Placek and Peters (1980) used the results 
of this paper to estimate the target efficiency of small particles by spherical collectors. Later on 
Datta and Sthapit (1976)  extended the analysis by making use of matching technique to obtain 
the terms up to O( R ). 
 
In this paper we consider the problem anew for two reasons; (i) that here attention is given to the 
full Navier-Stokes equations rather than the reduced equations used by Datta and Sthapit, thereby 
exhibiting the full effect of source interaction (ii) that the analysis becomes too cumbersome in 
the paper by Datta and Sthapit when we try to determine higher order approximations but the  
Matched asymptotic method when suitably applied to the full Navier-Stokes equation effects the 
simplification. We have used the inner and outer expansions for the stream function as given by 
Proudman and Pearson (1957) and include the effect of source in the inner and outer expansions. 
It is found that the analysis becomes easier in finding higher order approximations. Here, we 
have been able to determine 2( log )O R R  terms in the Stokes expansion and that was not possible 
by the earlier analysis of Datta and Sthapit. 
  
2.  Basic Equations 
 
We consider the flow of a viscous fluid of uniform velocity U past a sphere of radius a , and 
non-dimensionlize the space coordinates by a . 
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Following Proudman and Pearson (1957) the non-dimensional governing equations, obtained 
from Navier-Stokes equations, in the Stokes region of flow near the sphere in polar coordinates 
( , )r   for the stream function   is 
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The relations between Stokes and Oseen’s variables are 
 

 2, RRr  .                                                                                                               (1.4) 
 
Far off from the sphere in Oseen region, equation (1.1) becomes 
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where 2D  and L  are the same operators as given by (1.2) and (1.3) but with r  replaced by  . 
          
Now taking into account that the stream function for a source is s , we take the inner 
expansion (Stokes expansion) as 

 

  s  ,                                                                                                                     (1.6) 
 
where with 1( ) / (  )n nf R f R 0  0as R  .  We assume the inner expansion (Stokes expansion) 

as 

0 1 2
1 2( ) ( )f R f R       ,                             

 
and with 1( ) / (  )n nF R F R 0  0as R  , the outer expansion (Oseen expansion) as 
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where  2 2(1 ) / 2   is the stream function for the uniform stream. It may be noted that since the 

first term (the source term) is of O( 2R ), its effect will come into play only when such terms in 
the expansion are taken into consideration. Now the inner boundary conditions (stream surface 
and no slip condition) are 
 

0




r

   at r =1                                                                                                           (1.8) 

 
and the outer boundary condition corresponding to uniform stream is 
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The undetermined constants in the inner and outer solutions are to be determined from the 
VanDyke (1964) matching condition (1.10) the m term inner expansion of the n term outer 
expansion = the n term outer expansion of the m term inner expansion. 
 
3.  The Leading Terms of the Expansions 
 

The primary solution in Oseen expansion is the uniform stream )1(
2

2
2


 . The derivation of 

the leading term of the Stokes expansion, 0 , is straight forward.  The equation for 
0

  
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As in Proudman and Pearson (1957), using the boundary conditions (1.8) and matching with the 
uniform stream, the solution is obtained 
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For the term 1  in Oseen expansion, using (1.5) and (1.7), the governing equation is  
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As derived by Proudman and Pearson (1957), the solution, on matching with (2.1), is  
 

1 = ]1)[1(
2

3 )1(
2







 e .                                                                                                                                              (2.2) 

Next, equation for the Stokes part 
1

 by using (1.1) and (1.6) is 
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wherein the source term makes its appearance and the resulting solution is evaluated as 
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where a ,b , c , d and e  are arbitrary constants. We evaluate values of these constants by using 
boundary conditions (1.8) and matching with the Oseen’s term (2.2). Thus, we get 
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Since higher order terms in the Stokes and Oseen’s expansions are not proportional to the simple 
power of R, it seems desirable to give a brief account of the nature of these terms. As in 
Proudman and Pearson (1957), first consider the third term of the Stokes expansion 
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Now by using the values of 
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where

1
C ,

2
C ,

3
C , 

4
C  ,

5
C ,

6
C , 

7
C and 

8
C  are arbitrary constants. The values of these constants are 

evaluated as in Proudman and Pearson (1957) by using the steps in the Van Dyke matching 
principle (1.10) with m=3 and n=2 (not counting the source term sμ). It is found that 

4
C  = -4/27, 

1
C  = 3log R and then 

2
C and 

3
C  must be multiple of log R in order to satisfy the no-slip condition 
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on the sphere. Thus, we should replace 
2
( )f R  by 2 logR R , the other terms vanishing being of 

O(R2) and so we have  
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rr .          (2.6) 

 
We see that second order Stokes term remains unaffected by the source. As in Proudman and 
Pearson, the next higher term of Oseen expansion does not involve O( RR log2 ) terms. 
  
4.  Conclusion 
 
4.1. Vorticity and Stream Lines  
 
An important flow quantity is vorticity. In the axial symmetric case, the only non-vanishing 
component of vorticity is the azimuthal component and that may be expressed, correct up to 
O(R) as 
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The vorticity will vanish, either at 0,     (rear and forward ends) or when 
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Separation occurs on the sphere 1r   when 0  . Thus, besides 0,  , since 1  , it follows 

from the above equation that it may occur when 8 /(1 3 )R s  again at the rear end 0  . Hence, 
the minimum value 8 of R  gets reduced because of source. It may be seen that for no 
source 0s  , the result reduces to that obtained by Proudman and Pearson through eddy 
formation provided by stream lines 0  . From these results it is easy to conclude that for 8R   

the separation point shifts from 0   to the position 1cos (1 3 / 4)s s   , moving away with an 

increase in the value of s .  But, as the perturbation expansions are true only for small values of 
Reynolds number R , as also observed by Proudman and Pearson, the above statements do not 
hold good; therefore, no separation takes place and we have only a regular pattern of stream lines 
(

0 1
s R        = constant).  

 
Various streamlines  (= -0.6, -0.4, 0, 0.2, 0.4, 0.6, 0.8) are depicted in Figure 1 for R  = 0.5 and 
s  = 0.6. Keeping in view that for the no source (s = 0) case, the stream line  =0 is the line   = 
0, we see that the effect of the source is to shift the stream lines away from the sphere and the 
streamline   = c =0.6 now assumes the position   = 0. Also, we see that that while for the 

values c < 0c  (0.4 < 0c < 0.6) the stream lines emerge from the sphere, the stream lines beyond 0c  
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are still coming from   and going to  , thus, the effect of the source on the flow pattern is 
clearly exhibited. 
 

 
      Figure 1. Various stream lines for R  =0.5 and s  =0.6 drawn in the upper half 
 
In Figure 2a, we have drawn the stream line   = 0.2 when R =0.5 for source strengths s  = 0, -
0.2, -06, the latter two are seen to be sinks. We find when there is no source, the stream line is 
seen to come from    and go to   in a regular manner. The effect of the sink is to displace the 
streamline towards the sphere on the downward side but on the upward side this is not so near 
the sphere surface. For the sinks stream lines seem tend towards the boundary surface on the 
downward side. Thus, there is an inward turning of the streamline separating it from the stream 
line for s  = 0.    

 
Figure 2a. Stream line  =0.2 for R =0.5, drawn for s  = -0.6,-0.2, 0 

 
In Figure 2b, we have drawn the stream line   = 0.2 when R =0.5 for source strengths s  = 0, 
0.2, 06, the latter two are seen to be sources. The effect of the source is to displace the streamline 
away from the sphere on the downstream side. But on the upstream side the streamline is seen to 
emerge from the sphere. This is because of the fluid being issued by the source. The void space 
in-between indicates the formation of eddies but our analysis is unable to capture that. 

v 
Figure 2b. Stream line  =0.2 for R =0.5, drawn for s  = 0, 0.2, 0.6 

 
In Figure 3 Streamline  =0.2 is drawn for R  = 0, 0.5, 0.8 when s =0.5.  Only minute difference 
is noticed. It implies that small Reynolds number do not affect the stream line pattern up to this 
order. 
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      Figure 3. Stream line  =0.2 for s =0.5, drawn for R  = 0, 0.5, 0.8 

 
4.2. Drag 
 
Drag on the sphere the force exerted on the body by the moving fluid. It is evaluated by 
summing up the tensor components along the flow direction. Now in the spherical polar 
coordinates, the relevant non–dimensional stress components are the normal and tangential stress 
components rr  and  r given by  
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The pressure can be determined to within an irrelevant additive constant by integrating the 
Navier-Stokes equations and then expressed in terms of Stokes stream function  
                                 

0 1 2
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Let rr  and   r  be the normal and tangential stress components on the surface of the sphere, 

the dimensional drag on the sphere, omitting the details, is given by 
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The third term in the above expression shows that the effect of a source ( 0)s   is to decrease the 

drag and reverse is the case for a sink ( 0)s   and that no change occurs in the O ( 2R ) term. 
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