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Abstract  
 
A non-linear parabolic system is used to describe incompressible nuclear waste disposal 
contamination in porous media, in which both molecular diffusion and dispersion are 
considered. The Galerkin method is applied for the pressure equation. For the brine, 
radionuclide and heat, a kind of partial upwind finite element scheme is constructed. 
Examples are included to demonstrate certain aspects of the theory and illustrate the 
capabilities of the kind of partial upwind finite element approach. 
 
Keywords:  Finite element method; Galerkin method; incompressible flow; nuclear waste 
 
MSC (2000) No.:  65L60, 74S05, 82D75 
  
  
  

11..    IInnttrroodduuccttiioonn  
    

The proposed disposal of high-level nuclear waste in underground repositories is an 
important environmental topic for many countries. Decisions on the feasibility and safety 
of the various sites and disposal methods is based, in part, on numerical models for 
describing the flow of contaminated brines and groundwater through porous or fractured 
media under severe thermal regimes caused by the radioactive contaminants. A fully 
discrete formulation is given in some detail to present key ideas that are essential in code 
development. The non-linear couplings between the unknowns are important in modeling 
the correct physics of flow. 
  
In this model one obtains a convection-diffusion equations which represent a mathematical 
model for a case of diffusion phenomena in which underlying flow is present; 
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wbandw   correspond to the transport of w through the diffusion process and the 
convection effects, respectively, where  and  denoted respectively the gradient operator 
and the Laplacian operator in the spatial coordinates. 
 
The prediction of an accurate numerical solution for the convection dominated flow 
problem is one of the more difficult tasks in computational fluid dynamics. The central 
difference method and the conventional Galerkin method have consistently produced 
unphysical oscillatory solutions. One successful technique for solving such a problem is 
known as the upwind algorithm, which was originally devised for the finite difference 
method. In the finite element method, a popular technique known as the streamline upwind 
Petrov-Galerkin (SUPG) method is used. This method modifies the weighting functions by 
using the local velocity to dictate an upstream direction of these functions. Such 
modification eliminates the oscillatory behavior for some convection problems. For more 
details, see Wansophark and Pramote (2008). 
 
In this paper, we have considered the fluid flow in porous media using a Galerkin method 
for the pressure equation and a kind of partial upwind finite element scheme is constructed 
for the convection dominated saturation (or concentration) equation, the trace 
concentration of ith radionuclide and the heat equation. For more details of this subject see 
Douglas (2001, 2002), Huang (2000) and Chen et al. (2009).  

  
  
22..      MMooddeell  EEqquuaattiioonnss  

 
The model for incompressible flow and transport of contaminated brine in porous media 
can be described by a differential system that can be put into the following form, Gaohong 
and Cheng (1999). 
 
FFlluuiidd::    
 

'(a) . ,

( )
(b) ( ) .

( )

su q R

k x
u P a c P

c
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                                                                          (2) 
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                                                                (3)  

  
  RRaaddiioonnuucclliiddee::        

1. .( ) ( , ,..., ),i
i i c i i N

c
K u c E c f c c c

t
 

    


                                                            (4)                             

 

(1) 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 2, Art. 25

https://digitalcommons.pvamu.edu/aam/vol5/iss2/25



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1682 – 1701]         587 
 

with the boundary conditions 
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                                                               (5) 

   
and the initial conditions       
      

0

0

0

0

( ) ( ,0) ( ); ,

( ) ( ,0) ( ); ,

( ) ( ,0) ( ); ,

( ) ( ,0) ; ,
i i

a p x p x x

b c x c x x

c c x c x x

d T x T x

 
  
  
  

                                                                        (6) 

where n is the unit outer normal to  , ],0(,2 TtRx  ; u is the Darcy velocity; P is 
the pressure; wc 1 , ),( txqq   is the production term; 

)1)](1/([)('' ccfKccRR ssssss    is the salt dissolution term; k(x) is the permeability of 

the rock;  )(c  is the viscosity of the fluid, c  dependent upon c ,  the concentration of the 
brine in the fluid and T is the temperature of the fluid,  
 

2

' '
0

(1 ) ,

, / , ( )

( ( ) / ),

p R pR

H pw m m m ij

T ij L T i j

d c c

E Dc K I K k D D
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and  
 

'
0 0 0 0( , , , ) {[ ]. [ ( )) ( / )][ ]} .p p s L HQ u T c p U c T u U c T T p q R q qH q             

 
'

s )}1)](1/(-c{[cg(c)and, scsssmc RqccfKIDDE   , 
 

ic  is the trace concentration of the i-th radionuclide, and  

 

.

)}1)](1/([{),...,,,(

1

21







N

j
iiijjjij

oiciissssiNi

cKcKk

qqqcccfKcqcccccf




 

 
The reservoir  will be taken to be of unit thickness and will be identified with a bounded 
domain in 2R . We shall omit gravitational terms for simplicity of exposition, no significant 
mathematical questions arises the lower order terms are included. 
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We assume that: 
 

(A1)  
))(;,0(),(',),(

,)(),,,(),,.....,,(),(),(),(
1

2

1
01

'




 HTLqHdKx

RCpcTuQcccfcgcRca

i

Nis


 

          
0,0

,,),,,(,,),,...,,(),(),(),(,)(0 121
'

0




tlm

inis

D

xRccpcTuQdKcccfxcgcRcac




 

 
(A2)   The solution of the problem (1-6) are regular: 
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(A3) For any )(2  L , the boundary values problem: 

           
,

0, ,

x

x
n

  


   


 


 

 
there exists unique solution  )(2 H  and a positive constant M such that  M

2
 

[Manaa (2000)]. 
 
 
3.   Finite Element Spaces 
 
Consider a regular family }{ hT of triangulation defined over  , where h is the longest 

diameter of a triangular element with the triangular hT , we have a set of close triangles 

)1}({ ei Nie   and a set of nodes )1}({ PPi MNiP  where )1( Pi NiP  are interior 
nodes in   and )( 1 pPPj MNjNP  are boundary nodes on  . We put sh   to be the 

maximum side length of triangles and k to be minimum perpendicular length of triangles 
for all hTe . 

 
Definition 3.1.  A family hT    of triangulations is of weakly acute type, if there exists a 

constant 00    independent of h such that, the internal angle     of any triangle hi Te            

satisfies 20
  . 

 
 Definition 3.1.1. Let ),1(),( Mipi   be the continuous function in   s.t. ),( pi is 

linear on each hTe and ijji p  )( for any nodal point pj.. We denote Mh be the linear 

span of ),1(, Mii  i.e., a finite dimensional subspace of )(1 H  and defined by: 

},);(|{ hhhh TeeonfunctionlinearaiszCzM  . Also, define a subspace of 

)(1
0 H  be:  0 { | ; ( ) 0, 1,..., }h h h h h kM z z M z P k M K     . 
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We associate the index set }toadjacentis:{ ij PPij  . Let Pi Pj Pk , be three vertices of 

triangular element e and kji  ,, be barycentric coordinates. We have the following 

definitions [see Hu and Tian (1992)]. 
 
Definition 3.2. With each vertex Pi belonging to triangle e, the barycentric subdivision e

i  

is given by: }),()(,)()(;|{ ePPPPPePP jkiji
e
i   , and the barycentric 

domain i  associated with vertex Pi in  is given by h
e
ii Te , . 

 
Definition 3.3. With the characteristic function )(xi of barycentric domain i , the mass 

lumping operator )(ˆ)(:  LwCw is defined by ˆ ( ) ( ) ( )
P PN M

i i
i

w p w p p


  .  

 
Using interpolation theory in Sobolev space [Ciarlet (1978)] and inverse inequality, with 
step-length ch , we have the relation between ŵ and w from the following lemma: 

 
Lemma 3.1. There exists a constant  C such that: 

 

, 1,
ˆ , , 1c ho p p

w w Ch w w M p                                                               (7) 

 
1

01
, .h c h h hw Mh w w M                                                                                    (8) 

  
Lemma 3.2. There exist constants 021   ,CC such that: 
  

1 20, 0, 0,
ˆ , .hp p p

C w w C w w M                                                                         (9) 

 
 
Definition 3.4. Let }{ hM be a family of finite dimensional subspaces of )(C , which is 
piecewise polynomial space of degree less or equal to r with step length hP and the 
following property: for  ,2],,1[  rP there exists a constant M such that for 

:)(and20 1  r
Pwq   

 

pr

qr

pqMx
Mhx

h
,1

1

,}{
inf





  . 

 
Similarly, we define }{ hN  be a family of finite-dimensional subspace of )()(  CC , 
which is piecewise polynomial space of degree less or equal to r-1 with the similar 
property as Mh and .10  rq We also assume the families }{ hM and }{ hN satisfy inverse 
inequalities: 

 
1 1, ,P P hL L

Mh Mh M     
                                                     (10) 

 
[Manaa (2000)]. 
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4.  Error Estimates 
 

Let 0 is time step and 
TN  .  We use a Galerkin finite element method for the 

pressure and velocity and partial upwind finite element scheme for brine, radionuclide, and 
heat. 
   
Let hh MMC inc of projection-)(Labe 020  : 

  

hhh MzzCc  0),( 00 .  
 
We can get  hVP 0   such that  
 

000
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0

0'00
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)(
)(

)(

,),(),(),
)(

)(
(,0
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C

xk
U

fromWUandVvvRvqvP
c

xk
dxP hhs









  

 
If the approximate solution h

N
hhhh

mm
i

mmm RMMWVTNiCCUP  }),,...,2,1(,,,{  is 

known, we want to find  h
N
hhhh

mm
i

mmm RMMWVTNiCCUP   }),,...,2,1(,,,{ 11111  

at 1 mtt  , with five steps . Let (.,.) denote the inner product in )(2 L  

 
Step 1.  
Find Cm+1for 110  ,N,,m , such that  

hhh
m

h
mmm

ch
m MzzCgzCURzCEzCD   )ˆ),(ˆ(),,(),()ˆ,ˆˆ( 2/12/12/1

  ,           (11)  
    

where  
 

2/)(,/)( 12/11 mmmmmm CCCCCCD     and with ,)( ihi Pzz    
 

)(2/12/1
i

mm
i PCC   ,  

and  





ij

dnU ij
mm

ij . , here nij is the unit outer normal to ij .  

 
The partial upwind coefficients should be required that [Hu and Tian (1992)]. 
 

1

1

( ) 1

( ) max{1/ 2,1 } 1, 0,

max{1/ 2,1 } 1, 0.

m m
ij ji

ij ij ij

ij ji ij

a

b if

if

 

  

  





 

   

   

                                                                    (12) 

 
Step 2.  
Find 1m

iC , for 110  ,N,,m , such that:  
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1 1

1/2 1 1
1

ˆˆˆ ˆ( , ) ( , ) ( , , )

ˆ ˆ( ( , ,..., ), ) ,

m m m m
i i h c i i h

m m m N
i N h h h

K D C z E C z R U C z

f C C C z z M

  

  

   

  
                                  (13)  

where  
 

1 1/2 1/2

1
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m m m m m m m
i h i ij ij i ji j

i j i

R U C z z C C    

 

   . 

 
Step 3.  
Find Tm+1   such that:  
 

1/2 1/2
2
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ˆ ˆ( ( , , , ), ) ,

m m m m
h H h p h
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                                     (14) 

 
where  
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1
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m
j

m
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m
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m
ij

m
ij

M

i
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mm
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Step 4.  
Find Pm+1 such that: 
 







  hs
mm

m
m VvvRvqvP

C

xk
dxP ,),(),(),

)(

)(
(,0 '11

1
1


 .                            (15) 

Step 5.  
Find Um+1 as: 
 

111
1

1 )(
)(

)( 


  mmm
m

m PCaP
C

xk
U


.                                                                    (16) 

            
Lemma 4.1. Let hVp  be the elliptic projection of )(1 Hp  into hV  defined by  

hVvvpcavpca  ,),)((),)(( .  Then, there exists a constant 1k  such that 
1

11



 r

prp hpkpphpp . 

 
 
Proof:  
 
See Quarteroni and Valli (1997). 
 
Some Important Remarks: 

 
1.  in0.1 nU m .                                                 (17) 
 

2. If )0( mlChuU P
ll  , then P

mm ChuU   11 . 
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       and if P
mm ChuU  , then  1CU m   .                                                                 (18) 

 
3. We will make the inductive assumption that if )0(* mlkU

L

l 


, then  

 

*1 kU
L

m 


                                                                                                              (19) 

 
4. From Manaa (2000), if  hT   is regular triangulation of weakly acute type we have  
 

hhhh Mwwkw  ,ˆ/6
1

                                                                                  (20) 

 
Theorem 4.1. C satisfies discrete mass conservation law 
 

1/2ˆˆ ˆ ( ) , 1,2, , .m mD C d g C d m N  

 

                                                               (21) 

 
Proof:  
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i
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Then (21) holds. 

 
 
Theorem 4.2. iC satisfies discrete mass conservation law 
 








 NidfdCDK m
i

m
ii ,....,2,1,ˆˆˆ 2/1

                                                            (22) 

 
Proof:  
 
Same as Theorem 4.1. 
 
 
Lemma 4.2. Let 
 

:[0, ] :[0, ] , 1,...,N
h i hc t M and c t M i N    
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and let 
 

, ,i i ic c c c      

 
then, 
 

2

1
1

, ,c c cMh Mh Mh
t t

   
  

 
 

 
and 
 

2

1
1

, , .i i
i c c cMh Mh Mh

t t

   
  

 
 

 
 
Proof:  
 
See Ciarlet (1978). 
 
 
Lemma 4.3. For all hh Mz  and Cccc   , , 
 

2 21/2 1/2 2 1/2 1/2
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where 0 is arbitrary small constant. 
 
Proof: 
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With (A1) and (A2) we have: 
 

1/2

2 2

1 (( ). , ) .

( ).
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h

J u U c z M u U z
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Using (A1), (19), (20)  and (9) we have: 
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1/2 1/2 1/2 1/2 1/2 1/2
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From (A2), (19), (20), (7) and (8) we have 
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Using (11), (9), (18) and (19) implies  
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2222/122/122/12 )( hh

mmm
c zzhM    / 

 
Hence, J1+J2+J3+J4 Implies (23). 
 
 
Lemma 4.4. For all hh Mz  and iiiiii Cccc   , , 
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where 0 is arbitrary small constant. 
 
Proof: 
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Same as Lemma 4.3. 
 
 
Lemma 4.5. There exists a positive constant k2 such that: 
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11   mmmm cCkPP                                                                                     (25) 

 
Proof: 
 
We have 
 

),),((),(),)(( 1'2/111 vCRvqPCa m
s

mmm                                                           (26) 
 

1 1 1/2 ' 1( ( ) , ) ( , ) ( ( ), ).m m m m
sa c p q v R c v                                                                 (27) 

 
subtracting (27) from (26), we get 
  

1 1 1 1 1 1 ' 1 ' 1( ( ) ( ), ) ([ ( ) ( )] , ) ( ( ) ( ( ), )m m m m m m m m
s sa C P P a C a c P R C R c v                

 
  
Let h

mm VPP   11 , then 
 

21 1 1 1 1 1 1( ) ( ( ) ( ), ( ))m m m m m m mP P a C P P P P              

 
1 1 1 1 1 ' 1 1 1 1([ ( ) ( )] , ( )) ( ( ) ( ( ), ) .m m m m m m m m m

s sa c a C P P P R C R c P P               
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Using (A1), we have 
 

1 1 1 1 1 1 1 1 1( )m m m m m m m m mM P C c P P C c P P                 

 
with lemma 4.1 and (A2) if hP >0 is sufficiently small 
  

MhPkPP r
Pr

mm 



11

11 , so we have (25). 

 
Lemma 4.6. There exists a positive constant k3 such that 

 

)( 11
3

11 r
P

mmmm hcCkuU                                                            (28) 

 
Proof: 
 

111111 )()(   mmmmmm PcaPCauU  

 

            111111 )()()()(   mmmmmm pcaCapPCa . 

 
From (A1) and (A2) , we have 
 



 
L

mmmmm pcCpP 11111const.  

 

we have 111111   mmmmmm pPpPpP . 

 
Using Lemma 4.1 and Lemma 4.5, we get  
 

r
pr

mmmmm hPkcCkpP
1

1
1

11
2

11



  , from  (A2), (28)  holds. 

 

Theorem 4.3.  For all 0if   Nlm , then  

)(11 r
Pc

ll hhMCc    , where M independent of chand . 

 
Proof:  
 
Multiply (2) by zh and integrating by parts to obtain  

 
2/)(and))2/1((.,Let.)2/1( 12/1

2/1
mmm

m wwwmwwmt  
  . 

  
Then, 
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1/2

1/2 1/2

1/2
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1/2 1/2
1/2 1/2
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m m m m
h h h

m m
h m h

m m m
m h m h

D c z Ec c z u c z

c
g c z D c z

t

Ec c Ec c z u c u c z











 




 
 

    


  


        

    (29) 

  
Let   )()( cCccCce . Subtract (10) from (29), to obtain: 
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u c z D c z D c z

c
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t
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         ), ).hz

 

 
Hence, 

 
1/2 1/2

1/2 1/2 1/2 1/2

1/2

1/2
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1/2

1/2
1/2), ) ( ( ), )

1 2 3 4 5 6.
m

m m
h m hz u c u c z

I I I I I I



    

     

   (30) 

 
In (30) , let h

m
h Mz   2/1 , and using (A1) the Left Hand Side (LHS) is 

 

22/1
0

22
1

2

ˆˆˆ







 m

mm

c 



. 

 
From (A1), we have: 
 

2
2/12 ˆˆ()ˆ,ˆˆ(1  mm

h
m DMzDI   . 

 
Using (7) and (8), we have 
 

1
ˆˆ m

c
mmmmm DMhDDDDD    . 

 
From (9) we have 
 

)(ˆ 12/12/1 mmmm MM     

)(1
2

1

22221 m
c

mmm DhDMI     . 
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Using (A1), we have
22/122/12   mmMI  . 

 
From Lemma 4.3, 
 

2 22 1/2 1/2
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3 (
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Let )24/1( 23
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. Using (A1), (A2) we get [Raviart and 

Girault (1979))] 
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1 hchchchc zMhzMhzMhzMh    

 
22/1422 )(  m
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Let I6=K1+K2+K3.  So, 
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Then, we get 
 

2/12212 )(6   mmmMI  . 

 
Relation (30) can be written now as 
 

2 2
1

2 2 2 2 21/2 1 2 1
0 1

2 2 2 21/2 1/2 2 2 1/2
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Take the summation from 0 to l, where 0soand, 00   cCNlm 0  
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Using (7) and (A1), we get  
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From Lemma 4.6, we have 
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From (31) and (32), we have 
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0
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pc

m
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From Gronwall inequality, we get: 
 

)(1 r
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It is )(11 r
Pc

ll hhMCc    . 

 
Theorem 4.4. For all 0if   Nlm , then 
  

1 1 ( )l l r
i i c Pc C M h h     ,  

 
where M independent of chand . 
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Proof:  
 
Multiply (4) by zh and integrate by parts to obtain 
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Let iiiiiiii CcccCce   )()( . Subtract (10) from (33) to obtain: 
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The rest of the proof is the same as in Theorem 4.3.  
 
 
Theorem 4.5. With the assumption (A1)~ (A3), if )(),( PPc hOhOh   , then 
 

)(
)()( 22

r
PclLlL

hhMUuCc    . 

 
Proof:  
 
We will prove, first the inductive assumption (19).  We have 
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and from Theorem 4.3, 
 

 NmhhMCc r
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mm ,...,1,0,)(11   .                                                        (36) 

 
Equations (35) and (36) implies  
 

 NmhhMUuCc c
r
P

mmmm ,...,1,0,)(1111   . 

 
This will complete the proof. 
 
5.  Numerical Applications 
 
Example 5.1.  
 
A two dimensional diffusion-convection problem of interest is concerned with a 
description of sediment transport in channels. The governing differential equation is [Smith 
et al. (1973)]: 
 

   
2

2

2

2

t

c

y

c
u

x

c
u

y

c
d

x

c
d yxyx 



















, 

 
where  c  is  the  sediment  concentration,  dx and dy  are  the   sediment diffusion 
coefficients ,ux and uy are the fluid velocity component in the x and y directions. The 
boundary conditions of the problem are  
 

1 1    ,        (  is constant),    at   y 0,              y

y

uc
c M c M

y d


  



2 2        (  is constant),    at   y -56.0.           y

y

uc
M M

y d


  


 

 
We use a Kind of upwind finite element method to solve this problem with the mesh as 
triangular element with 82 nodes and take the values ux=1. E-6, uy=0.49 , dx=0, dy=0.0135, 
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we take the time step τ=300 and the number of time steps Nτ =30  for θ =1 ,the time step 
τ=100 and the number of steps Nτ =90 for θ = 1/2 , and also the time step τ=300 and the 
number of steps  Nτ =30 for  θ = 2/3 . In figure (5.1) we show that we can solve this 
problem by decreasing the time step τ and increasing the number of time steps Nτ for a 
kind of partial upwind finite element method.  
                                  
Example 5.2.  
 
In this example, we solve a purely convective problem in one dimension [Smith et al. 
(1973)]: 
 

,y

c c
u

y t

 
 

 
 

 
where c is the concentration in the region 02  y , subject to the boundary conditions 
 

1, 0, 0 0.2,

0, 0, 0.2,

0, 2, .

c y t

c y t

c
y for all t

y

   
  


  



  

 
We discretized this region into 200 triangular elements with 202 nodes and with the same 
distance between any two nodes is 0.02   in both directions x and y, and take uy =1.0, the 
time step τ=0.04 and the number of time steps Nτ =25 for θ =0.5. Figure (5.2) shows the 
computed solution after one second and it draws between the concentration and coordinate 
y, we can see that while y convergence to zero the value of concentration convergence 
oscillation to solution. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1. A kind of partial upwind F.E.M. for triangular element at Different values of θ in Example 5.1. 
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Figure 5.2. Solutions in Example 5.2 after one second for θ =0.5, τ =0.04 , Nτ =25 
 
 
6.  Conclusions 
 
We used the system with large coupled of strongly non-linear partial differential equations 
arising from the contamination of nuclear waste in a porous media. For the incompressible 
case the method satisfied the discrete mass conservation law for approximate iCC,   and 

derived the error estimates in ))(,
~

,0( 2  LTL . The two examples included clearly 
demonstrate certain aspects of the theory and illustrate the capabilities of  a kind of partial 
upwind F.E.M. 
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