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Abstract 
 
 In the present paper an analytic solution of non-linear parabolic-hyperbolic equations is deduced 
with the help of the powerful differential transform method (DTM). To illustrate the capability 
and efficiency of the method four examples for different cases of the equation are solved. The 
method can easily be applied to many problems and is capable of reducing the size of 
computational work. 
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1. Introduction 
 
Since the beginning of 1986, Zhou and Pukhov have developed a so-called differential 
transformation method (DTM) for electrical circuits problems. The DTM is a technique that uses 
Taylor series for the solution of differential equations in the form of a polynomial. It is different 
from the high-order Taylor series method, which requires symbolic computation of the necessary 
derivatives of the data functions. The Taylor series method is computationally tedious for high 
order equations. The Differential transform method leads to an iterative procedure for obtaining 
an analytic series solutions of functional equations. In recent years researchers have applied the 
method to various linear and nonlinear problems such as two point boundary value problems by 
Chen and Liu(1998), partial differential equations by Jang et al. (2001), differential-algebraic 
equations by Ayaz (2004), integro-differential equations by Arikoglu and Ozkol (2005), 
fractional differential equations by Arikoglu and Ozkol (2007), the KdV and mKdV equations by 
Kangalgil and Ayaz (2009), the Schrödinger equations by Ravi Kanth and Aruna (2009), 
Analytic solution for Telegraph equation by Biazar and Eslami (2010), Systems of Volterra 
Integral Equations of the First Kind by Biazar and Eslami (2010), and Approximate analytical 
solution for the fractional modified KdV by Kurulay and Bayram (2010).  
 
In recent years, special equations of the composite type have received attention in many papers. 
In this paper, we consider the Cauchy problem for the nonlinear parabolic-hyperbolic equation of 
the following type 
 

2

2
( ),u F u

t t

            
                                                                                                                                 

 
with initial conditions 
 

1 2(0, ) ( ), ( , , , ), 0,1,2,
k

k ik

u
X X X x x x k

t


  


  

 

where the nonlinear term is represented by ( ),F u and   is the Laplace operator in .nR  

 
 
2.  Basic Idea of Differential Transform Method 
 
The basic definitions and fundamental operations of the two-dimensional differential transform 
are defined as follows; see Chen and Ho (1999). The differential transform function of a function 
say ( , )u x y is in the following form  

 

 
 

 0 0,

,1
( , ) ,

! !

k h

k h

x y

u x y
U k h

k h x y

 
                                                                                           (1)  
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where  ,u x y is the original function and  ,U k h is the transformed function. 

 

The differential inverse transform of  ,U k h  is defined as 

0 0
0 0

( , ) ( , )( ) ( ) ,k h

k h

u x y U k h x x y y
 

 

  
                                                                                   (2)                 

 
in a real application, and when 0 0( , )x y are taken as (0,0), then the function ( , )u x y is expressed by  
 
a finite series and Eq. (2) can be written as 

 
 

0 0

,1
( , ) .

! !

k h
k h

k h
k h

u x y
u x y x y

k h x y

 

 

 
    


                                                                         (3)
  

 
Equation (3) implies that the concept of two-dimensional differential transform is derived from 
two-dimensional Taylor series expansion. In this study we use the lower case letters to represent 
the original functions and upper case letters to stand for the transformed functions (T-functions). 
From the definitions of Equations (1) and (2), it is readily proved that the transformed functions 
comply with the following basic mathematical operations. 
 
Similarity an m-dimensional differential transform of 1 2( , , , )mu x x x  is defined 
 

 
 

1 2

1 2

1 2
1 2

1 2 1 2 0,0, ,0

, , ,1
( , , , ) ,

! ! !

m

m

k k k
m

m kk k
m m

u x x x
U k k k

k k k x x x

   
  

    








 
                                                (4) 

 
where 1 2( , , , )mu x x x  is the original and 1 2( , , , )mU k k k  is the transformed function. The 
differential inverse transform of 1 2( , , , )mu x x x  is defined as follows 
 

1 2

1 2

1 2 1 2 1 2
0 0 0

( , , , ) ( , , , ) ,m

m

kk k
m m m

k k k

u x x x U k k k x x x
  

  

                                                                 (5) 

 
and from Equations (4) and (5) can be concluded 
 

 
 

1 2

1 2

1 2

1 2

1 2
1 2 1 2

0 0 0 1 2 1 2 0,0, ,0

, , ,1
( , , , ) .

! ! !

m

m

m

m

k k k
m kk k

m mkk k
k k k m m

u x x x
u x x x x x x

k k k x x x

    

  

 
  

    
 






  

 
             (6)     

 
From Equations (2) – (6), one can easily prove that the transformed functions comply with the 
following basic mathematical operations. 
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1. If 1 2 1 1 2 2 1 2( , , ) ( , , ) ( , , ),m m mu x x x f x x x f x x x     then 

1 2 1 1 2 2 1 2( , , ) ( , , ) ( , , ).m m mU k k k F k k k F k k k     
 
2. If 1 2 1 2( , , ) ( , , ),m mu x x x g x x x  then 

  1 2 1 2( , , ) ( , , ),m mU k k k G k k k  where,  is a constant.  

 

3. If 
 1 2

1 2

, ,
( , , ) ,m

m
i

g x x x
u x x x

x







  then 

  1( , ) ( 1) ( , 1, ), 1 .i i mU k h k G k k k i m       

 

4. If 
 1 2, ,

( , ) , 1
r s

m

r s
i j

g x x x
u x y i j m

x x


   

 


 then 

1 2 1( , , ) ( 1)( 2) ( )( 1)( 2) ( ) ( , , , , ).m i i i j j j i j mU k k k k k k r k k k s G k k r k s k                

 

5. If 1 2
1 2 1 2( , , ) mhh h

m mu x x x x x x   then 

  1 2 1 1 2 2( , , ) ( ) ( ) ( ),m m mU k k k k h k h k h       where 
1, ,

( )
.

i i
i i

k h
k h

o otherwise



  

   

6. If  1 2 1 1 2 2 1 2( , ) ( , ) ( , ),u x x f x x f x x  then 
 

1 2
0 0

( , ) ( , ) ( , ).
k h

r s

U k h F r h s F k r s
 

    
 

7. If  1 2 3 1 1 2 3 2 1 2 3( , , ) ( , . ) ( , , ),u x x x f x x x f x x x  then 

  
31 2

1 2 3 1 2 3 2 1
0 0 0

( , , ) ( , , ) ( , , ).
kk k

r s p

U k k k F r k s k p F k r s p
  

     

  

3.  Examples 
 
To illustrate the capability, reliability and simplicity of the method, four examples for different 
cases of the equation will be discussed here. 
 
Example 1. Consider the following equation  
 

2 2 2 2 2
2

2 2 2 2 2
2 ( ) 144 ,

u u u
u u

t x t x t t x

        
              

                                                                 (7)                   

 
subject to the following initial conditions 
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4

2

2

(0, ) ,

(0, ) 0,

(0, ) 0,

u x x

u
x

t

u
x

t

 









                                                                                                                        (8)                  

 
with the exact solution 
 

4 3( , ) 4 .u t x x t    

 
Taking the differential transform of (7), leads to 
 

0 0

0 0

( 1)( 2)( 3) ( 3, ) ( 1)( 1)( 2) ( 1, 2)

( 1)( 2)( 1)( 2) ( 2, 2) ( 1)( 2)( 3)( 4) ( , 4)

2 ( 1)( 1)( 2) ( 1, ) ( 2, )

( 1)( 2)( 1)( 2) ( ,

k h

r s

k h

r s

k k k U k h k h h U k h

k k h h U k h h h h h U k h

r k r k r U r h s U k r s

h s h s s s U r h

 

 

         
            

         

      



 2) ( , 2) 144 ( , ).s U k r s U k h    

                        (9) 

 
From the initial conditions given by Equations (8), we have 
 

1, 4,
(0, )

0, 0,1,2,3,5,

(1, ) 0, 0,1,2,

(2, ) 0, 0,1,2, .

h
U h

h

U h h

U h h

 
  
 
 







                                                                                             (10)                    

 
Substituting Equation (10) into Equation (9) and by recursive method, the results are listed as 
follows  
 

1, 0 4,

( , ) 4, 3 0,

0, .

for k and h

U k h for k and h

otherwise

  
  



 

 
We obtained the series solution as  
      

4 3

0 0

( , ) ( , ) 4 ,k h

k h

u t x U k h t x x t
 

 

                                                                                                                       

 
which is an exact solution of the problem given in Equations (7)-(8). 

5

Biazar et al.: Differential Transform Method for Nonlinear Parabolic-hyperbolic Equations

Published by Digital Commons @PVAMU, 2010



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1493 – 1503]                     401 
 

 
 

 
Example 2. Consider the following equation 
  

2 2 2 2 2
2 2 2

2 2 2 2 2
( ) ( ) 2 ,

u u
u u

t x t x t x

       
             

                                                                    (11)  

 
subject to the initial conditions 

2

2

(0, ) ,

(0, ) ,

(0, ) ,

x

x

x

u x e

u
x e

t

u
x e

t











                                                                                                                      (12)  

 
with the exact solution 
 

( , ) .x tu t x e   

 
One can readily find the differential transform of (11), as follows. 
 

0 0

0 0

( 1)( 2)( 3) ( 3, ) ( 1)( 1)( 2) ( 1, 2)

( 1)( 2)( 1)( 2) ( 2, 2) ( 1)( 2)( 3)( 4) ( , 4)

( 1)( 2)( 1)( 2) ( 2, ) ( 2, )

( 1)( 2)( 1)( 2)

k h

r s

k h

r s

k k k U k h k h h U k h

k k h h U k h h h h h U k h

r r k r k r U r h s U k r s

h s h s s s U

 

 

         
            

          

      




0 0

( , 2) ( , 2) 2 ( , ) ( , ).
k h

r s

r h s U k r s U r h s U k r s
 

      

                            

                                                                                                                                                     (13) 
The transformed version of Equation (12) is 
 

1
(0, ) , 0,1,2,

!
1

(1, ) , 0,1,2,
!
1

(2, ) , 0,1,2, .
!

U h h
h

U h h
h

U h h
h

 

 

 







                                                                                                  (14) 

 
Substituting (14) in (13), all spectra can be found as 
  

1
( , ) .

! !
U k h

k h
    

 
Substituting ( , )U k h  into Equation (3), we obtain 
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2 3 2 3

0 0

1
( , ) (1 )(1 ),

! ! 2! 3! 2! 3!
k h

k h

t t x x
u t x t x t x

k h

 

 

                                                                                       

 
which is the expansion of the function x te  and is an exact solution of the problem given in 
Equations (11)-(12). 
 
Example 3. Consider the following equation 
  

2 2 2 2

2 2 2 2
,

u u u
u u

t x t x t t x

        
             

                                                                            (15) 

 
with initial conditions, 
 

2

2

(0, ) cos ,

(0, ) sin ,

(0, ) cos .

u x x

u
x x

t

u
x x

t




 



 


                                                                                                             (16) 

 
 Taking the differential transform leads to 
 

0 0

0 0

( 1)( 2)( 3) ( 3, )

( 1)( 1)( 2) ( 1, 2) ( 1)( 2)( 1)( 2) ( 2, 2)

( 1)( 2)( 3)( 4) ( , 4) ( 1) ( , ) ( 1, )

( 1)( 2)( 1) ( 2, ) ( , 1).

k h

r s

k h

r s

k k k U k h

k h h U k h k k h h U k h

h h h h U k h k r U r h s U k r s

k r k r h s U k r s U r h s

 

 

    
           

           

          





                        (17)  

 
From the initial conditions (17) we can write 
 

2

1

2

1
2

( 1)
, ,(0, ) !

0, ,

0, ,

(1, )
( 1)

, ,
!

( 1)
, ,(2, ) !

0, .

h

h

h

for his evenU h h
for his odd

for his even

U h
for hisodd

h

for his evenU h h
for hisodd








 





  




 



                                                                                        (18) 
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Substituting (18) in (17), all spectra can be found as  
 

2

2

2

( 1)
, ,

! !

( 1)
( , ) , ,

! !
0, .

k h

k h

for k is even and h is even
k h

U k h for k is odd and h is odd
k h

otherwise



 






  






   

 
Substituting ( , )U k h into Equation (3), we have series solution for u and follow closed form 
solution  

2

2 2

0 0 0,2, 0,2, 1,3, 1,3,

1 1

2 2 2 2

0,2, 0,2, 1,3, 1,3,

( 1) ( 1)
( , ) ( , )

! ! ! !

1 1 1 1
( 1) ( 1) ( 1) ( 1)

! ! ! !

cos cos sin

k

k h k h

k h k h k h

k h k h k h

k h k h
h k h

k h k h

u t x U k h t x t x t x
k h k h

k t x t t
k h k h

t x t

  
     

     

    

   

 
  

     

 

    

   

   

   

sin ,x

                                                         

 
which is an exact solution. 
 
 
Example 4. Consider the following equation 
 

2 2 2 2 2
2 2

2 2 2 2 2
1 2 1 2

( ) 4 ,
u

u u
t x x t x x t

        
               

                                                                (19)  

 
with initial conditions,  
 

1 2 1 2

1 2 1 2

2

1 2 1 22

(0, , ) sinh( ),

(0, , ) 2sinh( ),

(0, , ) 4sinh( ).

u x x x x

u
x x x x

t

u
x x x x

t

 


 



 


                                                                                                (20) 

 
and exact solution 
 

1 2 1 2( , , ) sinh( ) .tu t x x x x e   
 
Taking the differential transform of (19), leads to 
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( 1)( 2)( 3) ( 3, , ) ( 1)( 1)( 2) ( 1, 2, )

( 1)( 1)( 2) ( 1, , 2) ( 1)( 2)( 1)( 2) ( 2, 2, )

( 1)( 2)( 3)( 4) ( , 4, ) 2( 1)( 2)( 1)( 2) ( , 2, 2)

( 1)( 2)( 1)( 2)

k k k U k h m k h h U k h m

k m m U k h m k k h h U k h m

h h h h U k h m h h m m U k h m

k k m m

         
            
            
    

0 0 0

0 0 0

( 2, , 2) ( 1)( 2)( 3)( 4) ( , , 4)

( 1)( 2)( 1)( 2) ( , , 2) ( , , 2)

4 ( , , ) ( , , ).

k h m

r s p

k h m

r s p

U k h m m m m m U k h m

m p m p p p U r h s m p U k r s p

U r h s m p U k r s p

  

  

       

           

   





          (21) 

 
 From the initial conditions given by Equation (20) 
 

1
, ,

! !
1

(0, , ) , ,
! !

0 ,

2
, ,

! !
2

(1, , ) , ,
! !

0, ,

for h is odd and m is even
h m

U h m for h is even and m is odd
h m

otherwise

for h is odd and m is even
h m

U h m for h is even and m is odd
h m

otherwise




 






 




 

4
, ,

! !
4

(2, , ) , ,
! !

0, .

for h is odd and m is even
h m

U h m for h is even and m is odd
h m

otherwise




 




                                                                  (22) 

 
 Substituting (22) in (21), all spectra can be found as follows  
 

2
, 0,1,2, , ,

! ! !

2
( , , ) , 0,1,2, , ,

! ! !
0, .

k

k

for k h is odd and m is even
k h m

U k h m for k h is even and m is odd
k h m

otherwise







 







   

 
We obtain a series solution for u  and rearranging this solution yield the closed form solution as 
follows     
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1 2 1 2 1 2 1 2
0 0 0 0,1, 1,3, 0,2, 0,1, 0,2, 1,3,

1 2 1
0,1, 1,3, 0,2, 0,1, 0,

2 2
( , , ) ( , )

! ! ! ! ! !

2 1 1 2 1

! ! ! ! !

k k
k h m k h m k h m

k h m k h m k h m

k k
k h m k h

k h m k h

u t x x U k h t x x t x x t x x
k h m k h m

t x x t x
k h m k h

        

        

   

    

  

 

      

   

     

   
2

2, 1,3,

2
1 2

1

!

sinh( ) ,

m

m

t

x
m

x x e

 



 

 
 

  
which is an exact solution. 
 

4.  Conclusion 
 
Application of the DTM to parabolic-hyperbolic partial differential equations has been presented 
successfully. The results show that the differential transform method is a powerful and efficient 
technique for finding analytic solutions for parabolic-hyperbolic partial differential equations. 
The results obtained reinforce the claim of high efficiency of the DTM. The Maple Package was 
used to calculate the series obtained by differential transform method.  
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