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Abstract 
 
The problem of blood flow through an overlapping constriction in arteries is investigated in this 
work. To account for the non-Newtonian behavior and the peripheral layer, blood has been 
represented by a two-fluid model, consisting of a core region of suspension of all the 
erythrocytes assumed to be a Casson fluid and a peripheral layer of plasma (Newtonian fluid). 
The expression for the flow characteristics, namely, the impedance, the wall shear stress, the 
shear stress at the stenosis throats and at the critical height of the stenosis has been derived. 
Moreover, we present some results concerning the dependence of these quantities on the 
geometrical parameters. 
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1.   Introduction 
 
Cardiovascular diseases are known to be responsible for over seventy five percent of all deaths 
and stenosis or arteriosclerosis is one of the frequently occurring diseases. Stenosis is a medical 
term which means narrowing of any body passage, tube or orifice, Young (1979). It is an 
abnormal and unnatural growth that develops at various locations of the cardiovascular system 
under diseased conditions. The etiology of the initiation of stenosis, though not well understood 
it is strongly believed to be due to deposits of cholesterol and proliferation of connective tissues 
may be responsible for the disease. Irrespective of the cause it is well established that once the 
constriction has developed, it brings about significant changes in blood flow, pressure 
distribution, wall shear stress and the impedance (flow resistance) which occasionally results in 
serious consequences, [Young (1968), Young and Tsai (1973)].  
 
In the region of narrowing arterial constriction, the flow accelerates and consequently the 
velocity gradient near the wall region is steeper due to the increased core velocity resulting in 
relatively large shear stress on the wall even for a mild stenosis. With the advent of the discovery 
that the haemodynamic factors play an important role in the genesis and proliferation of stenosis, 
since the first investigation of Mann et al. (1938), a large number of researchers [Young (1968), 
(1979); Young and Tsai (1973); Caro et al. (1978); Shukla et al. (1980); Ahmed and Giddens 
(1983); Sarkar and Jayaraman (1998); Pralhad and Schultz (2004); Jung et al. (2004); Liu et al. 
(2004); Srivastava and coworkers (1996), (2009), (2010a,b,c); Mishra et al. (2006); Misra and 
Verma (2007); Ponalagusamy (2007); Layek et al. (2005), (2009); Joshi et al. (2009); 
Mekheimer and El-Kot (2008); Tzirtzilakis (2008); Mandal and coworkers (2005), (2007a,b); 
Politis et al. (2007), (2008); Singh et al. (2010); Medhavi (2011), and many others], have 
addressed the problem in various contexts. 
 
Blood being a suspension of corpuscles, behaves like a non-Newtonian fluid [Merrill et al. 
(1965); Charm and Kurland (1974); Hersey et al. (1964)] in small diameter tubes under certain 
flow conditions, particularly, at low shear rates, Merrill et al. (1965). An examination of 
viscometric data [Bugliearello et al. (1965); Chein et al. (1965); Rand et al. (1964)] suggests that 
non-Newtonian behavior of blood increases rapidly, when hematocrit rises above 20%, possibly 
reaching a maximum at between 40-70%.  Merrill et al. (1965) established that the Casson model 
holds satisfactory in small vessels (of diameter 130-1000 m) within certain wall shear stress 
limits. In addition, Bugliarello and Sevilla (1970), Cokelet (1972) and Thurston (1989) have 
shown experimentally that for blood flowing through small vessels, there is cell-free plasma 
(Newtonian viscous fluid) layer and a core region of suspension of all the erythrocytes. 
Srivastava (2007) concluded that the significance of the peripheral layer increases with 
decreasing blood vessel diameter. 
 
A survey of the literature on arteriosclerotic development indicates that the studies in the 
literature have been conducted mainly for single symmetric and non-symmetric stenoses. The 
stenoses may develop in series (multiple stenoses) or may be of irregular shapes or overlapping. 
Assuming the pressure variation only along the tube axis, Chakravarty and Mandal (1994) 
studied the effects of an overlapping stenosis on arterial flow problem of blood. An effort is 
made in the present work to study the effects of an overlapping stenosis on the flow 
characteristics of blood taking into account that flowing blood is represented by a two-layered 
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model. The mathematical model considers a two-fluid (two-layered) model of blood, consisting 
of a core region of suspension of all the erythrocytes, assumed to be a Casson fluid and a 
peripheral layer of plasma (Newtonian fluid). The theoretical model used here enables one to 
observe simultaneous effects of non-Newtonian behavior of blood and peripheral layer on flow 
characteristics of blood due to presence of an overlapping stenosis in arteries. The arterial wall 
segment is considered rigid as well as deformable. The wall in the vicinity of the stenosis is 
usually relatively rigid when stenoses develop in human vasculature. To neglect the entrance, 
end and special wall effects, the artery length is assumed large enough as compared to its radius. 
 
 
2.   Formulation of the Problem    
 
Consider the axisymmetric flow of blood in a uniform rigid circular artery of radius R with an 
axisymmetric overlapping stenosis. Blood is assumed to be represented by a two-layered model 
consisting of a central layer of a Casson fluid of radius R1 and a peripheral layer of plasma (a 
Newtonian viscous fluid) of thickness (R-R1). The stenosis geometry and the shape of the central 
layer are described in Figures. 1 and 2, respectively, as 
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where z is the axial coordinate, R  R(z) and R0 are the radius of the tube with and without 
constriction, respectively; L0 is the stenosis length, L is the tube length and d indicates the 
location of stenosis,   is the ratio of the central core radius to the tube radius in the unobstructed 
region and ),( 1  are the maximum height of the stenosis and the bulging of the interface at two 
locations in the stenotic region: z = d+L0/6 and z = d+5L0/6. The stenosis height located at z = 
d+L0/2, called critical height, is 3 4/δ . 
 

 
Figure 1. The geometry of an arterial overlapping stenosis 
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Figure 2. The shape of the central layer 

 
 
Following the reports of Young (1968) and Srivastava and Rastogi (2009) and considering the 
axisymmetric, laminar, steady one-dimensional fully developed flow of blood in an artery, the 
general constitutive equation in the case of a mild stenosis, subject to the additional conditions 
[Young (1968); Srivastava and Rastogi (2009)]; 121, 00  )/Lδ(Rδ/R e  and )~O(/LR 12 00 , 

may therefore be written as 
 

0)(
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,                                                                                                                 (2) 

 
where r is the radial coordinate measured normal to the axis of the tube; ,τp,Re  is pressure, 

Reynolds number, shear stress, respectively. 
 
For a Casson two fluid-model of blood, the shear stress-strain relationship is given (Srivastava 
and Saxena, 1995) as 
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where 0τ the yield is stress of the core region, pμ and cμ  are plasma viscosity in the peripheral 

and fluid viscosity in the core regions, respectively and pR  is the radius of the plug flow region. 
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The boundary conditions are 
 

layerperipheral,0 R(z)ratu p  ,                                                                                (6) 
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where ),( pp τu and ),( cc τu are the (axial velocity of fluid, shearing stress) in the peripheral and 

central layers, respectively.  
 
 3.  Analysis 
 
An integration of equation (2) using relations (3)-(5), subject to the boundary conditions (6) and 
(7), yields the expressions for velocities, pu  and cu  as 
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with pc /μμμ  . The constant plug flow velocity )Rrforu(u pcplug  0 is determined by 

evaluating the expression for pc Rru at . Under the condition that the radius of the plug flow 

area is small as compared to the non-plug flow area, i.e., RRp   [Merill et al. (1965); 

Bugliarello and Sevilla (1970); Srivastava and Saxena (1995)], the volumetric flow rate, Q is 
calculated as  
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Using now the fact that the total flux is equal to the fluxes across the two regions (central and 
peripheral), one determines the relations [Shukla et al. (1980); Srivastava (2007)]: 

αδδαRR  11 and .An application of these relations into equation (10) under the condition 

 [Merill et al. (1965); Srivastava and Saxena (1995)] ,)2(0 dp/dzR/τ   yields 
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where 411 μ)α(β  and Qμ/τπRτ cn 40

3
0 , a non-dimensional Casson fluid parameter. 

 
The pressure drop, )atand0at( LzpzpΔp  in the tube of length, L across the stenosis 
is obtained as 
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The computation of the first and the third integrals in the expression for ψ  obtained above is 
straight forward whereas the evaluation of the second integral is almost a formidable task and 
thus will be evaluated numerically. Following now the definitions given in Srivastava (1996) and 
Srivastava and Rastogi (2009), the expressions for the impedance (flow resistance), λ  the wall 
shear stress, wτ  the shear stress at stenosis throats, sτ  and the shear stress at stenosis critical 

height, critτ  are derived in their non-dimensional form as  
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0n0 , τλ n  are the impedance and shear stress in a normal (no stenosis) artery for a Newtonian fluid 

of viscosity, cμ  and ( critτττλ ,,, sw ) are (impedance, wall shear stress, wall shear stress at the 

stenosis throats, and shear stress at stenosis critical height) in their dimensional form. 
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It is worth mentioning here that for 1μ and 1α , the results obtained in equations (13)-(16) 

reduce the corresponding results of one-fluid model analysis of Casson fluid. For 00 τ , the 

results obtained in equations (13)-(16) yield the results for a two-fluid model of Newtonian fluid. 
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In particular for 1μ , it leads to a single-layered analysis of a Newtonian fluid. The single-

layered Newtonian fluid results may also be derived by setting 1μ , 1α and 00 τ  in 

equations (13)-(16). 
 
4.  Results and Discussion  
 
Computer codes are developed to evaluate the analytical results obtained in equations (13)-(16) 
in order to observe the sensitivity of the blood flow characteristics due to the presence of the 
overlapping stenosis on the geometrical parameters. The values of the latter are selected [Young 
(1968); Merill et al. (1965); Srivastava and Saxena (1995); Srivastava and Rastogi (2009)] as: 

1;0.3,0.2,0.1,5;2,1,(cm)1;(cm)0  μLL 1,α 0.98, 0.95, 0.90, 0 0, 0.05,δ / R  0.10,0.15, 

0.20. We point out that the present study corresponds to single-layered Casson fluid, to two-
layered Newtonian fluid and single-layered Newtonian fluid for parameter values 1, 0nμ τ  , 

and 1, 0nμ τ  , respectively. 

 
For a given value of ,and μα the impedance (flow resistance), λ  increases with increasing non-

Newtonian behavior )( nτ of blood for a given stenosis height and also increases with stenosis 

height for a given value of nτ (Figure 3). The impedance, λ  increases with increasing peripheral 

layer viscosity, μ  for any given value of α  and nτ  (Figure 4). We observe that for any given 

parameters, nτ  and μ , the flow characteristic, λ decreases with decreasing values of the 

parameter α  (Figure 5). Blood flow characteristic, λ  also increases with increasing stenosis 
length for any given values of other parameters (Figure 6). 
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The wall shear stress in the stenotic region wτ  increases with increasing non-Newtonian behavior 

of blood, )( nτ as well as with increasing peripheral layer viscosity, μ  (Figures 7 and 8). We 
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axial distance in the stenotic region wτ decreases with the parameter,α  but increases with the 

parameter, 0δ/R  (Figure 9). In both the one and two-layered models, the wall shear stress in the 

stenotic region, wτ  rapidly increases from its approached value at z = 0 to its  
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peak value in the upstream of the first stenosis throat at  z/L0 = 1/6, it then decreases steeply in 
the downstream of the first throat to its magnitude at the critical height (0.75 0δ/R ) of the stenosis 

at z/L0 = 1/2. The shear stress in the stenotic region, wτ  further  
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increases steeply in the upstream of the second stenosis throat and attains its peak magnitude 
(with the same value as at the first throat of the stenosis) at the second throat of the stenosis at 
z/L0 =5/6, it then decreases rapidly to the same magnitude as it’s 
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approached value (at z = 0) at the end point of the constriction profile at z/L0 = 1 (Figures 7-9). 
We point out here that at any axial distance in the stenotic region, the shear stress, wτ  assumes 
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lower magnitude in two-fluid model than its corresponding value in the one- fluid model for any 
given set parameters. We notice that the flow characteristics, wτ  assumes significantly lower 

magnitude at critical height of the stenosis than at stenosis throats. The nature of the variations of 
the shearing stress at throats s  with respect to any parameter is similar to that of the flow 

resistance,   (Figures 3 and 10). We point out that the variations in shear stress at the stenosis 
critical height (i.e., at z/L0 = 0.5), c  is similar to that of the impedance,   and shear stress at 

stenosis throats, s . However, the flow shear stress at stenosis critical height, c  assumes 

significantly lower magnitude than its corresponding value of the shear stress at the stenosis two 
throats, sτ (Figures 10 and 15).     
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The Casson fluid seems to be more sensitive to the stenosis than Newtonian fluid. The condition 

0δ/R << 1, limits the usefulness of the present study to very early stages of vessel constrictions, 

which enables one to use the fully developed flow equations and leads to the locally Poiseuille 
like flow and closed form solutions. Use of the parameter, 0δ/R  is restricted to the values up to 

0.15 as beyond this value a separation in the flow may occurs even at a relatively small Reynolds 
number [Young (1968); Srivastava (1995)].  
 
5.   Conclusions 
 
To observe the effects of non-Newtonian behavior and the peripheral layer on flow 
characteristics of blood, a two-layered model of blood, assuming that blood in the central region 
is represented by a Casson fluid and a peripheral layer of plasma, has been applied to blood flow 
through an overlapping stenosis in a narrow artery. The flow characteristics (impedance, wall 
shear stress in the stenotic region, shear stress at stenosis throats and at the critical height of the 
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stenosis) increase with non-Newtonian behavior of blood as well as with stenosis size (height 
and length). The flow characteristics assume lower magnitude in a two-layered model than its 
corresponding value in a one-layered model. This concludes that the peripheral layer helps in the 
functioning of the diseased artery. The shear stress at the two stenosis throats assumes the same 
magnitude. The shear stress at the critical height of the stenosis assumes significantly smaller 
value than at stenosis throats. The nature of variations in the flow characteristics is similar with 
respect to any given parameter. 
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