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Abstract

This paper outlines the implementation of the modified decomposition method (MDM) to solve a
very important physical model namely Hirota-Satsuma model which occurs quite often in
applied sciences. Numerical results and comparisons with homotopy perturbation (HPM) and
Adomian’s decomposition (ADM) methods explicitly reveal the complete reliability of the
proposed MDM. It is observed that the suggested algorithm (MDM) is more user-friendly and is
easier to implement compared to HPM and ADM.
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1. Introduction

The Hirota-Satsuma model occurs very frequently in a number of physical problems and has
been studied by many researchers, [see Abbasbandy (2007, 2008), Abdou et al. (2005), Abassy
et al. (2007), He (2006), Kaya (1999), Ma et al. (2004), Mohyud-Din et al. (2009)]. Recently,
Geijji et al. (2006) introduced a very reliable and efficient technique the modified decomposition
method (MDM), which has been applied to a whole class of diversified linear and nonlinear
problems of physical nature, [see Noor et al. (2006), Mohyud-Din et al. (2007, 2010)].

This paper seeks to implement and extend this technique (MDM) to solve Hirota Satsuma model
which arises quite often in applied sciences. It is observed that the proposed MDM is extremely
useful, very simple and highly accurate. Numerical results clearly reveal the complete reliability
of the proposed modified decomposition method (MDM). Moreover, we have also compared our
results with homotopy perturbation method (HPM) which was developed by He (1999, 2004,
2005, 2006, 2008) by merging the standard homotopy and perturbation, [see Mohyud-Din (2009,
2010)].

It is to be highlighted that the comparison of MDM has also been made with the traditional
Adomian’s decomposition method (ADM) which has been modified by Wazwaz (1999, 2000). It
is observed that the proposed algorithm (MDM) is easier to implement and is more user friendly
as compare to HPM and ADM. The suggested algorithm (MDM) is independent of the
complexities arising in the calculation of so-called Adomian’s polynomials. Moreover, the
proposed scheme (MDM) does not require perturbation and hence reduces the computational
work to a tangible level.

It is to be highlighted that the results obtained by MDM are fully compatible with HPM and
ADM. It only avoids lengthy calculations and unnecessary complicated procedures.

2. Modified Decomposition Method (MDM)

Consider the following general functional equations:
f(x)=0. 1)

To convey the idea of the modified decomposition method, we rewrite the above equation as,
Geijji et al. (2006):

y=N(y)+c, (2)

where N is a nonlinear operator from a Banach space B — B and f is a known function. We are
looking for a solution of Equation (1) having the series form:

y=im- 3)
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The nonlinear operator N can be decomposed as
© ) i i—1
N(Zyi}N(yo)+Z{N(Zy,-j—N[Zy,—J} (4)
i=0 i=0 j=0 j=0
From Equations (3) and (4), Equation (2) is equivalent to

0 0 i i-1
Zyi=C+N(yO)+Z{N(ZyJ—N( y,}- (5)
i=0 i=0 j=0 j=0

We define the following recurrence relation:

Yo =C,
Y1 =N(Yo), (6)
ym+1 = N(yO +..+ ym) - N(yO +..+ ym_l)i m :112131"'1

Then,

(Y +t Y) =N(Y, +..+Y,), m=123,..,
and
y="f +iZ::yi,
if N is a contraction, i.e., ||[N(X)—=N(y)|| <||x=y]|, 0<K <1, then

Yo IHINCYo +--+ ¥n) =N Yo+ + Y ) IS KLY, T < K™ g l, m=0,1,2,3,--,

and the seriesz;: y, absolutely and uniformly converges to a solution of Equation (1) [see

Geijji et al. (2006), Noor et al. (2006), Mohyud-Din et al. (2007, 2010)], which is unique, in
view of the Banach fixed-point theorem.

3. Solution Procedure

Consider the following Hirota-Satsuma coupled KdV system

u, —%uw +3uu, —3(vw)x =0,
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=0,
w, +w,,, —3uw, =0,

X

V, =V, —3uv

with initial conditions

u(x,0) :%(ﬂ—2k2)+ 2Kk tan h? (kx),
A2 2 2 2
v(x,0) = 4K, ('23 tk )+ 4 (p+k )tan h(kx),
3c; 3¢,
w(x,0) =c, + ¢, tan h(kx),

where c,,c,and S are constants. The exact solution of the problem is given by
u(x.t) :%(,B— 2k? )+ 2k2 tanh? (k (x + 1)),
A2 2 2 2
v(x.t) =K C°(2ﬁ+ ), (g i) h(k(x + A1),
3¢, 3¢,
w(x,0) =c, + ¢, tanh(k(x + At)).

Applying the modified decomposition method (MDM), following approximants are obtained

Up (X, t) =c,

U (% 1) = %(ﬂ— 2k2)+ 2k? tan h? (k),

Vo (X, t) =c,,
Al 2 2 2 2
Vo (x, )= —2K Co(f”‘ ) ACp+K) h(kx),
3c; 3c,
W, (X,t) = c,

W, (X, y,t) =c, +¢, tan h(kx),
u, (x,t) = Nu,y(x,t),

2coshx = 2tsinh x
- cos® x

u, (X, t) :%(ﬂ—2k2)+ 2k tan h? (kx)
v, (X, t) = Nu,y(x,t),
_ 2 2 2 2 2 .
4k co(,26’+ k )+ 4k (/3+ k )tan (k) + cosh® x cosh >2<+tsmh X
3c; 3c, cosh”x
w, (X, t) = Nuy(x,t),

Vi (X1 t) =

_ 2 .
w, (X, y,t) =c, +c, tan h(kx)+ 2( cosh” + cosh x + tsinh XJ,

cosh?x
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The closed form solution is given as
(U,V, W) — (e X+y—t , ex—y+t ’ e—x+y+t). (7)

Now, we apply homotopy perturbation method (HPM) on Hirota-Satsuma coupled KdV system,
we get

ou, ou, ,ou, 1 ) e i 1 ¢ (3%, % ,0%,
— 4+ p—+p —=+--==\f-2k° )+ 2k“ tanh"(kx)+ = + + +--- |dt
a Pa P a 3('6 ) () 2 pj o Pae TP a0

auo u,
t u0 pu, p )
a\N

_3pj

0 +3(av p—1+- j(aw+p—l+ jdt
OX OX OX OX

%+ p%+ p’ Ny tee= _4k2C°(’ZB+k2)+ 4k ('B+k )tan h(kx)+ pj‘ {83\/30 + pivsl+---]dt
ot ot ot 3¢, 3¢, 5 | OX OX
+3pf (u + pu, +- )(—+ aa\;“r --jdt}
a(;tvo+paav;/1+pza(;tvz --=¢, +¢, tanh(kx)+ Jz (83W°+paa)\:g +pzaa)\:\3/ .--jdt
+3pj)' [(u0 + pul+~--)(ag;l(° + pfz’)‘f + p? (2’: ]dt]

Comparing the co-efficient of like powers of p, we get

U, (x,t) =c,

Uy (%, 1) = %(ﬂ— 2k2)+ 2k? tan h? (k),

X Vo(x,t)=c,,
AL?2 2 2 2
Vo (X, t)= 4k C°(2ﬂ+k )+4k p+k )tanh(kx),
3¢, 3¢,
w, (x,t) =c,

W, (X, y,t) =¢, +c, tan h(kx),
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u, (X, t) = Nuy(x,t),
B 2coshx = 2tsinh x
cos® x

u, (X, t) =%(ﬂ—2k2)+ 2k? tan h? (kx)

v, (X, t) = Nu, (x,t),

_ 2 2 2 2 2 .
4k c0(2ﬂ+k )+4k (ﬂ+k )tanh(kx)+COSh xcosh>2<+tsmhx
3c; 3c, cosh”x
w, (X, t) = N u,(x,t),

[N

P v, (X, t)=

cosh?x

_ 2 .
W%, Y1) =Gy + G, tan h(kx) + 2( cosh? + cosh x + tsinh x}

The closed form solution is given as
(U v W) — (ex+y—t ex—y+t e—x+y+t)

which is the same as (7). Now, Applying Adomian’s decomposition method (ADM), we get

1 ([l (& “ -
unﬂ(x,t):g(ﬂ—2k2)+2k2tanh2(kx)+£ [EZO [a;’g}sg ﬁ+3§ Bn]dt,
—4k? k?) 4k?(p+k? t

co(2ﬂ+ )+ 7+ )tanh(kx)+j (
3¢, 3¢,

0

B a3v ©
v, (X t)= > 6—)(; +3>° C, |dt,

n=0 n=0

t 0 3 0
Wn+1(x,t):cO+cltanh(kx)—I (Z [%:’(Vsnj+3z Dant,
n=0

0 n=0
where A,, B,, C,, D, are the so-called Adomian’s polynomials which can be evaluated by the

algorithms developed in Wazwaz (1999, 2000). Consequently, we get the same approximants
which ultimately yield the same closed form solution as that of (7).

https://digitalcommons.pvamu.edu/aam/vol5/iss2/16
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b=0k=t=1

Legend

approx salutian
¢ ¢ e e v pyact solution

Figure 1 (u).

b=0k=t=c,=c =1

0 02 04 0B 08 1
Legend *

approx solution
9o eeso gyact solution

Figure 2 (v).
b=00Lk=t=c,=c =1

0 o0z 04 06 0§ 1
Legend *

approx solution
ee oo ayact solution

Figure 3 (w).
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b=0k=t=c,=c =1

0 02 04 0B 0g 1
Legend *

approx solution
¢s e s ee eyact solution

b=00Lk=t=c,=c =1

0 0.2 0.4 06 0.8 1
Legend *

approx solution
o e oo s e axact solution

4. Conclusion

In this paper, we applied the modified decomposition method (MDM) for solving Hirota-
Satsuma coupled KdV systems. The method is applied in a direct way without using
linearization, transformation, discretization or restrictive assumptions. It may be concluded that
the MDM is very powerful and efficient in finding the analytical solutions for a wide class of
boundary value problems. The method gives more realistic series solutions that converge very
rapidly in physical problems. It is worth mentioning that the method is capable of reducing the
volume of the computational work as compared to the classical methods while still maintaining
the high accuracy of the numerical result. It is concluded that the proposed MDM is more user
friendly and is easier to implement compared to homotopy perturbation (HPM) and Adomian’s
decomposition (ADM) methods.
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