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Abstract 
 
This article presents the approximate analytical solutions of first order linear partial differential 
equations (PDEs) with fractional time- and space- derivatives. With the aid of initial values, the 
explicit solutions of the equations are solved making use of reliable algorithm like homotopy 
analysis method (HAM). The speed of convergence of the method is based on a rapidly 
convergent series with easily computable components. The fractional derivatives are described in 
Caputo sense. Numerical results show that the HAM is easy to implement and accurate when 
applied to space- time- fractional PDEs. 
 
Keywords: Linear partial differential equations; Caputo derivative; Homotopy analysis 

method; Homogeneous/non-homogeneous equations; Fractional Brownian motion 
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1.  Introduction 
 
 
During the last few years it has been observed in many fields that any phenomena with strange 
kinetics cannot be described within the framework of classical theory using integer order 
derivatives. Recently, fractional differential equations have gained much attention since 
fractional order system response ultimately converges to the integer order system response. For 
high accuracy, fractional derivatives are then used to describe the dynamics of some structures. 
An integer order differential operator is a local operator. Whereas the fractional order differential 
operator is non local in the sense that it takes into account the fact that the future state not only 
depends upon the present state but also upon all of the history of its previous states. Because of  
this realistic property, the fractional order systems are becoming increasingly popular.  
 
Another reason in support of the use of fractional order derivatives is that these are naturally 
related to the systems with memory that prevails for most of the physical and scientific system 
models. Applications and models involving fractional derivatives can be found in probability, 
physics, astrophysics, chemical physics [Oldham and Spanier (1974); Miller and Ross (1993); 
Podlubny (1999)] and various fields of engineering. Mainardi et al. (2008) provided a 
fundamental solution for the determination of probability density function for a general 
distribution of fractional time order system. Magin et al. (2008) solved the Bloch-Torrey 
equation after incorporating a fractional order Brownian model of diffusivity. Recently, Chen et 
al. (2010) have developed a fractal derivative model of anomalous diffusion and the fundamental 
solution of this model is compared with the existing method to establish its computational 
efficiency.  
 
Finding accurate and efficient methods for solving fractional differential equations (FDEs) have 
been an active research undertaking. Exact solutions of most of the FDEs cannot be found easily, 
and this has mandated the use of both analytical and numerical methods. In 1992, a powerful 
analytical method for solving linear and nonlinear problems like homotopy analysis method has 
been developed by Liao (1992). The homotopy analysis method is a powerful mathematical tool 
which provides us with a simple way to ensure the convergence of the solution series, so that we 
can always get accurate enough approximations. In recent years, this method has been 
successfully employed to solve many types of problems in science and engineering [Das et al. 
(2010); Liao (1995), Liao (2005a, 2005b); Abbasbandy (2006); Bataineh et al. (2008); Alomari 
et al. (2009); Song and Zhang (2007)]. Furthermore, the homotopy analysis method logically 
contains the non perturbation methods such as Lyapunov's artificial small parameter method, the 
expansion method, Adomian's decomposition method and homotopy perturbation method 
[Lyapunov (1992); Jones III and Casetti (1992); Das (2009); He (2000)].  

 
Homotopy analysis method contains an auxiliary parameter   which provides us with a simple 
way to adjust and control the convergence region and rate of convergence of the series solution. 
The method can be also applied successfully to many linear and nonlinear problems such as 
application in heat radiation [Abbasbandy (2007)], solitary-wave solutions for the fifth-order 
KdV equation [Abbasbandy and Zakaria (2008)], vibration equation [Das and Gupta (2009)], 
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generalized Benjamin-Bona-Mahony equation [Abbasbandy (2008)], exponentially decaying 
boundary layers [Liao and Magyari (2006)], hyperbolic PDEs [Das and Gupta (2010)] and many 
other problems. 

Recently, Baitainah et al. (2008) have applied HAM to obtain the solutions of linear and 
nonlinear systems of first and second order PDEs, and have compared their results with the 
results of Wazwaz (2007) and Saha Ray (2006), who used VIM and ADM respectively. It is 
shown that VIM and ADM are just particular cases of HAM.  

 
In our article, we have used HAM successfully to find the approximate analytical solutions of 
linear first order homogeneous/non-homogeneous PDEs with time- and space- fractional 
derivatives. These problems have not yet been solved by any researcher. Probability density 
functions u(x,t) and v(x,t), for different fractional Brownian motions and also for the standard 
motion for various particular cases are derived successfully and presented graphically.  
 
 
2.  Basic Idea of HAM 
 
In this paper, we apply the HAM to the two problems to be discussed. In order to show the basic 
idea of HAM, consider the following differential equation: 
 

[ ( , ) ] 0 ,N u x t                          (1)  

 
where N  is a non-linear operator, x  and t  are independent variables, ),( txu  is the unknown 
function. By means of the HAM, we first construct the so-called zeroth-order deformation 
equation 
 

)];,([),(]),();,([)1( 0 ptxNtxHtxuptxLp                    (2) 

 
where ]1,0[p  is the embedding parameter, 0 , is a nonzero auxiliary parameter, 

0),( txH   is an auxiliary function, L  is an auxiliary linear operator, ),(0 txu  is the initial 

guess of ),( txu , It is obvious that when the embedding parameter 0p and 1p , Equation (2) 
becomes ),()0;,( 0 txutx   and ),()1;,( txutx  , respectively. Thus, as p  increases from 0 

to 1, the solution );,( ptx varies from the initial guess ),(0 txu  to the exact solution ),( txu . 

Expanding );,( ptx in Taylor series with respect to p , one has 
 


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k txuptxuptx                                                                  (3) 
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The convergence of the series (3) depends upon the auxiliary parameter  . If it is convergent at 

1p , one has 







1

0 ),(),();,(
k

k txutxuptx
 

which must be one of the solutions of the original nonlinear equation, as proven by Liao (1992). 
Now we define the vector 
 

)},(........,,),(),,(),,({),( 210 txutxutxutxutxu nn 


,         (5)         

 
So the mth-order deformation equations are 

 

)),((]),(),([ 11 txuRhtxutxuL mmmmm  
 ,                              (6)                  

 
with the initial conditions 
 

0)0,( xui ,                                                                                                                    (7) 
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

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.1,1

,1,0

m

m
m  

 
Now, the solution of the mth-order deformation equation (6) for 1m  becomes 
 

ctxuRJhtxutxu mmtmmm
i   )]),(([),(),( 11

 ,         

                                
where  c  is the integration constants determined by the initial condition (7). In this way, it is 
easy to obtain ),( txum  for 1m , at mth-order, we have 

 

),(lim),( txtxu N
N




,                                                                                              (8) 

 
where 
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





1

0

),(),(
N

m
mN txutx . 

 
The important thing of HAM is the introduction of auxiliary parameter  , which helps to 
construct the so called zero-order deformation equation, which gives more general homotopy 
than the traditional one [Liao (2003)]. The basic difference of this method with other analytical 
methods is that it gives a family of solution in terms of .  There is an important role of the 
homotopy parameter )10(  pp also. If 1  and 1p , then the solution is same as the 
solution obtained by another mathematical tool HPM. But the beauty of the HAM is that the 
region of convergence can be increased by controlling parameters  and p . It is also shown by 
many researchers during the solution of linear and nonlinear differential equations that the 
convergence region and the rate of series solutions can be controlled through the plotting of  - 
curves and then choosing a proper value of   from convergence region to get the better 
approximation of the solutions.  
 
The method is valid for the solution in the small region of time 10  t . However, introducing 
more terms in the series solution (8), the convergence region of the time can be increased. Again 
with the proper choices of base functions the convergence region of t  can also be increased. 
Using the homotopy-pade technique greatly accelerates the convergence of the series solution 
and also the convergence region of time. Again for the solution of those nonlinear problems 
HAM is good mathematical tool if we have knowledge about a given problems a prior. Thus for 
same physical nonlinear problems it is difficult to approximate the solution when there will be 
lack of knowledge about proper set of base functions. Even researchers are facing some 
problems when they are using the method the nonlinear problems with discontinue or chaotic 
solutions. 
 
3.  Applications 
 
We will apply the HAM to solve the following systems of linear homogeneous/nonhomogeneous 
Fractional PDEs. 
 
Example 1. Consider the following system of linear fractional PDEs with 1,0    

 
,0vv  uDuD xt

                                                                                             (9a) 

 

,0vv  uuDD xt
                                                                                             (9b) 

 
with initial conditions as 
 

xxu sinh)0,(  , v ( , 0 ) coshx x  .                                 (10)                        
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To solve system of equations (9a) – (10) by means of HAM, we choose the initial 
approximations 
 

xtxu sinh),(0  , xtx cosh),(v 0                                                      (11) 

 
and the linear operator 
 



 


t

ptx
ptxL i

i 



);,(

)];,([ ,  ,2,1i                                                                  (12) 

 
with the property 

 

0][ icL ,                                                                                                                     (13) 

 
where ic ( 2,1i ) are integral constants. Furthermore, for equations (9a) and equation (9b), we 

define a system of nonlinear operators as 
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Now, we construct the zeroth-order deformation equations 
 

, 0(1 ) [ ( , ; ) ( , )] [ ( , ; )] , 1, 2 .i i i i ip L x t p Z x t p h N x t p i     (14) 

 
Obviously, when 0p  and 1p , 

 

),(),()0;,( 00,11 txutxZtx   and ),(),()1;,( 11 txutxZtx  , 

),(),()0;,( 00,22 txvtxZtx   and ),(),()1;,( 22 txvtxZtx  .   

   
Therefore, as the embedding parameter p  increases from zero to unity, );,( ptxi varies from 

the initial guess ),(0, txZ i
 to the solution ),( txZ i

 for .2,1i  Expanding );,( ptxi  in Taylor 

series with respect to p , one can find 
 







1

,0, .),(),();,(
m

m
miii ptxZtxZptx , 
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where   
 

0

,

);,(

!

1
),(







p

m
i

m

mi p

ptx

m
txZ


. 

 
If the auxiliary linear operator, the initial guesses and the auxiliary parameters ih  are properly 

chosen, the above series is convergent at 1p , then one has 
 

,),(),(),(
1

,10,1 





m

m txZtxZtxu  

 

,),(),(),(v
1

,20,2 





m
m txZtxZtx  

 
which must be one of the solutions of the original equations, as proved by Liao (1999),  
 
Now, we define the vector 
 

)},(,....),,(),,({),( ,1,0,, txZtxZtxZtxZ niiini 


. 

 
Then, the mth order deformation equations are  
 

)),(()],(),([ 1,,1,, txZRhtxZtxZL mimiimimmi  


 ,                                                        (15) 

 
with the initial conditions 

 
0)0,(, xZ mi

,                                                                                                                     (16) 

 
here 
 

1,21,11,21,11,1,1 )()()),((   mmmxmtmm ZZZDZDxZR 


 , 

 

1,21,11,11,21,2,2 )()()),((   mmmxmtmm ZZZDZDxZR 


 ,         

 
Now, the solution of the mth order deformation equations (15) for 1m  becomes 
 

imimitimimmi CtdtxZRJhtxZtxZ   ])),(([),(),( 1,,1,,

 , ,2,1i   (17) 
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where the integration constants 
1C  and 

2C  are determined by the initial condition (16). We now 
successively obtain   

xtxZ sinh),(0,1   

 
)1(

coshsinh)(),( 111,1 
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
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
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7531
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

28262422

27252321
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






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

 xxxx
xg , 

         



38363432

37353331

3 











 xxxx
xg . 

 
Proceeding in this manner, the components nu and 0,v nn , of the HAM can be completely 

obtained and the series solutions are thus entirely determined. 
 

Finally, we approximate the analytical solutions ),( txu and ),(v tx  by the truncated series  
 

),(lim),( txtxu N
N




 and ),(lim),(v txtx N
N




,                                                    (18) 

 
where  

 







1

0

),(),(
N

n
nN txutx and 






1

0

),(v),(
N

n
nN txtr . 

 
The above series solutions generally converge very rapidly. A classical approach of convergence 
of this type of series is already presented by Abbaoui and Cherruault (1995). 
 
 
Example 2.  Consider the following non-homogeneous system of linear Fractional PDEs with 

1,0   as 
 

,2vv  uDuD xt


                                                                                      (19a) 

 
,2vv  uuDD xt

                                                                                       (19b) 

 
with initial conditions are 

 

,1)0,( xexu   
xex  1)0,(v .                                                                (20) 

 
To solve system of equations (19a) – (20) by means of HAM, we choose the initial 
approximations 
 

xetxu  1),(0 , xetx  1),(v 0 ,                                                            (21) 

 
and the linear operator as equation (12) with the property given in (13). The system of nonlinear 
operators to describe (19a) and (19b) are 
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2);,();,(
);,();,(

)];,([ 21
21

1 








 ptxptx
x

ptx

t

ptx
ptxN i 


 






 

 

2);,();,(
);,();,(

)];,([ 21
12

2 








 ptxptx
x

ptx

t

ptx
ptxN i 


 






. 

 
Proceeding as the previous example we finally obtain 

xetxZ  1),(0,1 , 

 






1
)(),( 111,1

t
xftxZ  , 

             



21
)(

1
22

1
)(1),(

2

121121211112,1 





















 t

xf
x

xgxg
t

xftxZ  , 

             






























)(
1

221
1

)(1),( 1211212111
2

113,1 xf
x

xgxg
t

xftxZ 


  

                      



21
22)(11

1
221

2

21112211
2
121221 

























 t

xf
x

xgxg 
 

                    

















4
21

2
1

4223
2

121232
2
1 

 xx
xgxgxfxfxf

                                                             

                    


31
2222

3
2
2

2
111221211

2
211 


t

xgxgxf  , 

xetxZ  1),(0,2
, 

 






1
)(),( 121,2

t
xgtxZ  , 

           



21
)(

1
22

1
)(),(

2

12122121122,2 





















 t

xg
x

xfxf
t

xgtxZ  , 

             






























)(
1

221
1

)(1),( 1212212121
2

223,2 xg
x

xfxf
t

xgtxZ 


  

                  



21
22)(1

1
2221

2

21222
2
2121121 

























 t

xg
x

xgxfxf 
 

                 

















4
21

2
1

4223
2

121231
2
2 

 xx
xgxfxfxgxg  

                 


31
2222

3
2
2

2
121221211

2
212 


t

xfxfxg  , 

 
where 
 

         

















5432

4321

1

xxxx
xf , 

         



25242322

24232221

2 











 xxxx
xf , 

         



35343332

34333231

3 











 xxxx
xf , 
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           




















54321
2

4321

1

xxxxx
xg , 

           



2524232221
2

242322212

2 














 xxxxx
xg ,  

           



3534333231
2

343332313

3 














 xxxxx
xg

. 

 
 
Finally, the approximate analytical solutions for ),( txu  and ),(v tx  can be obtained using 
equations in (18). 
 
 
4.  Numerical Results and Discussion 
 
In this section, numerical results of the probability density functions ),( txu  and ),(v tx  for 
different fractional Brownian motions 

3

2
,

2

1
,

3

1
,   and also for standard motion 1,   are 

calculated for various values of t  for both the Examples keeping 1x , which are depicted 
through Figs. 1-4. During the calculation of the series solution only four order terms are 
considered. 

 
The values of ),( txu  and ),(v tx  for different particular cases with the proper choices of p,   and 
for various values of   and   are shown through Tables 1 – 4  for  Examples 1 and 2 to 
describe the convergence of the solutions.  
 
It is seen from Figure 1 that ),( txu  decreases with the increase in t and with the decrease in the 
fractional values of   for all space fractional derivatives  . Where as for standard motion, i.e., 
for space derivative 1 , initially it decreases with the increase in time and also with   but 
afterwards it becomes opposite in nature. 
 
It is also seen from Fig. 2 that ),(v tx  has the same nature as ),( txu . For standard space 
derivative 1 , it takes lesser time for changing the behavior with . 
 
Figures 3 and 4 which graphically describe Example 2, reveal the opposite nature of the solutions 
of  ),( txu  and ),(v tx . Fig. 3 shows that  ),( txu  increases with the increase in t and decreases 
with increase in   but Figure 4 depicts that ),(v tx  decreases with t  and increases with the 
increase in . 
 
 
5.  Conclusion 
 
This paper has focused on the successful employment of the powerful mathematical tool (HAM) 
to investigate the solution of a system of linear homogeneous/non-homogeneous equations with 
fractional time- and space- derivatives. The method provides us a simple way to adjust and 
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control the convergence of the series solution by choosing proper values of auxiliary and 
homotopy parameters. Thus it may be concluded that HAM in spite of its limitations is simple 
and represents a very powerful analytical approach for handling fractional related 
homogeneous/non-homogeneous system of PDE.   
 
The different nature in the behavior of the probability density functions for different fractional 
Brownian motions, faster computation procedure of the present method and the convergence 
criterion of the series solution with the proper choices of auxiliary and homotopy parameters 
render the article a different dimension and the authors strongly believe that the present article 
will be highly acceptable by the researchers working in the field of fractional calculus. 
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Figure 2. Plots of ),(v tx w.r.t. t  at 1x for Example 1 for  (a)  
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Table 1. Comparison of HPM and HAM results of ),( txu  for different  

                          values of   and   at 1t  and 1x  for Example 1: 

    HPMu  
HAMu  

98.0 , 
02083.1p  

96.0 , 
04246.1p  

94.0 , 
06483.1p

2

1  

3/1  
2/1  
3/2  

1 

0.02096 
0.19970 
0.31539 
0.35796 

0.02096 
0.20073 
0.31552 
0.35219 

0.02096 
0.20160 
0.31526 
0.34553 

0.02096 
0.20224 
0.31447 
0.33777 

3

2  

3/1  
2/1  
3/2  

1 

- 0.80296 
- 0.24257 
0.11756 
0.30074 

- 0.77114 
- 0.21791 
0.13284 
0.29885 

- 0.73768 
- 0.19228 
0.14838 
0.29616 

- 0.70225 
- 0.16558 
0.16410 
0.29246 

1 

3/1  
2/1  
3/2  

1 

0.20097 
0.04001 
- 0.02439 
0.01123 

0.15536 
0.00430 
- 0.05136 
- 0.00764 

0.10717 
- 0.03359 
- 0.08021 
- 0.02822 

0.05607 
- 0.07393 
- 0.11118 
- 0.05069 

 
 
Table 2.  Comparison of HPM and HAM results of ),( txv  for different values of   and  

                               at 1t  and 1x  for Example 1 

    HPMv  
HAMv  

98.0 , 
0039.1p  

96.0 , 
00807.1p  

94.0 , 
06483.1p  

2

1  

3/1  
2/1  
3/2  

1 

0.57687 
0.61165 
0.63300 
0.64005 

0.57687 
0.61077 
0.63142 
0.63760 

0.57687 
0.60964 
0.62936 
0.63448 

0.57687 
0.60824 
0.62681 
0.63073 

3

2  

3/1  
2/1  
3/2  

1 

-0.58322 
-0.05610 
0.32820 
0.63299 

-0.50700 
-0.01153 
0.34938 
0.63451 

- 0.43481 
0.03040 
0.36891 
0.63519 

- 0.36576 
0.07022 
0.38705 
0.63510 

1 

3/1  
2/1  
3/2  

1 

2.04215 
1.63863 
1.32973 
1.00689 

1.95702 
1.58778 
1.30420 
1.00185 

1.87813 
1.54059 
1.28025 
0.99651 

1.80442 
1.49634 
1.25748 
0.99077 
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          Table 3.  Comparison of HPM and HAM results of ),( txu  for different values of   and  

                              at 1t  and 1x  for Example 2 

    HPMu  
HAMu  

98.0 , 

0028.1p  

96.0 , 

00586.1p  

94.0 , 

00919.1p  

2

1  

3/1  
2/1  
3/2  

1 

14.2702 
12.4736 
10.6656 
8.0198 

14.2701 
12.5154 
10.7284 
8.0753 

14.2701 
12.5561 
10.7899 
8.1304 

14.2701 
12.5957 
10.8501 
8.1851 

3

2  

3/1  
2/1  
3/2  

1 

13.8877 
12.5026 
10.9367 
8.3529 

13.9920 
12.6100 
11.0356 
8.4180 

14.0896 
12.7121 
11.1309 
8.4822 

14.1808 
12.8091 
11.2229 
8.5457 

1 

3/1  
2/1  
3/2  

1 

14.6629 
12.9007 
11.0919 
8.3918 

14.7023 
12.9720 
11.1754 
8.4573 

14.7389 
13.0402 
11.2564 
8.5219 

14.7727 
13.1054 
11.3348 
8.5859 

 
 
Table 4.  Comparison of HPM and HAM results of ),( txv  for different  

  values of   and  at 1t  and 1x  for Example 2 

    HPMv  
HAMv  

98.0 , 

029351.1p  

96.0 , 

060337.1p  

94.0 , 

093067.1p  

2

1  

3/1  
2/1  
3/2  

1 

-1.91682 
-1.48779 
-1.10245 
- 0.70454 

-1.91682 
-1.48716 
-1.10718 
- 0.73105 

-1.91682 
-1.48693 
-1.11318 
-0.76110 

-1.91682 
-1.48720 
-1.12070 
-0.79524 

3

2  

3/1  
2/1  
3/2  

1 

- 0.72396 
- 0.55290 
- 0.42890 
- 0.37430 

- 0.69713 
- 0.53172 
- 0.41922 
- 0.39385 

-0.66853 
-0.50955 
-0.40977 
-0.41634 

-0.63806 
-0.48640 
-0.40075 
-0.44228 

1 

3/1  
2/1  
3/2  

1 

-1.12940 
- 0.71415 
- 0.35599 
- 0.03171 

-1.11168 
- 0.69556 
- 0.34267 
- 0.04057 

-1.09216 
-0.67552 
-0.32876 
-0.05114 

-1.07060 
-0.65391 
-0.31426 
-0.06374 
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