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Abstract 
 
In this paper we show how to improve the approximate solution of the large Lyapunov equation 
obtained by an arbitrary method. Moreover, we propose a new method based on refinement 
process and Weighted Arnoldi algorithm for solving large Lyapunov matrix equation. Finally, 
some numerical results will be reported to illustrate the efficiency of the proposed method. 
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1.   Introduction 
 
An important class of linear matrix equations are the Lyapunov equation  
 

.= CXAXA T                                                                                                                    (1.1) 
 
Since the fundamental work of Lyapunov on the stability of the motion, these matrix equations 
have been widely used in stability theory of differential equations and play an important role in 
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control and communications theory [see Datta et al. (2004), Jbilou (2006)]. Direct methods for 
solving the matrix equation (1.1) are attractive if the matrices are of small size and these methods 
are based on Schur decomposition.  
 
Iterative methods for solving large Lyapunov matrix equations have been developed during the 
past years [see Benner et al. (2008), Eppler et al. (2010), Jbilou (2010), Silva et al. (2007), Stykel 
(2008)]. These methods use Galerkin and GMRES procedures to produce low-dimensional 
Lyapunov matrix equations that are solved by the direct methods. Both procedures make use of 
the Arnoldi process to compute an orthonormal basis of certain Krylov subspace. In this paper, 
we extend the idea to propose a new projection method for solving (1.1) based on weighted 
block Krylov subspace method. Moreover, the refinement method presented in section 4 has the 
capability of improving the results obtained by any other methods. The paper is organized as 
follows. In Section 2, we introduce some important theorems and applications of the matrix 
equation (1.1). Then we describe a new direct method for solving Lyapunov equation in in 
Section 3. Section 4 contains the main minimal residual algorithm for iteratively solving the 
Lyapunov matrix equation (1.1). Several numerical examples presented in Section 5. Finally, the 
conclusions are given in the last section. 

 
 
2.   Some Fundamental Results  
 
In this section we present some existence and uniqueness results related to (1.1). 
 
Theorem 2.1:  
 
Let n ,...,, 21 be the eigenvalues of A . Then the Lyapunov equation CXAXA T =  has a 

unique solution X , if and only if 0, , = 1, ,i j i j n    .   

 
Proof:  
 
See Datta et al. (2004). 
 
 
Theorem 2.2:  
 
The system of differential equation  
 

).(=)( tAxtx                                                                                                                         (2.1) 
 
is asymptotically stable (that is  tastx 0)( ) if and only if all the eigenvalues of A  have 
negative real parts.   
 
Proof: 
 
See Datta et al. (2000). 
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Theorem 2.3:  
 
The system (2.1) is asymptotically stable if and only if for any Hermitian positive definite matrix 
C , there exists a unique Hermitian positive definite matrix X satisfying the Lyapunov equation 

CXAXA T = .   
 
 
Proof: 
 
See Datta et al. (2000). 
 
 
Definition 2.1.  
 
The inertia of a matrix A  of dimension n , denoted by )(AIn , is a triplet ))(),(),(( AAA  , 
where )(A , )(A  and )(A  are the number of eigenvalues of A  with positive, negative and 
zero real parts, respectively.  
 
Note that nAAA =)()()(   , and A  is a stable matrix if and only if ,0)(0,=)( nAIn .  

 
Theorem 2.4 (The main inertia theorem): 
 
(i)  A necessary and sufficient condition for a Hermitian matrix X  to satisfies 

 
0>= CXAXA T                                                                                                               (2.2) 

 
is 0=)(A . 

 
(ii)  If X  is Hermitian and satisfies (2.2) , then )(=)( XInAIn .   
 
 
Proof:  
 
See Ostrowski et al. (1962). 

 
 
3.   New Direct Method  
 
As we already have mentioned, many numerical methods have been developed by different 
authors. For example, Stykel (2008) generalize an alternating direction implicit method and the 
Smith method for large-scale generalized Lyapunov equations. Moreover, the Schur method 
proposed by Bartels and Stewart is now widely used as an effective computational method for 
the Lyapunov equation. But, it’s the numerical stability has not been investigated. Before giving 
a new algorithm in this section, let us present a summary description of the Arnoldi process. 
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The Arnoldi process constructs an orthonormal basis ],...,[= 1 mm vvV  of the Krylov subspace  

 
),,...,,(=),( 1vAAvvspsnvAK mm   

 

using the modified Gram-Schmidt process and starts with the vector 
2

1 =
v

vv . 

 
Algorithm 1 (Arnoldi Process): 

 
for  

mj 1,...,=  

jvAw ~=  

for  
ji 1,...,=  

2, ),(= iji vwh  

iji vhww ,=   

end 

stopifhwh jjjj 0=,= 1,21,  PP  

jhjwv j 1,/=1   

end 

 
 
Let the matrix mm

m RH   be the Hessenberg matrix whose nonzero entries are the scalars jih ,  

constructed by the Arnoldi process. Then, we have  
 

=T
m m mV V I                                                                                                                           (3.1) 

 
and  

 
.= m

T
mm AVVH                                                                                                                      (3.2) 

  
Now we present the new direct method in this section. The following method is based on 
reduction of TA  to the Hessenberg matrix using Krylov’s subspace methods. 
 
 
Algorithm 2: 
 
(1) Reduction of the problem.  
 
Let the matrix nn

n RH   be the Hessenberg matrix whose nonzero entries constructed by the 

Arnoldi process. Then, we have   

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 6 [2011], Iss. 1, Art. 10

https://digitalcommons.pvamu.edu/aam/vol6/iss1/10



134                                                                                                           H. Saberi Najafi and A.H. Refahi Sheikhani                             
            

.== n
TT

nnnn
T

n VAVHIVV   

 
By this transformation, the Lyapunov matrix equation CXAXA T =  is reduced to  

 
,ˆ= CHYYH T                                                                                                                     (3.3) 

  
where  
 

.=,=ˆ,= XVVYCVVCVAVH TTTT   
 

 
(2) Solving the Reduced Problem  
 

The reduced equation to be solved is .ˆ= CHYYHT   Let  
 

ˆ ˆ= ( ), = ( ) and = ( ).ij ij ijY y C c H h  

 
Thus, we can rewrite (3.3) as 
 

1 1 1 1 2 1 1 2 1 1
=1 =1 =1

1 2 2 1 2 2 2 2 2 2
=1 =1 =1

1 1 2 2
=1 =1 =1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n n n

i i i i i i i i ni i i ni
i i i

n n n

i i i i i i i i ni i i ni
i i i

n n n

i in ni i i in ni i ni in ni ni
i i i

h y h y h y h y h y h y

h y h y h y h y h y h y

h y h y h y h y h y h y

 
  




  



   



  

  

  





   



11 12 1

21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ

= .

ˆ ˆ ˆ

n

n

n n nn

c c c

c c c

c c c


  
  
  
  
  
  
  

 







   



 

(3.4) 

  

Now let ],...,,[= 21 nyyyY , where iy  is the i th column of Y  and 1 2
ˆ = [ , ,..., ],nC c c c  where ic  is 

the ith column of Ĉ . We define a linear operator vec: 
2nnn RR  , 

 
.],...,,[=)(vec 21

TT
n

TT yyyY   

 
Since H  is upper Hessenberg ( = 0, > 1ijh i j  ), the Lyapunov equation (3.4) can be formulated 

as 22 nn   linear systems 
  

),(vec=)(vecˆ CYH                                                                                                            (3.5) 
  
where Ĥ is a block Hessenberg matrix as 

 

5

Najafi and Refahi Sheikhani: New Computational Algorithms for Analyzing the Stability of the Differential Equations System

Published by Digital Commons @PVAMU, 2011



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1870 – 1882]                                  135 

 

 ,
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where  
 

),,1,2,=(*=ˆ niIHHH niinii   

  

).,1,=,2,3,=((=ˆ nijniHdiagH ijij     

  
 
Remark 3.1: 
 
 Krylov subspace method such as the GMRES algorithm could be used to solve the linear system 
(3.5). This formulation is expensive for larg problem. In next Section we give a new iterative 
method based on refinement process and Weighted Krylov subspace technique for solving large 
sparse Lyapunov equations.  

  
 
4.   New Iterative Method 
 
Due to the efficiency of iterative methods, we aimed to propose an iterative algorithm for solving 
(1.1). There are numerous iterative methods for solving Lyapunov equation (see Benner et al. 
(2008), Eppler et al. (2010)). The reduced model described by Eppler is based on the positive 
semi-definite of the solution. In this section we first, briefly describe the Weighted Arnoldi 
algorithm. Then, we introduce a refinement process to improve the approximate solution of the 
Lyapunov equation obtained by an arbitrary method. Finally, we propose the main algorithm 
based on Weighted Arnoldi process for analyzing the stability of the differential equations 
system. 

 
4.1.  Weighted Arnoldi Process 
 
If u  and v  are two vectors of nR , their D-scalar product is  
 

 iii

n

i

T
D vudDuvvu  1=

==),( ,  

 
where ),...,,(= 21 nddddiagD  is a diagonal matrix. 
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This inner product is well defined if and only if the matrix D is positive definite, that is, 
}.,{1,0,> nidi   

 
In this case, we can define the D-norm P PD  associated with this inner product by  

 
2

=1
P P = ( , ) = = , .

nT n
D D i ii

u u u u Du d u u R    

 
The following algorithm describes the weighted Arnoldi process which uses the D-inner product 

D(.,.)  to construct a D-orthonormal basis of ),( vAKm  starting with the vector ./=~
1 Dvvv PP  

 
Algorithm 3 (Weighted-Arnoldi Process): 

 
for  

mj 1,...,=  

jvAw ~=  

for  
ji 1,...,=  

Diji vwh )~,(=
~

,  

iji vhww ~~
= ,  

end 

stophifwh jjDjj 0=
~

,=
~

1,1,  PP  

jjhwv j 1,
~

/=~
1   

end 

 
 

The basis ]~,...,~[=
~

1 mm vvV  constructed by this algorithm is D-orthonormal, i.e.,  

 

.=
~~

mm
T

m IVDV                                                                                                                        (4.1) 

 

The square Hessenberg matrix mH
~

 whose nonzero entries are the scalars ,
~

, jih  constructed by the 

weighted Arnoldi process, can be expressed in the form  
 

.
~~

=
~

m
T

mm VDAVH                                                                                                                   (4.2) 
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4.2.  Refinement Process 
  

 
Theorem 4.1:  
 
Let 0X  be the approximate solution obtained by an arbitrary method for the matrix equation 

(1.1). Let also )(=)( 000 XAAXCxR T  be the corresponding residual. Moreover, the matrices 
mm

m RH   and mn
m RV  , obtained from the weighted Arnoldi process and mY  is the solution of 

the low dimensional Lyapunov equation  
 

.= 0 m
T

mm
T
mmm VRVXHHX                                                                                                   (4.3) 

  
Then,  
 

0=)( 1 m
T

m VXRV ,                                                                                                                  (4.4) 

  
where  
 

.= 01 DVYDVXX T
mmm                                                                                                        (4.5) 

 
 
Proof:  
 
Since mm

m RY   is the solution of the Lyapunov equation (4.3), by using (4.5) the corresponding 

residual )( 1XR , thus, satisfies:  
 

)(=)( 111 XAAXCXR T  
 

           0 0= [( ) ( )]T T T
m m m m m mC X DV Y V D A A X DV Y V D     

 

           .)(= 0 DVYDVADAVYDVXR T
mmm

TT
mmm   

 
Multiplying this relation from the left by T

mV  and from the right by mV , we have 

 
).()(=)( 01 m

T
mmm

TT
mm

T
mmm

T
mm

T
mm

T
m DVVYDVAVDAVVYDVVVXRVVXRV   

 
The square Hessenberg matrices mH and the basis ],...,,[= 21 mm vvvV , constructed by the 

weighted Arnoldi process, satisfy relations (4.1) and (4.2). Now by using these relations and 
(4.3), we have  
 

 0.=)()(=)( 01 m
T
mmmm

T
mm

T
m YHHYVXRVVXRV    
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Remark 4.1:  
 
According to the results obtained in Theorem 4.1, we can develop an iterative method for the 
solution of the Lyapunov equation when the matrices A  and C  are large (dimensions of A  and 
C  is n ) and sparse. If nm < , then instead of solving CXAXA T = , we can solve (4.3), which 
is a lower dimensional problem and obtain the solution of initial Lyapunov equation by using 
(4.5). The algorithm is as follows. 
 
 
Algorithm 4 (Weighted Iterative Refinement (WIR) method): 
 
(1)  Choose 0X , m , tolerance ,  and compute )(= 000 XAAXCR T . 

 
(2)  Construct the D orthonormal basis mV  by the weighted Arnoldi process. 

 
(3)  Compute m

T
mm DAVVH = . 

 
(4)  Solve the reduced Lyapunov equation m

T
mm

T
mmm VRVYHHY 0= . 

 
(5)  Set DVYDVXX T

mmm01 = . 

 
(6)  Set )(= 111 XAAXCR T . 
 
(7)  If 1R  stop, otherwise 

 
      set 1010 =,= RRXX  and goto step (2). 

 
 
5.   Numerical Experiments 
 
In this Section, we present some numerical examples to illustrate the effectiveness of Algorithms 
described in this paper for large and sparse Lyapunov equations. The numerical experiments 
were performed in Matlab on a PC with 2.20 GHz with main memory 2 GB. 

 
Example 5.1.  
 
Consider the Lyapunov equations CXAXA T = . We apply Schur methods with and without the 
refinement process to solve the matrix equations and compare them. This algorithm has been 
tested when the dimension of matrices A  and C increases. The results are shown in Table 1.  
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Table 1. Implementation of Schur methods with and without refinement process 

  n   Schur method   Schur method with Refinement process  
 Error   CPU-time(s)   Error   CPU-time(s)  

4   5.99E 013   0.0012  8.69E 016  0.0015 
8   3.70E 012   0.0010  9.55E 016  0.0033 

12   4.74 E 012   0.0016  7.80 E 016  0.0069  
16   7.14 E 012   0.0023 6.70 E 016  0.0087  
32   8.16E 012   0.0079  6.47 E 016  0.0217  
40   2.52 E 011   0.0134  1.28E 015  0.0366  

100   9.33E 011   0.25 8.38E 015  0.5763 
 
As the results in Table 1 show the Refinement method has worked with less errors compared to 
the Schur method, but is more time consuming (see Error and Time columns). Therefore, we 
intend to develop a method which works with less errors and less time consumption, compared to 
the Schur method. 
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Example 5.2.  
 
Consider the matrices A  and C  of Example 5.1 with 100=n . the estimated condition numbers 
of A  and C  are respectively 035.94 E  and 045.39 E . We apply the WIR method for solving 
the CXAXA T =  and take 610=  . In the Table 2 , we report the results given for different 
value of m . 

 
 Table 2.  Implementation of WIR method for solving the Lyapunov equation with different 

value   of m  
  m  r   l   HDAVV m

T
m   Iterations   )(stimeCPU 

4  2   2 8.21E 014  321 5.24 
8   2   4 7.45E 014  99  3.05 

10   2   5  6.18E 014  58  2.32  
12   2   6  4.62 E 014  31 2.08  
14   2   7  3.12E 014  19  1.86  
16   2   8  1.11E 014  11 1.13  
18   2   9  7.29 E 013  4 0.287  
20   2   10  5.96E 013  1 0.024  

 
In Table 2 , the results show that by increasing the values of m  and l , the number of iterations 
decreases. The last column of Table 2  also shows the decreasing of time consumption. Note that 
the fourth column of this table is the error of the orthogonalization method. The desired accuracy 
has been chosen as 610 , but the model works well with any choice of t10 . 

 
Example 5.3.   
 
In Example 5.1, we see that the Schur method with refinement process in comparison with Schur 
method works better. but when A  and C  are large is not very interesting. On the other hand in 
Example 5.2, we see that the WIR method when 100=n  works with good accuracy. Now 
consider A  and C  are the same matrix that used in Example 5.1. We apply the WIR method by 
4 iterations and Schur method with refinement process for solving the Lyapunov equation when 
the dimension of the matrices A  and C  are large. Results are shown in Table 3 . 
      
     Table 3. Implementation of WIR and Schur methods for solving the Lyapunov equation 

   n   Schur method with refinement 
process  

 WIR method  Cond(C)  

 Error   CPU-time(s)   Error   CPU-time(s)  
200   9.84E 011   2.77  1.47 E 016 1.73  6.00 E 006  
400   2.15 E 010   39.19 2.13E 016 21.19  1.66E 011  
600   7.45E 08   75.54  2.20 E 016 54.37  4.15 E 014  
800   1.16E 05   111.97  2.28 E 016 81.16 7.21E 017  

1000  0.018  148.37  2.55 E 015 108.61 3.91E 019  
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In Table 3  we see that when we increase the dimension the results are still much better than the 
Schur numerical results. Note that less time has been consumed compared to the Schur method. 

 
Example 5.4.   
 
In this example we use four matrices from MATLAB collection for the matrix A . The first 
matrix is a sparse, random finite element matrix. The second matrix is a symmetric, positive 
semi-definite (SPD) Toeplitz matrix composed of the sum of 800  rank 2 SPD Toeplitz matrices. 
The Third matrix is a row diagonally dominant, tridiagonal that is ill-conditioned . The last 
matrix is a sparse singular, row diagonally dominant matrix resulting from discrediting the 
Neumann problem with the usual five-point operator on a regular mesh. For all of these 
examples the matrix is ),,,(= dnnsprandC  where C is a random, sparse matrix with 

approximately 2nd   uniformly distributed nonzero entries with 0.5=d . We apply the Schur 
method with refinement process and WIR method with 3 iterations for solving the 

CXAXA T =  . The results were presented in Table 4. 
 
It is also obvious from Table 4 that the performance of WIR method is much better than the 
Schur method with refinement process, specifically for the ill-conditioned matrices. 

 
 
Table 4.  Effectiveness of Schur method with refinement and WIR algorithm for randomly 

generated matrices 
   Matrix   Schur method with 

refinement  
 WIR method  Cond(A)  

 Error CPU-time Error CPU-
time 

,736,736)(= nwathegalleryA 
 7.33E 08  78.46  6.41E 015  59.95 1.84E 03  

),800,800(= dtoeppgalleryA   1.92E 06  96.15 5.27 E 014  78.81 6.18E 04  
),1200,0.01(= rdorgalleryA   4.33E 02  140.83 7.33E 013  127.02 1.35E 010

,1156)(= nneumangalleryA   7.41E 03  129.16 1.11E 015  110.65 5.56E 17  
 

 
6.   Comments and Conclusion 
 
In this paper, we have proposed two new algorithms for solving the large Lyapunov matrix 
equations. The WIR method are based on the weighted block Arnoldi algorithm and a  
Refinement process presented in Section 4 also has the capability of improving the results 
obtained by an arbitrary method. For example in this paper we apply the refinement process with 
Schur method. The numerical tests presented in this paper show the effectiveness of the proposed 
methods. 
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