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Abstract 
 
The problem of instability of electrically forced axisymmetric jets with respect to temporally 
growing disturbances is investigated computationally. We derive a dispersion relation based on 
the relevant approximated versions of the equations of the electro-hydrodynamics for an 
electrically forced jet flow. For temporal instability, we find in the realistic cases of the non-zero 
basic state velocity that the growth rate of the unstable mode is unaffected by the value of the 
basic state velocity. However, the non-zero value of the basic state velocity affects significantly 
the period of the unstable mode in the sense that it decreases the period, and the rate of increase 
of the frequency with respect to the axial wave number increases with the basic state velocity. It 
is also observed from numerical investigations that there are two modes of instability for small 
values of the wavenumber. 
 
Keywords: Axisymmetric, electrospinning, electric field, jet flow, temporal instability 
 
MSC 2010 No.: 35Q35, 35Q60 
  
 
1. Introduction 
 
Our main contribution to the present work has been to implement a numerical procedure to 
determine computational results about the effects of non-zero basic flow velocity in 
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the electrically driven jet flow system. Temporal instability of a cylindrical jet of fluid with a 
static charge density in the presence of an external constant as well as variable electric field is 
considered in this paper. The investigation of electrically forced jets is gaining importance in 
applications such as those of electrospraying Baily (1988) and electrospinning Hohman et al. 
(2001a, 2001b).   Electrospraying uses electric field to produce and control sprays of very small 
drops that are uniform in size. Electrospinning process uses electric fields to produce and control 
thin, uniform, high quality fibers. In the absence of electrical effects, it had been observed that 
temporal growing disturbances can destabilize the free shear flows which include the jet flows 
Drazin and Reid (1981). Since then several authors Hohman et al. (2001a, 2001b), Saville 
(1971), Reneker et al. (2000), Shkadov and Shutov (2001) and Fridrikh et al. (2003) have done 
theoretical studies on temporal instability of the electrically forced jets in the presence of 
electrical effects. Hohman et al. (2001a, 2001b) developed a theoretical understanding of 
temporal instabilities for an electrically forced jet with a static charge density. The equations for 
the dependent variables of the disturbances were based on the long wavelength and asymptotic 
approximations of the governing electro-hydrodynamic equations. They found that the 
dominance of the instabilities depends on the surface charge density and the radius of the jet.  
 
Saville (1971) studied interactions between electrical tractions at the interface of an electrically 
driven liquid jet and the linear temporal instability phenomena. It was found, in particular, that 
when viscous effects are small, sufficiently small strength of the electric fields tends to decrease 
the growth rate of a temporally growing axisymmetric mode. However, when viscous effects 
predominate, then the only unstable disturbance is that due to the axisymmetric mode regardless 
of the magnitude of the field’s strength. Other investigations of electrically driven jets with 
applications in electrospinning of nanofiber are reported in Yarin et al. (2001), Sun et al. (2003), 
Li and Xia (2004) and Yu et al. (2004). Spatial instability of axisymmetric electrically forced jets 
with variable applied field under idealistic conditions of zero or infinite electrical conductivity 
was studied analytically by Riahi (2009). He reported two spatial modes of instability each of 
which was enhanced with increasing the strength of the externally applied electric field.  
 
In this paper, we follow an approach similar to that of Hohman et al. (2001a) to obtain a 
mathematical model for the electrically driven jets. We consider the problem of instability of 
electrically forced axisymmetric jets with respect to temporally growing disturbances. We derive 
a dispersion relation based on the relevant approximated versions of the equations of the electro-
hydrodynamics for an electrically forced jet flow. The approximations include the assumptions 
that the length scale along the axial direction of the jet is much larger than that in the radial 
direction of the jet and the disturbances are axisymmetric and infinitesimal in amplitude. Indeed 
it is an extension of the work of Homan et al. (2001a) in the sense that our model also 
incorporates non-zero basic velocity and non-zero surface charge density. We then determine the 
dispersion relation, between the growth rate of the spatially growing disturbances and the wave 
number in the axial direction, the frequency and the non-dimensional parameters of the model. 
We found a number of interesting results. In particular, the growth rate of the temporally 
growing disturbances is found to be independent of the basic state velocity, while the frequency 
and equivalently the period of the growing disturbances are found to depend notably on the basic 
state velocity.  It is also observed from numerical investigations that there are two modes of 
instability for small values of the wavenumber.  
 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 6 [2011], Iss. 1, Art. 3

https://digitalcommons.pvamu.edu/aam/vol6/iss1/3



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1767 – 1780]                                    29 

 

2.  Formulation  
 

The present theoretical investigation for the mathematical modeling of the electrically driven jets 
is based on the original governing electro-hydrodynamic equations Melcher and Taylor (1969) 
for the mass conservation, momentum, charge conservation and the electric potential. The 
system is given by 
 

0,
D

u
Dt

    


                                                (1a) 
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where 
D

u
Dt t


  



 is the total derivative with is used to denote dot product. Here u


 is the 

velocity vector, P is the pressure, E


  is the electric field vector, is the electric potential, q is 
the free charge density, is the fluid density, is the dynamic viscosity, K is electric 
conductivity and  t  is the time variable. The geometry we use is shown in Figure 1.  

 

Figure 1.  Electrospinning model 

 
The internal pressure in the jet can be found by taking into consideration the balances across the 
free boundary of the jet between the pressure, viscous forces, capillary forces and the electric 
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energy density plus the radial self-repulsion of the free charges on the free boundary Melcher 
and Taylor (1969). Assuming the ambient air to be motionless and passive, this yield the 
following expression for the pressure P in the jet 
 

     ~/~/48/)~( 0
2  EP ,                                                                             (2)        

where is the surface tension, is twice the mean curvature of the interface, /(4) is the 
permittivity constant in the jet,   4/~  is the permittivity constant in the air and is the surface 
free charge. 
 
Following the previous investigation Hohman et al. (2001a), we consider a cylindrical fluid jet 
moving axially. The fluid of air is considered as the external fluid, and the internal fluid of jet is 
assumed to be Newtonian and incompressible. We use the governing equations (1) in the 
cylindrical coordinate system with origin at the center of nozzle exit section, where the jet flow 
is emitted with axial z-axis along the axis of the jet. We consider the axisymmetric form of the 
dependent variables in the sense that the azimuthal velocity is zero and there are no variations of 
the dependent variables with respect to the azimuthal variable. Following approximations carried 
out in Hohman et al. (2001a) for a long and slender jet in the axial direction, we consider length 
scale in the axial direction to be large in comparison to that in the radial direction and use a 
perturbation expansion in the small jet’ aspect ratio.  
 
We expand the dependent variables in a Taylor series in the radial variable r. Then such 
expansions are used in the full axisymmetric system and keep only the leading terms. These lead 
to relatively simple equations for the dependent variables as functions of t and z only. Following 
the method of approach in Hohman et al. (2001a), we employ (1d) and Coulomb’s integral 
equation to arrive at an equation for the electric field, which is essentially as the one derived by 
Hohman et al. (2001a) and will not be repeated here.  Equations presented in (1) are the general 
governing equations applicable to general cases for electrically forced jet systems, and for this 
generality aspect no boundary conditions in needed to be provided. Equations described by (3) 
are simple modeling one dimensional linear equations admitting periodic solutions for 
perturbations in the axial direction. As is known from experimental and theoretical work by 
Hohman et al. (2001a, 2001b), such periodic form in axial direction is reasonable, provided 
the axial domain should be away from the jet inlet section, which is assumed in our paper.  

 
We non-dimensionalize the resulting equations using 0r  (radius of the cross sectional area of the 

nozzle exit at z=0),   0
0 ~ r

E


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 ,  
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 0

0

r
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0

0
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r
  and 

0

~

r


 as scales for length, electric 

field, time, velocity and surface charge, respectively. The resulting non-dimensional equations 
are then 
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where v is the axial velocity, h(z, t) is the radius of the jet’ cross-section at the axial location z, 
(z, t) is the surface charge, E(z, t) is the electric field, the conductivity K is assumed to be a 
function of z in the form K = K0K(z), where K0 is a constant dimensional conductivity and K(z) is 
a non-dimensional variable function. Also, non-dimensional conductivity is given by 

2

3
0

0 ~
r

KK   and   1~ 

 . Also 




 0
2

0 r
    is the non-dimensional viscosity 

parameter, )(zEb  is an applied electric field and 
1


 is the local aspect ratio, which is assumed to 

be small. Next, we determine the electrostatic equilibrium solution, which is referred to here as 
the basic state solution, to the equations (3a-3d). The basic state solutions for the dependent 
variables, which are designated with a subscript ‘b’, are given below 
 

000 ,,,1  bbbb Evvh  (1-z),                                                                  (4a-d) 

 
where both 00 ,v  and 0  are constant quantities, and  = 80/() is assumed to be a small 

parameter ( << 1), under which the basic state solutions given by (4a-d) were found to satisfy 
the modeling equations Riahi (2009).   represents a composite parameter proportional to the 
basic state surface charge. It is assumed that  is sufficiently small so that to leading terms eqns 
(3) do not contain z-dependent coefficients and so the present method of approach can be 
implemented. Here, 0  is referred to as the background free charge density. We consider each 

dependent variable as sum of its basic state solution plus a small perturbation, which is assumed 
to be oscillatory in time and in axial variable. Thus, we write 
 

     1 1 1 1, , , , , , , , , ,b b b bh v E h v E h v E                                                                        (5a)  

 
where the perturbation quantities, designated by the subscript ‘1’, are given by 
 

5

Bhatta et al.: On Temporal Instability of Electrically Forced Axisymmetric Jets

Published by Digital Commons @PVAMU, 2011



32                                                                                                                                                Dambaru Bhatta et al.  

 

   1 1 1 1, , , , , , .t ikzh v E h v E e                                                                                            (5b)  

 
Here,  Evh

~
,~,~,

~   are constants which are assumed to be small, i is the imaginary unit,  is the 
complex growth rate, and k is the axial wave number. We need four equations for the variables: 

Evh
~

,~,~,
~  . Using (4)-(5) in (3), we linearize with respect to the amplitude of perturbation, 

consider a series expansion in powers of  for all the dependent variable and only retain the 
lowest leading order terms, and then divide each equation by the exponential function exp 
[t+ikz]. We then obtain 4 linear algebraic equations for the unknown constants  Evh

~
,~,~,

~  .  To 
obtain non-trivial (non-zero) values of these constants, the 4x4 determinant of the coefficients of 
these unknowns must be zero, which yields the following dispersion relation: 
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with     
 

2,),(ln,
89.0

1 2  Dk
k

 .  

 
To derive and compute our results for ,* K  we divided each term by K* and then we set 

1/K* > 0. Thus the form of the eqn for ,* K  will contain only K* terms of eqn (6), other 

terms will vanish. As ,* K the dispersion relation is given by  
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  (10)         

 
3.  Results and Discussion 

 

 
The dispersion relation (6) which presents the temporal behavior of the system is investigated for 
several parameters.  For all our computational purpose, we use  Hohman et al. (2001A). 
 
Our aim here is to present the positive real part and the imaginary part of the solution   of the 
equation (6), which is called, respectively, the growth rate and the frequency of the unstable 
mode, and these contributes to our understanding of the temporal instability. From our 
computational results, it is observed that the positive real part of   is independent of the basic 
state velocity bv , only the imaginary part depends on bv .  All the parameters we choose yielded 

negative imaginary part for nonzero basic state velocity. We use JMSL library to compute the 
complex zeros of the (6) whose coefficients are complex. Method Compute Zeros of the class 
Zero Polynomial of JMSL is used. 
 
Figure 2 through 4 present results for constant applied field and for various values of .bE  Here, 

we consider four values 0.0, 0.97, 1.93 and 2.9.  Results in Figure 2 are for infinite conductivity 
case, i.e., .K  Others are parameters chosen as .0,0,1  

bbv   

 
Figure 2. Positive real part of   as a function k with 

0,0, 0    bK  and 10  vvb   for various ).( 0bE  

 
As can be seen from the Figure 2, the instability is reduced with increasing the magnitude of the 
applied field. The results indicate presence of the electrically analog of the so-called Rayleigh 
mode of instability, Drazin and Reid (1981). The results presented in the Figure 2 are also in 
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qualitative agreement with those reported in Hohman et al. (2001) for a perfect conducting fluid 
case and zero basic state velocity.  
 
Results for zero conductivity, i.e., ),0( K   and 3.19K  cases are presented in Figure 3 
and Figure 4, respectively, keeping other parameters same as in the Figure 2.  

 
Figure 3. Positive real part of   as a function k with 

0,0,0  
bK   and 1bv   for various bE  

 
As in the case of perfect conducting fluid, the results for the perfect dielectric fluid cases shown 
in the Figure 3 indicate that the flow instability is reduced with increasing the magnitude of the 
applied field, which is again a property of the Rayleigh type mode of jet instability. The results 
presented in the Figure 4 for a finite conducting case are qualitatively similar to those presented 
in the Figures 2-3 and indicate those results for Rayleigh type mode of instability. 

 
Figure 4. Positive real part of   as a function k with 

0,0,3.19  
bK   and 1bv   for various bE  
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Figure 5 presents some results for the constant applied field and compares the positive real 
solutions for three different conductivity cases, namely, zero, infinite and finite (19.3) for 

0,0,9.2  
bbE   and 1bv . It is noticed that the results are closed to each other for 

,3.19K and .K  It is seen from the Figure 5 the stability effect due to conductivity of 
the fluid. 

 
Figure 5. Positive real part of   as a function k  with 

0,0,9.2  
bbE   and 1bv   for various K   

 
The effect of    is shown in Figure 6 for zero and finite conductivities. Other parameters used 
are 0,9.2  bbE   and 1bv . Again the case of constant applied field is considered here. It 

can be seen from the results presented in the Figure 6 that both viscosity and conductivity reduce 
the instability of the unstable mode.   

 
Figure 6. Positive real solutions of   as a function k with 

0b  and 1bv   for various and K    
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The effect of surface charge is presented next. Figure 7 displays the effect of  b  for zero 

conductivity with  0,9.2  bE  and 1bv .  It is seen from the results shown in the Figure 7 

that surface charge density enhances the instability of the unstable mode for the axial wave 
number not too close to zero; while the opposite is true if the wave number is sufficiently small. 
 

 
Figure 7. Positive real solutions of   as a function k with 

9.2,0,0  
bEK   and 1bv   for various b  

 
Figure 8 presents results for variable applied field, finite and nonzero viscosity and conductivity 
and for different values of the strength of the applied field. It can be seen from the results shown 
in the Figure 8 that the instability mode favors intermediate values of the axial wave number (not 
too close to zero or one values). 

 
Figure 8. Positive real solutions of   as a function k with 

1.0,333.0,3.19  
bK   and 1bv   for various bE  
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It is observed from numerical investigations that there are two modes of instability for small 
values of k. The primary mode dominates the secondary mode. The secondary mode exists only 
for small values of k. The secondary mode is also independent of basic state velocity, i.e., real 
part of    does not depend on the basic state velocity which is the case for primary mode also.  
The secondary modes are presented in Figure 9 with ,1.0,0,3.19  

bK   1bv  for 

various .bE  

 
A comparison of these two modes are shown in Figure 10 for ,1.0,0,3.19  

bK   1bv   

and 9.2bE . For very small values of k, the secondary mode exists whereas for larger k, this 

mode does not exist. For larger values of k, only one mode (namely, primary mode) exists. 
 

 
Figure 9. Secondary mode: positive real solutions of   as a function k with 

,1.0,0,3.19  
bK   and 1bv   for various bE  

 
Figure 10. Primary and Second modes with 

,1.0,0,3.19  
bK   1bv   and  9.2bE  
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Figure 11 through Figure 13 presents the imaginary part of the frequency of the unstable mode 
versus the axial wave number for zero conductivity and finite conductivity. Other parameters 
varied are viscosity and basic state velocity. It can be seen from the Figure 11 that the period of 
the unstable mode is smaller for larger value of the basic state velocity and decreases with 
increasing the axial wave number of the unstable mode. Also, rate of increase of the frequency of 
the unstable mode with respect to the axial wave number increases with the basic state velocity.   
 

 
Figure 11. Imaginary part of   whose real part is positive 

    with 9.2,1.0,0,0  
bb EK   

 
It can be seen from the Figure 12 that the imaginary part of   of the unstable mode for finite 
conductivity and zero viscosity case has sudden change in magnitude when k is close to 0.68.  
 

 
Figure 12. Imaginary part of   whose real part is positive 

 with  9.2,1.0,0.0,3.19  
bb EK   
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Figure 13 presents the results for imaginary part of   with ,1.0,333.0,3.19  
bK   and  

9.2bE   for various basic state velocities. These is no unstable mode for k approximately 

bigger than 0.5.  

 

Figure 13. Imaginary part of   whose real part is positive 
 with 9.2,1.0,333.0,3.19  

bb EK   

 

4.  Conclusions 
 

We conclude that in the realistic cases of the non-zero basic state velocity, the growth rate of the 
unstable mode is unaffected by the value of the basic state velocity. However, the non-zero value 
of the basic state velocity affects significantly the period of the unstable mode in the sense that it 
decreases the period, and the rate of increase of the frequency with respect to the axial wave 
number increases with the basic state velocity. In all the cases that we investigated we found that 
the presence of the variable applied field is destabilizing, while the finite values of either 
viscosity or conductivity are stabilizing. It is also noticed for the zero conductivity case that the 
imaginary part of   is zero if basic state velocity is zero and the imaginary part of   is nonzero 
if basic state velocity is nonzero.  It is also observed from numerical investigations that there are 
two modes of instability for small values of the wavenumber. The primary mode dominates the 
secondary mode. The secondary mode exists only for small values of k. The secondary mode 
also independent of basic state velocity, i.e., real part of    does not depend on the basic state 
velocity which is the case for primary mode also.   
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