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Abstract

A non-linear parabolic system is used to describe incompressible nuclear waste disposal
contamination in porous media, in which both molecular diffusion and dispersion are
considered. The Galerkin method is applied for the pressure equation. For the brine,
radionuclide and heat, a kind of partial upwind finite element scheme is constructed.
Examples are included to demonstrate certain aspects of the theory and illustrate the
capabilities of the kind of partial upwind finite element approach.

Keywo rds: Finite element method; Galerkin method; incompressible flow; nuclear waste

MSC (2000) No.: 65160, 74505, 82D75

1. Introduction

The proposed disposal of high-level nuclear waste in underground repositories is an
important environmental topic for many countries. Decisions on the feasibility and safety
of the various sites and disposal methods is based, in part, on numerical models for
describing the flow of contaminated brines and groundwater through porous or fractured
media under severe thermal regimes caused by the radioactive contaminants. A fully
discrete formulation is given in some detail to present key ideas that are essential in code
development. The non-linear couplings between the unknowns are important in modeling
the correct physics of flow.

In this model one obtains a convection-diffusion equations which represent a mathematical
model for a case of diffusion phenomena in which underlying flow is present;
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Aw and bVw correspond to the transport of w through the diffusion process and the
convection effects, respectively, where V and A denoted respectively the gradient operator
and the Laplacian operator in the spatial coordinates.

The prediction of an accurate numerical solution for the convection dominated flow
problem is one of the more difficult tasks in computational fluid dynamics. The central
difference method and the conventional Galerkin method have consistently produced
unphysical oscillatory solutions. One successful technique for solving such a problem is
known as the upwind algorithm, which was originally devised for the finite difference
method. In the finite element method, a popular technique known as the streamline upwind
Petrov-Galerkin (SUPG) method is used. This method modifies the weighting functions by
using the local velocity to dictate an upstream direction of these functions. Such
modification eliminates the oscillatory behavior for some convection problems. For more
details, see Wansophark and Pramote (2008).

In this paper, we have considered the fluid flow in porous media using a Galerkin method
for the pressure equation and a kind of partial upwind finite element scheme is constructed
for the convection dominated saturation (or concentration) equation, the trace
concentration of i radionuclide and the heat equation. For more details of this subject see
Douglas (2001, 2002), Huang (2000) and Chen et al. (2009).

2. Model Equations

The model for incompressible flow and transport of contaminated brine in porous media
can be described by a differential system that can be put into the following form, Gaohong

and Cheng (1999).
Fluid:
(a)Vu = _q+R;5
o (1
(b) Uu=——2VP= —a(C)VP.
u(c)
Brine:
oc
¢E+u.Vc—V.(ECVC) =g(c). @
Heat:
oT _
4,2 e iV T =V (E,VT) = 0w T c. p). )
Radionuclide:
oK, %-HLVC,- —VU(ENV¢) = fie,cp,ney), ®
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with the boundary conditions

(@) un=0, on
(b) (EVc—cu)n=0, on
(¢) (ENV¢,—cu)n=0, on
(d) (E,VT-c,Tu)n=0, on

)

v s Baw ian |

(e) a—p=0, (x,1) eI'x(0,T]
on

and the initial conditions

(@) p(x,0)=py(x); xeQ,

(b) c(x,0)=c,(x); xe€Q,

(0) ¢;(x,0)=cy(x); xe€, (6)
(d) T(r,0)=T,;  xeQ,

where 7 is the unit outer normal to I', xe Q< R*,t€(0,T]; u is the Darcy velocity; P is
the pressure; ¢ =d¢c,,q=q(x,t) is the production term;
R, =R.(c)=[c,dK_ f./(1+c,)](1-c) is the salt dissolution term; k(x) is the permeability of
the rock; u(c) is the viscosity of the fluid, ¢ dependent uponc, the concentration of the
brine in the fluid and 7 is the temperature of the fluid,

d2 =@ Cp +(1_§D)pRCpR’
E, =Dc, +K,I.K, =k, /p,,D=(D,)
)s

= (aT|u |§U +(a, —a uu, /|u

and
O, T,c,p)=—{[VU,—¢,VT,Ju+[Uy +c,(T-T) +(p/ p)ll-q+ R 1}~ 9, —qH — q,;.
E .=D+D,land g(c)=-c{[c K, f, (1+c)I(1-c)} g, +R,,

¢, is the trace concentration of the i-# radionuclide, and

fi(ca €6y ""’CN) =¢ {(] - [cs¢stv /(1 + cs)](l - C)} —q¢; — 4., 4,

N
+ Z] kyAK g, — LK ge;.
=

The reservoir Q will be taken to be of unit thickness and will be identified with a bounded

domain in R>. We shall omit gravitational terms for simplicity of exposition, no significant
mathematical questions arises the lower order terms are included.
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We assume that:

a(c),R,(€),8(€), £,(€,€ sy ), 0, T, p) € Cy(R)

#(x),K;,d, € H'(Q),q € L”(0,T; H' ()

O<c, < a(c),R_; (0),g(c),d(x), f; (c,cp5eenc,), K, dy , O, Tc,p)<c; ,VceR,xeQ
D, >0,0,za >0

(AT)

(A2) The solution of the problem (1-6) are regular:
C(x,t)e L*(0,T; H*(Q))NL*(0,T;w,, (Q))
C(x,0) € L (0,T; H*(Q)NL*(0,T;w, ()
P(x,t) e L”(0,T; H"(Q)) , (r>2)
c,,c,,c, € L”(0,T;H' (Q)) ;p,,p, € L”(0,T;L* (Q))

(A3) Forany ¢ € L’ (Q), the boundary values problem:
-Ap+od=¢p, xeQ
o,

=0, xel,
on

there exists unique solution ¢ e H>(Q) and a positive constant M such that ||¢|| , <M ||¢||
[Manaa (2000)].

3. Finite Element Spaces

Consider a regular family {7,}of triangulation defined over Q, where /4 is the longest
diameter of a triangular element with the triangular 7}, we have a set of close triangles
{e,}(1<i<N,) and a set of nodes {P}(1<i<N,+M,)where P(1<i<N,)are interior
nodes in Q and P,(Np,, <j<N,+M ))are boundary nodes on I'. We put s, to be the

maximum side length of triangles and k to be minimum perpendicular length of triangles
forall eeT,.

Definition 3.1. A family 7, of triangulations is of weakly acute type, if there exists a
constant &, >0 independent of h such that, the internal angle ¢ of any triangle ¢, €7,

satisfies 6, <0< % .

Definition 3.1.1. Let ¢,(p),(1<i<M), be the continuous function in Q s.t. ¢.(p), is
linear on each e€ 7}, and ¢,(p ;) =0, for any nodal point p;. We denote M, be the linear

span of ¢,(1<i<M),i.e., a finite dimensional subspace of H'(Q) and defined by:
M, ={z,|€e C(Q);z, isalinear functionone,VeecT,}. Also, define a subspace of
Hy(Q) be: M, ={z,|z,eM,;z,(P)=0,k=M +1,...,K} .

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25
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We associate the index set A={j#i:P, is adjacent to F,}. Let P; P; Py, be three vertices of

triangular element e and 4,1,,4, be barycentric coordinates. We have the following
definitions [see Hu and Tian (1992)].

Definition 3.2. With each vertex P; belonging to triangle e, the barycentric subdivision Q
is given by: Qi ={P|Pee; 4, (P)24,(P), 4(P)>24,(P),VP, e}, and the barycentric

domain Q, associated with vertex P; in Qs given by Q, =uUQ; ,eeT,.

Definition 3.3. With the characteristic function g, (x) of barycentric domainQ, , the mass
Np+Mp
lumping operator A : we C(Q) > we L, (Q)is defined by w(p) = z w(p)u,(p).

i

Using interpolation theory in Sobolev space [Ciarlet (1978)] and inverse inequality, with
step-length /1, we have the relation between Wand w from the following lemma:

Lemma 3.1. There exists a constant C such that:

w| VweM, ,p=1 @)

c

[w="41,, < Chpw, -

w,|, < MR

wil, YweM,. (8)
Lemma 3.2. There exist constants C, ,C, > 0such that:

C ||w|| <|w
0,p

<C, ||w||07p , YweM,. 9)

0,p

Definition 3.4. Let {M,}be a family of finite dimensional subspaces of C(Q2), which is

piecewise polynomial space of degree less or equal to » with step length 4p and the
following property: for Pe[l,o], r>2 ,there exists a constant M such that for

0<g<2 and gew,"(Q):

¢

inf x| ~<Mh

xe{M,} r+lp

Similarly, we define {N,} be a family of finite-dimensional subspace of C(Q)xC(Q),

which is piecewise polynomial space of degree less or equal to -/ with the similar
property as M, and 0<q <r—1.We also assume the families {M,}and {N, } satisfy inverse

inequalities:

, VepeM, (10)

- S Mh;,' ||(/)

. Ve

o <M Ve

le

[Manaa (2000)].
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4. Error Estimates

Let 7>0is time step and N, =% . We use a Galerkin finite element method for the

pressure and velocity and partial upwind finite element scheme for brine, radionuclide, and
heat.

Let C° e M, bea L*(Q)-projectionofc’ in M,:
(c"-C%z,)=0 Vz,eM,.

We can get P’ eV, such that

JPde =0, ( k(xo) VP, Vv)=(=¢q’,v)+(R,,v) , VYveV, and U’ eW, from
a u(c’)
U°=— "(xg VP = —a(C*)VP°

u(CT)

If the approximate solution {P",U",C",C/"(i=1,2,...,N),T"} eV, xW,x M, x M, xR, is
known, we want to find {P"", U™ ,C™",C""(i=1,2,...,N),T"" Y eV, xW,xM,xM, xR,
at £ =1""" with five steps . Let (,.) denote the inner product in L’ ()

Step 1.

Find C"'for m=0,1,.. . N_ =1, such that
(@D.C",2,)+(E,;NC"™2 Vz)+ RU",C""?,z,) = (§(C"™""*),5,) Yz, e M, , (11)

where

D.C"=(C"™-C™)/z , C"™"?=(C"™" +C™)/2 and with z, =z,(P) ,

C«erl/z — Cm+l/2(P)
and

Bl = J U".n, dT, here n; is the unit outer normal to T’

i

The partial upwind coefficients should be required that [Hu and Tian (1992)].

(@) a +a; =1
(b) max{l/2,1-p;'}<a, <Lif f, 20, (12)
max{1/2,1—pl;1}Saﬁ <Lif B, <0.

Step 2.
Find C""', for m=0,,...,N, —1, such that:

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25
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(pK.D.C",2)+(EVC"™ ,Vz)+ RU",C"", z,)

l

) (13)
=(f,(C™", L CutY, 2 Yz, e M)
where
1 < 1/2 1/2
RU™.CP\2) =22 3 A € ).
i= JEAI

Step 3.
Find T™"! such that:

(d,D.1" )+ (E,NT"" Vi) + R(c,U", T""",1,) (14

=(QW",T",C",P"),i,) Vr,eR,
where
1/2 < 1/2 1/2
R(chm,Ter ,rh):z}/;Zﬂ;(a;T;er +ajr_;17—}nz+ ) .
=l jeAi
Step 4.
Find P"* such that:
m+1 k(x) m+1 m+1 !

jP dx=0,(—2_VP"™ Vv)=(=¢"" V) +(R,v) , VveV, . (15)

o H(C")
Step 5.
Find U™ as

Um+1 - _ k(x) VPerl — _a(Cm+l )VPerl . (16)

Lemma 4.1. Let peV¥, be the elliptic projection of pe H'(Q) into ¥, defined by
(a(c)Vp,Vv)=(a(c)Vp,Vv) , VveV,. Then, there exists a constant % such that

lp=pl+ 4, VP = VRl <Pl A"

Proof:
See Quarteroni and Valli (1997).

Some Important Remarks:

1.U™n=0 in T.

2.1f ||Uf —ul" <Ch, (0<I<m), then ||U’”“ —ym

Published by Digital Commons @PVAMU, 2010
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and if [U" —u"| < Chy, then |[VU"|<C, . (18)

3. We will make the inductive assumption that if "U ! ,

<k* (0</<m),then

||U m+1

*
, <k (19)

4. From Manaa (2000), if 7, is regular triangulation of weakly acute type we have

Iy, < , Vw, eM, (20)
Theorem 4.1. C satisfies discrete mass conservation law

jgoD C"dQ jA"””Z(C)dQ , m=1,2,--,N.. Q1)

Proof:

In (10), let z, =1 , then (EcVC™"?,V1)=0 and

R(Um Cm+l/2 1) zlz mcm+1/2 Z z( mCm+1/2 Cm+1/2) 0.

=l jeA; €Ty, pi,pj€ei<j;

Then (21) holds.

Theorem 4.2. C;satisfies discrete mass conservation law

[#K,D,Cra=[ f"2dQ ,i=12,..,N (22)
Q

Q
Proof:

Same as Theorem 4.1.

Lemma 4.2. Let
c:[0,t] > M, and ¢ :[0,t]> M) ,i=1,.
such that

(EcVe-c,Vz)—A(c-c,z)=0,VzeM,,
(EcV(c,—¢,),Vz)—A((c,;—¢C,),z) =0, Vze M) ,teJ

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25
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and let

C_E:g ’Cl __l :gl’
then,

e <. [ am (] <o

1

and

le, <, | <o | <

ot ot ||

Proof:
See Ciarlet (1978).

Lemma4.3. Forall z, e M,and ¢ =c—-¢c , £=c-C,

|((umlvcm+1/z),zh)_R(Um’cm+1/z’zh)|SM(hf +||§m+1/2”2 +||gm+1/z"2
: (23)

z, ||2) + 8||VZh

2 2
MO I Dt

where ¢ > 01is arbitrary small constant.

Proof:

((um .VCmH/Z ), Zh ) _ R(Um , Cm+1/2 , Zh) — ((um _ Um )‘VCmH/Z , Zh)
+ (UmV(CmH/Z _ Cm+l/2 )’ Zh) + (Um .chﬂ/z , Zh _ 2/,! )
U VC™ 5~ RU",C"2, 2)] = J1+ J2+ T3+ 4.

With (A1) and (A2) we have:

Jl= (" -U") V"™ z) <M -0z,

<M (" U +]z,[)-

Using (A1), (19), (20) and (9) we have:
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J2=U" .V(Cm+1/2 _cme ).z,) < M[“V(cm“/z _gm2 )H +Hv(5m+l/2 _ anl/z)“].nzh "
—M[”ngm”+Hv§m+l/zu]‘"2h”

gAm+1/2H2 +%

<M[ M|z,

§m+1/2

k
<mem [ +lem [ +lalp
From (A2), (19), (20), (7) and (8) we have
Jy=(U"VC"? 2~z )< M|ur|[ver |z, - 2

<M|Ver?||z, =2, ]+ M|V ||z, - 2,
+ M|V 2|z, =2, =l + e, + K,

e 14 g | vz,

ky < MR +|v e

k, < M[h? +

+lal)

ky < MR +|z,]1
Ty < MR+ + [V 4z, 1+ £]Vz, [

Using (11), (9), (18) and (19) implies

J4S§:z > [ -yt g dr

i=1 je r

M o

. m+l/2 _ _ mom+l/2 mvym+1/2
Since C; " =a;C" "+ CT,

Ja< (z —z)|[(C"2 = HU™ g dT |+
2 2 I

cel), PPe

+1/2  —=m+l/2 | —=m+l/2 +1/2 +1/2|(ll 2
MHCm 12 _gmil/2 | ami/2 | w2 mel H"Zh”

<M Zhe‘V(Z}Je
eeT),

1/2 +1/2 +1/2
e H el

PiP;ce

J'(C mt1/2 C'"*”Z)dr‘

and in element e we have ‘C’”“/ Pt 2‘ < 2‘V(C’"”/ 2|e)‘he , then

172 172
"+l

JA<3IM2Y K HV(Zh |e)H_HV(Cm+1/2 |6)H +M[“§m+1/zu N
eeT,

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25
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SM(hf +||§m+1/2||2 +||gm+1/2||2 +||vgm+1/z||2 +||Zh||2)+‘9"vzh”2/

Hence, J,+,+J5+Js Implies (23).

Lemma4.4. Forall z,e M, and ¢, =c,-c, , & =c,-C,,

1 1

|((um.Vcl.m“/2),Zh) —RU", Cim+1/2,zh )| < M(hf +||é;im+1/2||2 + | gimn/z"z
m+1/2 2 m m 2 2 2 (24)
+||Vgl. || + ||u -U " +|z, [ +e|Va|
where ¢ > 0is arbitrary small constant.
Proof:
((um .Vcim+1/2 )’ Zh ) _ R(Um , Cim+1/2 , Zh ) — ((um _ Um )'Vcim+1/2 , Zh)
+ (Umv(cim+l/2 _ Cim+1/2 )’ Zh) + (Um 'vcim+1/2 , Zh _ éh)
+[(U’".VCZ.””1/2,£,1) —R(U'”,Cl.'””/z,zh)] =J1+J2+J3+J4.
Same as Lemma 4.3.
Lemma 4.5. There exists a positive constant &, such that:
||VPm+l _VI_)WHI S k2| Cm+1 _cm+1 (25)
Proof:
We have
(a(Cerl)VPmH’VU) — (qm+1/2,v) + (RS' (Cmﬂ),V), (26)
(a(c" VP V)= (""" W)+ (R (c"*),v). (27)

subtracting (27) from (26), we get

(@(C" V(P =P, Vo) +([a(C™) = a(c" VP, V0) = (R (C™) = (R ("), V)

Let v=P"" —P"" eV,, then

||V(Pm+l . ﬁm-v—l) |2 < |(a(Cm+l)V(Pm+l _ ﬁm+1)’ V(Pm+l _ ﬁm+1 ))|

=| [a(c™")—a(C" VP, V(P" = P" ") +(R(C") = (R, ("), P"" = P"") |.
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Using (A1), we have

<M ||v15'"*1

m+1 m+1
"C —c

||V(Pm+1 _ I_)mﬂ)

+||Cm+l _ cm+l

m+1 pm+l
P" —-P

with lemma 4.1 and (A2) if 4p >0 is sufficiently small

v

S"VP'"“

+k||P| ,, hp <M , s0 we have (25).
Lemma 4.6. There exists a positive constant &3 such that

||Um+1 _um+1 Cm+1 _cm+1

=k3(|

+h) (28)
Proof:

||Um+1 _ um+1

_ ||a(cm+1 )VPmH . a(cm+l )VPmH

< ||a(Cm+1 )V(Pmﬂ _ pm+1)

+ ||a(Cm+1) _ a(cm+1)

o

From (A1) and (A2) , we have

< COHSt.”VPmH _ vper] Cm+l _ Cm+1 me+l

|

Le,

we have ”VP’"+l —Vp"t!

<|vPm —vp

+[vPr —vp.

Using Lemma 4.1 and Lemma 4.5, we get

||VPm+1 _ meﬂ Cm+1 _ Cm+1 Pm+1

<k,|

+k1|

Mh; , from (A2), (28) holds.

Theorem 4.3. Forall m</<N, if z<r,,then

cl+1 _ Cl+1

<SM(z+h,+h,), where M independent of 7 and 4, .
Proof:
Multiply (2) by z; and integrating by parts to obtain
t=(m+1/2)r. Let w,,,,, =w(.,(m+1/2)r) and ™" =" +w")/2.

Then,

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25

12



Al-Bayati et al.: Finite Element Analysis in Porous Media for Incompressible Flow of Contamination from Nuclear Waste
AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1682 — 1701] 597

(pD.c",z,)+ (EcVc™"?, Vz,)+ W"Ve™'?, z,)

m+ m a
= (g(c""),z,)+(¢(D,c —a—flmm), z,) (29)

+((EcVe™? —Ecve,,,,),Vz,)+ (W"Ve"™" —u Ve, ,).z,).

Let e=c—C=(c—c)+(C—-c)=c¢+¢. Subtract (10) from (29), to obtain:

(@Drérﬂ ,Z,)+ (EcVem+1/2 ,Vz,)=(RU", o2 2,)
WV, ) +(§D,E"2,) ~(9D,c"2,)

oc

+((g(c""),2,) = (&(C""),2,) + (@(D,c” — 5|m+u2) =)

+((EcVc™"? —EcVe,,,,),Vz,) +(@"Ve"™ " —u Ve, ),2,)-

m+1/2

Hence,
(PD.E" 2 )+ (EcVE™? Vz,)=—~(pD.&™", 2,) — (EcV ™", Vz,)
_((umvchrl/Z , Zh) _ R(Um , Cm+1/2 , Zh )) + ((g(CmH/Z )’ Zh) _ (é(cmﬂ/z )’ 2h ))
m ~ Am A m ﬁc
—((@D,c",z,)—(¢D,c",Z,))+ (p(D,c" - a mi1/2)sZ1) (30)
+((EcV"™"? —=EcVe,,,),V2,) +(W"Ve™ " —u Ve, 0),2,)
=11+12+13+14+15+16.

In (30), let z, =&™"2 e M, , and using (A1) the Left Hand Side (LHS) is

2

All A 2 A

e I

2 +c0||V§'"“/2||
T

2

From (A1), we have:

Il= (¢?Drg~m,2h) < M("D,g.:m”z + ggmu/z"z ‘

Using (7) and (8), we have

[p.g” D.g"~D¢"| <.+ M,

Drg”’|1 .

<[ps7]+|

From (9) we have

+[e”h

2
ngm"l )-

ém+l/2||SM||§m+1/2||SM(||§m+1

neue e <.l o
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. . i
Using (A1), we have 12 < M[ve 2|+ gvem 2|

From Lemma 4.3,

13< M(hc2 + Hé:mwz ”2 +Hgm+1/zuz
2

2 2
+vam+l/2“ + “um _UmH )+8“V§m+1/2

cm+1 _cm

Let 6=¢

3
= ¢(%|WU2 + 1/24%‘12). Using (A1), (A2) we get [Raviart and
Girault (1979))]

14<Mh, (1+7°)|z,| +Mh,(1+7%)|z,|
< Mh, "Zh || + th|zh|1 + Mh, 72||zh || + thz'2|zh|1

SM(hcz n hfr4)+6‘“V§m+l/2“2

2

I5< M (R +H§m+1/2H2 +Hgm+l/2“2)+‘9HV§W1/2“
Let 16=K1+K2+K3. So,

kismie e |+l
2

K2< M7 +e|vem”|

ks<m e[+
Then, we get
rosc e ey

Relation (30) can be written now as

2 2

@ §m+l _ ém

2

m+1 2 m 2 m 2 2 m 2
A R R L R e

2 2
n Hgm+1/2H n

m+1/2
+¢, HV§

< M(

ngJrlH
2t
2 2
m+1/2 m m 2 2 m+1/2
+HVg u" —U H +hE 4T )+5“V§ .

Take the summation from 0 to /, where m<I/<N,,andC’ =2° so &°=0
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A

¢ élﬂ

a3 e e o s
m=0

I*(H")

oMY oM, 2 42+, Y Jun —ue e
m=0 m=0
Where
2 & m?
”W"LZA(x) - ;”W ||xT.
Using (7) and (A1), we get
§l+] < élﬂ +th GZ/H l < §AI+1 +th% §AI+] <M 92/+1
¢?§AI+1 ZMO él‘*’l ,
)
I+1 ! 2
el <08, Jef et S -0 eostos [y RIS,
+||g ||;H” +h+77).

From Lemma 4.6, we have

“pan + h') (32)

l 2 i
Sl vt emE o] e+

From (31) and (32), we have

§l+l

2 S P 2, 2, g2
<MY ||§ || T+ M,y(h +7 +hY).
m=0

From Gronwall inequality, we get:

§I+1

SM(h, +7+hp).

Itis [ = C"||[< M(h, +7+h)).

Theorem 4.4. Forall m<I< N, if 7<rz,,then

1+1 1+1
¢ - Ci

<SM(c+h +h),

where M independent of 7 and #,.
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Proof:

Multiply (4) by z, and integrate by parts to obtain
t=(m+1/2)r. Let w,,,,, =w(.,(m+1/2)r) and w""* = (W™ +w")/2.
Then

((”KiD,ci’” , Zh) + (ECVCimH/Z , Vzh) + (umvcimﬂ/z 2, )
oc,

a_tl mi1/2)>Zh) (33)

+((EcVe"™"? = EcVe, ,.0,),VZ,) + (W"Ve" " —u

— (f; (cm+l/2’clm+l/2,“.’ C]r:t]+1/2), Zh) + (ngZ (Drcim _

vci,m+1/2)’ ).

m+1/2

Let e=c,—C, =(c,—¢;)+(c,—C,)=¢, +&,. Subtract (10) from (33) to obtain:

(PK.D.&",2,)+(EcVe" " Vz,)=(RU",C""?,z,)

T

—W"Ve""?,2,)~((@D,¢".2,) = (¢D.¢", z,))

T2

L), 2) = (€7 G, O ), 2 + (K (D =
+((EcVe""? —=EcVe,,0,).Vz,) + (W"Ve" - u Ve, ,an)z,)-
Hence,
(PK.D.E".2,)+(EVE""? Vz,) =~(pK D&/, 2,) - (EcV 5", Vz,)
~(W"Ve," ", 2,) = RU",C"V2, 2,) = ((f.(C™2,Cr2 L C2), 2,
S e ), 2)) (0K Die 2,) ~ (§ K1 DS 2,)) (34)

oc,
+((p(D.c" ——%
((p(D,c, Py

H(W"Ve"" —u Ve, 00),2,) =1+12+13+14+15+16.

mir2)sZy) F ((Ecvcimﬂ/z - Ecvci,erl/z ),Vz,)

The rest of the proof is the same as in Theorem 4.3.

Theorem 4.5. With the assumption (A1)~ (A3), if A, =O(h,),7 =0(h,), then

||c—C

)+||u—U

<M (z+h, +h}).

L (? °(?
Proof:

We will prove, first the inductive assumption (19). We have

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25
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o . < Jatc™ v, < I\ .
But,

[P LS |vpmt —vpr . +|vp | <M |vPmt =P | 4k < 2k,
When h, =o(h,) , t=o0(h,) (r=2), ||w>"’+1 L Sk,

"U"’“ —u" <k, (||cm+1 —c"+ns) , Ym=0,,..,N, (35)
and from Theorem 4.3,

et =cm| < M(n, +7+hy) , Ym=0,,...N,. (36)

Equations (35) and (36) implies

Cm+l _ Cm+l

+ ||um+1 _ Um+1

SM(z+hy+h,), Vm=01,.,N,.

This will complete the proof.
5. Numerical Applications
Example 5.1.

A two dimensional diffusion-convection problem of interest is concerned with a
description of sediment transport in channels. The governing differential equation is [Smith
etal. (1973)]:

o%c 0% oc Oc _0Oc

d —+d, —-u, —-u,—=—
Toxt Yoyt Tox Yoy ot

where ¢ is the sediment concentration, d, and d, are the sediment diffusion
coefficients ,u, and u, are the fluid velocity component in the x and y directions. The
boundary conditions of the problem are

u, .
% =—c=Mc, (M, 1s constant), at y=0,
o d,
u
@ =—=M, (M, isconstant), at y=-56.0.
2 2
oy d

We use a Kind of upwind finite element method to solve this problem with the mesh as
triangular element with 82 nodes and take the values u,=1. E-6, u,=0.49 , d,=0, d,=0.0135,
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we take the time step =300 and the number of time steps N; =30 for 6 =1 ,the time step
=100 and the number of steps N; =90 for 8 = 1/2 , and also the time step T=300 and the
number of steps N; =30 for 06 = 2/3 . In figure (5.1) we show that we can solve this
problem by decreasing the time step T and increasing the number of time steps Nt for a
kind of partial upwind finite element method.

Example 5.2.

In this example, we solve a purely convective problem in one dimension [Smith et al.
(1973)]:

oc Oc
-y — = —,
Yoy ot

where c is the concentration in the region —2 <y <0, subject to the boundary conditions

c=1, y=0, 0<t<0.2,
c=0, y=0, r>0.2,
%:0, y=-2, forall t.
oy

We discretized this region into 200 triangular elements with 202 nodes and with the same
distance between any two nodes is 0.02 in both directions x and y, and take u, =1.0, the
time step 7=0.04 and the number of time steps N, =25 for 6 =0.5. Figure (5.2) shows the
computed solution after one second and it draws between the concentration and coordinate
y, we can see that while y convergence to zero the value of concentration convergence
oscillation to solution.

1.00 —

=300, =30

0.80 —

=0.5, =100, =90

=2/3, =300, =30

0.60

=30

Concentration

0.40

0.20

0.00

0.00 40.00 80.00 120.00 160.00
Time (minutes)

Figure 5.1. A kind of partial upwind F.E.M. for triangular element at Different values of 6 in Example 5.1.
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1.20 — .
Exact solution at
t:l Second A kind of partial upwind FEM
i \
Galerkin method for triangular element
0.80 — A
Galerkin method for quadrilateral element
c .
§e)
8
% 0.40 —
(8]
c
(@]
)
0.00
Bt L L R L
-2.00 -1.60 -1.20 -0.80 -0.40 0.00

Coordinate Y

Figure 5.2. Solutions in Example 5.2 after one second for 6 =0.5, 1 =0.04 , N, =25

6. Conclusions

We used the system with large coupled of strongly non-linear partial differential equations
arising from the contamination of nuclear waste in a porous media. For the incompressible
case the method satisfied the discrete mass conservation law for approximate C,C, and

derived the error estimates in L”(0,7,L*(Q)). The two examples included clearly

demonstrate certain aspects of the theory and illustrate the capabilities of a kind of partial
upwind F.E.M.
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