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Abstract 
 
The first integral method is an efficient method for obtaining exact solutions of nonlinear partial 
differential   equations.  The efficiency of the method is demonstrated by applying it for two 
selected equations. This method can be applied to nonintegrable equations as well as to 
integrable ones. 
 
Keywords:  First integral method; Gardner equation; (2+1)-dimensional nonlinear Schrödinger 

equation 
 
MSC 2000 No.:  35D 
 
 
1.  Introduction 
 
Nonlinear evolution equations have a major role in various scientific and engineering fields, such 
as fluid mechanics, plasma physics, optical fibers, solid state physics, chemical inematics, 
chemical  physics and  geochemistry.  Nonlinear wave phenomena of dispersion, dissipation, 
diffusion, reaction  and convection are very  important  in nonlinear wave equations. In recent 
years, quite a few methods for obtaining explicit traveling and solitary wave   solutions of 
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nonlinear evolution equations have been proposed. A variety of powerful methods, such as, tanh-
sech method [Malfliet (1992), Khater et al. (2002), Wazwaz (2006)], extended tanh method [El-
Wakil et al.  (2007),  Fan (2000), Wazwaz (2005)],  hyperbolic  function  method (Xia and Zhang 
(2001)), sine-cosine method [Wazwaz (2004), Yusufoglu and Bekir (2006), Jacobi   elliptic 
function  expansion  method [Inc and Ergut (2005)], F-expansion method [Zhang    (2006)],  and 
the First Integral method [Feng (2002), Ding and  Li (1996)] . 
 
The first integral method was first proposed by Feng (2002), in solving Burgers-KdV equation, 
which is based on the ring theory of commutative algebra. Recently, this useful method is widely 
used by many [See, Feng and Wang (2002), Raslan (2008),  Abbasbandy  and  Shirzadi (2010)  
and reference therein].   
 
The aim of this paper is to find new exact solutions of the Gardner equation and the (2+1) -
dimensional nonlinear Schrödinger equation by the first integral method. 
 
 
2.  First integral Method 
 
Consider the nonlinear partial differential equation in the form 
 

( , , , , , ,...) 0,x y t xx xyF u u u u u u                                                                                                (1) 
 
where  ( , , )u u x y t  is the solution of nonlinear partial differential equation (1). We use the 
transformations 
 

( , , ) ( ),u x y t u           ( ).k x ly t                                                                               (2)  
 
This enables us to use the following changes: 
 

(.) (.),k
t




 
 

 
     (.) (.),k

x 
 


 

   (.) (.),kl
y 
 


 

    
2 2

2
2 2

(.) (.), .k
x 
 


 

       (3) 

 
We use (3) to change the nonlinear partial differential equation (1) to nonlinear ordinary 
differential equation 
 

2

2

( ) ( )
( ( ), , ,...) 0.

f f
G f

 
 

 


 
                                                                                            (4) 

 
Next, we introduce a new independent variable 
 

( ) ( ),X u             
( )

,
u

Y







                                                                                          (5) 

 
which leads to the system of nonlinear ordinary differential equations 
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1

( )
( ),

( )
( ( ), ( )).

X
Y

Y
F X Y

 

  











                                                                                                     (6) 

 
By the qualitative theory of ordinary differential equations [Ding and Li (1996)], if we can find 
the integrals to Equation (6) under the same conditions, then the general solutions to Equation (6) 
can be solved directly. However, in general, it is really difficult for us to realize this even for one 
first integral, because for a given plane autonomous system, there is no systematic theory that 
can tell us how to find its first integrals, nor is there a logical way for telling us what these first 
integrals are.  We will apply the Division Theorem to obtain one first integral to Equation (6) 
which reduces Equation (4)  to a  first order integrable ordinary differential  equation.  An exact 
solution to Equation (1) is then obtained by solving this equation.   
 
Now, let us recall the Division Theorem: 
 
Division Theorem.  Suppose  that   ( , )P w z  and ( , )Q w z  are  polynomials in ( , ),C w z  and 

( , )P w z  is irreducible  in ( , ).C w z  If   ( , )Q w z vanishes at  all zero points of   ( , ),P w z  then 

there exists  a  polynomial  2 ( , )F w z  in ( , )C w z  such that 2( , ) ( , ) ( , ).Q w z P w z F w z  

 
 
3.   Application 
 
 
Example 1.  Let us first consider the Gardner equation [Wazwaz (2007), Biswas (2008)] 
 

2 26( ) .t x xxxu u u u u                                                                                                         (7)          

 
By making the transformation  ( , ) ( ),u x t u   ( ),k x t    the Equation (7) becomes 
 

3
2 2 3

3

( ) ( ) ( )
6 ( ( ) ( ( )) ) .

u u u
k k u u k

     
  

  
   

  
                                                          (8) 

 
Hence, 
        

  

3
2 2 2

3
6 6 0.

u u u u
u u k 

   
   

   
   

                                                                               (9) 

 
Integrating Equation (9) once with respect to ,  then  we  have 
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2
2 2 3 2

2
3 2 ,

u
u u u k R 




   


                                                                                          (10) 

 
where  R  is the integration constant. 
 
Rewrite this second-order ordinary differential equation as follows 
 

2
3 2

1 2 3 42
0,

u
k u k u k u k




    


                                                                                        (11) 

 
where 
 

2

1 2

2
,k

k


       2 2

3
,k

k
       3 2

,k
k


       4 2

.
R

k
k

                                                             

 
Using (5) we get 
 

( ) ( ),X Y                                                                                                                        (12) 
 

3 2
1 2 3 4( ) ( ( )) ( ( )) ( ) .Y k X k X k X k                                                                       (13) 

 
According to the first integral method, we suppose the  ( )X   and ( ),Y   are the nontrivial 
solutions of (12), (13), and 
 

0

( , ) ( ) 0,
N

i
i

i

Q X Y a X Y


   

 
is an irreducible polynomial in the complex domain ( , ),C X Y   such that 
 

0

( ( ), ( )) ( ( )) ( ) 0,
N

i
i

i

Q X Y a X Y   


                                                                              (14) 

 
where ( )( 0,1,..., ),ia X i N are polynomials of  X and  ( ) 0.Na X   Equation (14) is called the 

first integral to (12), (13). Due to the Division Theorem, there exists a 
polynomial ( ) ( ) ,g X h X Y in the complex domain ( , ),C X Y  such that 
 

0

. . ( ( ) ( ) ) ( ) .
N

i
i

i

dQ dQ dX dQ dY
g X h X Y a X Y

d dX d dY d   

                                                   (15) 

 
In this example, we take two different cases, assuming that 1,N   and  2,N    in (14). 
 
 

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 2, Art. 15

https://digitalcommons.pvamu.edu/aam/vol5/iss2/15



450                                                                                                                                                  N. Taghizadeh et al.  
 

Case A  
 
Suppose that 1.N   By comparing with the coefficients of  ( 2,1,0)iY i   from  both sides of 
(15), we have 
 

1 1( ) ( ) ( ),a X h X a X                                                                                                            (16)   

 

0 1 0( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                     (17) 

 
3 2

1 1 2 3 4 0( )[ ( ( )) ( ( )) ( ) ] ( ) ( ).a X k X k X k X k g X a X                                               (18) 

 
 
We obtain that 1( ),a X is constant and ( ) 0,h X   take 1( ) 1,a X   and balancing the degrees of 

( ),g X  1( )a X  and 0 ( ),a X we conclude that deg( ( )) 1,g X   only. 

  
Suppose that 1 0( ) ,g X A X A  then we find  0 ( ).a X  
 

2
0 1 0 1

1
( ) ,

2
a X c A X A X                                                                                                  (19) 

 
where 1c   is arbitrary integration constant. Substituting 0 1( ), ( )a X a X  and ( )g X in the last 

equation in (18) and setting all the coefficients of X  to be zero, then we obtain a system of 
nonlinear equations and by solving it, we obtain 
 

0 ,
i

A
k

         1

2
,

i
A

k


      

2

1 3

( 1)
,

2

i
c

k

 



       

2

4

1
,

2
R

 



                                       (20) 

 

0 ,
i

A
k

        1

2
,

i
A

k


         

2

1 3

( 1)
,

2

i
c

k

 



           

2

4

1
,

2
R

 



                                      (21) 

 
where ,k  and   are arbitrary constants. 
 
 
Using the conditions (20), into Equation (14), we obtain 
  

2
2

3

( 1)
( ) ( ) ( ( )) .

2

i i i
Y X X

k k k

    
 


                                                                          (22) 

 
Combining (22) with (12), we obtain the exact solution to equation (11) and then the exact 
solution to Gardner equation can be written as 
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2 2

02 2

1 2 3 2 3
( , ) tan[ ( ( ) )],

2 2 2
u x t k x t

i k

     
  

 
                                                 (23) 

 
where 0  is an arbitrary constant. 
 
Similarly, in the case of (21), into Equation (14), we obtain 
 

2
2

3

( 1)
( ) ( ) ( ( )) ,

2

i i i
Y X X

k k k

    
 


                                                                        (24) 

 
and then the exact solution of  the Gardner equation can be written as 
 

2 2

02 2

1 2 3 2 3
( , ) tan[ ( ( ) )],

2 2 2
u x t k x t

i k

     
  

 
                                                 (25) 

 
where 0  is an arbitrary constant. 
 
Case B  
 
Suppose that 2,N   by equating with the coefficients of  ( 3,2,1,0)iY i   from both sides of 
(15), we have 
 

2 2( ) ( ) ( ),a X h X a X                                                                                                           (26) 

  

1 2 1( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                      (27) 
3 2

0 2 1 2 3 4

1 0

( ) 2 ( )[ ( ( )) ( ( )) ( ) ]

( ) ( ) ( ) ( ),

a X a X k X k X k X k

g X a X h X a X

       

 


                                              (28)  

 
3 2

1 1 2 3 4 0( )[ ( ( )) ( ( )) ( ) ] ( ) ( ).a X k X k X k X k g X a X                                               (29) 

 
 
We obtain that 2 ( ),a X  is constant and ( ) 0,h X   take 2 ( ) 1,a X  and balancing the degrees 

1( ), ( )g X a X  and 0 ( ),a X  we conclude that deg( ( )) 1,g X   only.  
 
 
Suppose that 1 0( ) ,g X A X A  then we find 0 ( ),a X and 1( )a X  as 

 
2

1 1 0 1

1
( ) ,

2
a X c A X A X                                                                                                  (30) 
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2
2 4 3 2 2

0 1 0 1 1 1 02 2 2

1 0 22

1 4 1 1 6 3 1 2
( ) ( ) ( ) ( )

4 2 3 2 2
2

( ) .

a X A X A A X c A A X
k k k

R
c A X c

k

 
      

  
                     (31)  

                                 
where 2c   is arbitrary integration constant. Substituting 0 1( ), ( )a X a X  and ( ),g X  in the last 

equation in (29) and setting all the coefficients of X  to be zero, then we obtain a system of 
nonlinear equations and by solving it with aid Maple, we obtain 
 

 
2
1

2 ,
4

c
c        

1

4
,

i
k

A


      

4
1 1

2
1

4
,

A c

A





   1
0 2

,
2

A
A


     1

1

2
,

c
R

A
                                 (32) 

 
where 1,A   and 1c  are arbitrary constants. Using the conditions (32), into Equation (14), we can  

get 
 

2 2 2
1 1 1

2

( ( )) ( ) 2
( ) .

4

A X A X c
Y

   

 

                                                                            (33) 

 
Combining (33) with (12), we obtain the exact solution to equation (11) and the exact solution to 
Gardner equation can be written as 
 

4 2 4 2 4
1 1 1 1 1 1 1 1

02 2 2 2
1 1

8 8 41
( , ) tan[ ( ( ) )],

2 2 8

c A A c A A A c
u x t k x t

A A

   
   

  
                    (34) 

 
where 0  is an arbitrary constant. 
 
 
Example 2.   Considering the (2+1)-dimensional nonlinear Schrödinger equation [Zhou et al. 
(2004)] that reads 
 

2| | 0,t xx yyiu au bu c u u                                                                                               (35) 

 
where ,a b  and  c  are nonzero constants. Firstly, we introduce the transformations 
 

( , , ) ( ),iu x y t e u      ,x y t               ( ),k x ly t                                      (36) 
 
where , , , ,k l    and    are real constants.  Substituting (36) into Equation (35) we obtain the 
 

2( )a b l     and ( )u   satisfy into the ODE: 
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2
2 2 2 2 3

2

( )
( ) ( ) ( ) ( ( )) 0.

u
a b u a bl k c u

    



      


                                                (37) 

 
Rewrite this second-order ordinary differential equation as follows 
 

2
3

1 22

( )
0,

u
k u k u





  


                                                                                                      (38) 

 
where   
 

1 2 2
,

( )

c
k

a bl k



     

2 2

2 2 2
.

( )

a b
k

a bl k

   



 

 
 
Using (5) we get 
 

( ) ( ),X Y                                                                                                                        (39) 
    

3
1 2( ) ( ( )) ( ).Y k X k X                                                                                                 (40) 

 
According to the first integral method, we suppose the X( )  and ( ),Y   are the nontrivial 
solutions of (39) and (40) also 
 

0

( , ) ( ) 0
N

i
i

i

Q X Y a X Y


   

 
is an irreducible polynomial in the complex domain ( , ),C X Y   such that 
 

0

( ( ), ( )) ( ( )) ( ) 0,
N

i
i

i

Q X Y a X Y   


                                                                              (41) 

 
where ( )( 0,1,..., ),ia X i N are polynomials of  X and  ( ) 0.Na X   Equation (41) is called the 

first integral to (39), (40). Due to the Division Theorem, there exists a 
polynomial ( ) ( ) ,g X h X Y in the complex domain ( , ),C X Y  such that 
 

0

. . ( ( ) ( ) ) ( ) .
N

i
i

i

dQ dQ dX dQ dY
g X h X Y a X Y

d dX d dY d   

                                                   (42) 

 
Suppose that 1,N  by comparing with the  coefficients of  ( 2,1,0)iY i  from  both sides of 
(42), we have 
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1 1( ) ( ) ( ),a X h X a X                                                                                                            (43)   

 

0 1 0( ) ( ) ( ) ( ) ( ),a X g X a X h X a X                                                                                     (44) 

 
3

1 1 2 0( )[ ( ( )) ( )] ( ) ( ).a X k X k X g X a X                                                                        (45) 

 
We obtain that 1( ),a X is constant and  ( ) 0,h X   take 1( ) 1,a X   and balancing the degrees of 

( ),g X  1( )a X  and 0 ( ),a X we conclude that deg( ( )) 1,g X   only. 

  
Suppose that 1 0( ) ,g X A X A  then we find  0 ( ).a X  

 
2

0 1 0 1

1
( ) ,

2
a X c A X A X                                                                                                  (46) 

 
where  1c   is arbitrary integration constant.  Substituting 0 1( ), ( )a X a X  and ( )g X in the last 

equation  in (45) and setting all the coefficients of X  to be zero, then we obtain a system of 
nonlinear equations and by solving it, we obtain 
 

0 0,A       1 2

1 2
,

c
A

k bl a



   2 2 2

1 2 ( ),b a c k c bl a                                            (47) 

 

0 0,A       1 2

1 2
,

c
A

k bl a
 


   2 2 2

1 2 ( ),b a c k c bl a                                          (48) 

 
where 1, , , ,c k l    are arbitrary constants. 

 
Using the conditions (47)  into  Equation(41),  we obtain 
 

2
1 2

1 2
( ) ( ( )) .

2

c
Y c X

k bl a
   


                                                                                     (49) 

 
Combining (49) with (39), we obtain the exact solution to equation (38) and then the exact 
solution to the (2 + 1)-dimensional nonlinear Schrödinger equation can be written as 
 

2
2 2 2( ( 2 ( ) ) )1 1

2

1
02

( ) 2
( , , )

1 2
tan[ ( ( 2( ) ) )],

2

i x y b a c k c bl a tc k bl a c
u x y t e

c bl a

c k c
k x ly a b l t

k bl a

   

  

    
 



    


                               (50) 

 
where 0  is an arbitrary constant. 
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Similarly, in the case of (48), into Equation (41), we obtain 
 

2
1 2

1 2
( ) ( ( )) ,

2

c
Y c X

k bl a
   


                                                                                     (51) 

 
and then the exact solution of (2 + 1)-dimensional nonlinear Schrödinger equation can be written 
as 
 

2
2 2 2( ( 2 ( ) ) )1 1

2

1
02

( ) 2
( , , )

1 2
tanh[ ( ( 2( ) ) )],

2

i x y b a c k c bl a tc k bl a c
u x y t e

c bl a

c k c
k x ly a b l t

k bl a

   

  

    
 



    


                            (52) 

 
where 0  is an arbitrary constant. 

 
4.  Conclusion 
 
In this work the first integral method was applied successfully for solving two nonlinear partial 
differential equations. Thus, we can say that the proposed method can be extended to solve the 
problems of nonlinear partial differential equations which arising in the theory of  solitons  and 
other areas. 
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