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Abstract 

Thermosolutal convection problem of the Veronis’ type coupled with cross–diffusion is 
considered in the present paper. A semi -circle theorem that  prescribes upper limit for the 
complex growth rate of oscillatory motions of  neutral or growing amplitude in such a manner 
that it naturally culminates in sufficient conditions precluding the non- existence of such motions 
is derived. Further, results for thermosolutal convection problems with or without the individual 
consideration of Dufour and Soret effects follow as a consequence. 
 
Keywords:    Thermosolutal convection; Rayleigh numbers; Dufour number; Soret number; 
                        Lewis number; Prandtl number 
 
MSC 2000 No.: 76E 99, 80A20 
 
 

1.  Introduction 

 
The stability properties of binary fluids are quite different from pure fluids because of Soret and 
Dufour [Fitts (1962), Groot (1962)] effects. An externally imposed temperature gradient 
produces a chemical potential gradient and the phenomenon known as the Soret effect, arises 
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when the mass flux contains a term that depends upon the temperature gradient. The analogous 
effect that arises from a concentration gradient dependent term in the heat flux is called the 
Dufour effect. Although it is clear that the thermosolutal and Soret-Dufour problems are quite 
closely related, their relationship has never been carefully elucidated. They are in fact, formally 
identical and identification is done by means of a linear transformation that takes the equations 
and boundary conditions for the latter problem into those for the former. The analysis of double 
diffusive convection becomes complicated in case when the diffusivity of one property is much 
greater than the other. Further, when two transport processes take place simultaneously, they 
interfere with each other and produce cross diffusion effect.  The Soret and Dufour coefficients 
describe the flux of mass caused by temperature gradient and the flux of heat caused by 
concentration gradient respectively.  
 
The coupling of the fluxes of the stratifying agents is a prevalent feature in multicomponent fluid 
systems. In general, the stability of such systems is also affected by the cross-diffusion terms. 
Generally, it is assumed that the effect of cross diffusions on the stability criteria is negligible. 
However, there are liquid mixtures for which cross diffusions are of the same order of magnitude 
as the diffusivities.  
 
There are only few studies available on the effect of cross diffusion on double diffusion 
convection largely because of the complexity in determining these coefficients. Hurle and 
Jakeman (1971) have studied the effect of Soret coefficient on the double–diffusive convection. 
They have reported that the magnitude and sign of the Soret coefficient were changed by varying 
the composition of the mixture. McDougall (1983) has made an in depth study of double 
diffusive convection where in both Soret and Dufour effects are important. 
        
Mohan (1998, 1996) mollified the nastily behaving governing equations of Dufour-driven 
thermosolutal convection and Soret–driven thermosolutal convection problems of the Veronis  
(1965) type by the construction of a linear  transformation and derived the desired results 
concerning the linear growth rate and the behavior of oscillatory motions on the lines suggested 
by Banerjee et al. (1981, 1993). 
            
The present paper purports to deal with the more general thermosolutal convection problems of 
Veronis type coupled with cross-diffusion and derives semi- circle theorem that prescribe upper 
limits for the complex growth rate of oscillatory motions of neutral or growing amplitude in such 
a manner that it naturally culminates in sufficient conditions precluding the non- existence of 
such motions. Further, results for thermosolutal convection problems with or without the 
individual consideration of Dufour and Soret effects follow as a consequence. 
                 
 
2.  Mathematical Formulation and Analysis 

 
Following the usual steps of linear stability theory the non- dimensional linearized perturbation 
equations governing the thermosolutal convection problem coupled with cross-diffusion with 
slight change in notations are easily seen to given by [Neild (1967), Krusin (1979)] 
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
  )( 2222 ,                                                                           (2.3)     

 
together with the boundary condition 
  

Dww  0      at z =0 and z =1            (both boundaries rigid)                             (2.4) 
 
or                                          

wDw 20        at z =0 and z =1         (both boundaries dynamically free)          (2.5) 
 
or 
         

Dww  0      at z =0                                                                

wDw 20        at z =1,                                                                                         (2.6) 
       (lower boundary rigid and upper boundary dynamically free). 
 
 
The meanings of symbols from physical point of view are as follows: 
 
z is the vertical  coordinate, d/dz is differentiation along the vertical direction, a2 is square of 

horizontal  wave number, σ 



  is the thermal Prandtl number, 

1  is the Lewis number, 


 4

1dg
RT   is the thermal Rayleigh number, 


 4

2dg
RS  is the concentration Rayleigh 

number, 




1

2 f
T

D
D   is the Dufour number, 

12

1


 f

T

S
S   is the Soret number, is the 

concentration,   is the temperature, p is the complex growth rate and w is the vertical velocity.  
 
 

In equations (2.1)–(2.6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D   is 

differentiation w.r.t z , a2 is a constant, σ > 0 is a constant,   > 0 is a constant, TR and RS are 
positive constants for the Veronis' configuration, p = pr + ipi is complex constant in general such 
that pr and pi are real constants and as a consequence the dependent variables w(z) = wr(z) + 
iwi(z),  (z) = r (z) + ii (z) and  (z) = r (z) + ii (z) are complex valued functions(and their 
real and imaginary parts are real valued).  
 
We now prove the following theorem:  
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Theorem 1.  If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equations    

  (2.1)–  (2.3) together with one of the boundary conditions (2.4)-(2.6)  with, 0TR ,  0SR , 

then 
 

)(4
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2
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MR
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where  
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Proof:   

 
We introduce the transformations 

wBSw T )(~  , 

 FE 
~

, 

 BST 
~

 ,                                                                                                                 (2.7) 

 
where 

B = ,
1

A


  E = ,A
AD

BS

T

T




 F = T
T

T D
AD

BS




 

and A is a positive root of the equation 

0)1(2  TT DSAA  . 

The system of equations (2.1)-(2.6), upon using the transformation (2.7), assumes the following 

form: 

  


2/2/2222 aRaRw
p

aDaD ST 





    ,                                                          (2.8) 

   wpaDk  22
1 ,                                                                                                 (2.9)  

4

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 2, Art. 7

https://digitalcommons.pvamu.edu/aam/vol5/iss2/7



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1428 – 1441]                     335 
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  )( 22

2                                                                                              (2.10) 

with                                                                     

Dww  0      at z =0 and z =1                                                                            (2.11) 

or 

wDw 20        at z =0 and z =1                                                                          (2.12) 

or            

Dww  0      at z =0                                                                

wDw 20        at z =1 ,                                                                                    (2.13) 

where 
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The tilde has been omitted for simplicity. 

Multiplying equation (2.8) by w* (the complex conjugate of w) and integrating the resulting 
equation over the vertical range of z, we get 

 

 
1

0

2
1

0

22222
1

0
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p

aDaDw ST 
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                       (2.14) 

 
Taking the complex conjugate of equations (2.9) and (2.10) and using the resulting equations in 
equation (2.14), we get 
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


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1

0

22
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22
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22222
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.*
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)(**)()()(* dz
p

aDkaRdzpaDkaRdzw
p

aDaDw ST 





.     (2.15)                       

 
Integrating equations (2.15) by parts a suitable number of times, using either of the boundary 
conditions (2.10)-(2.13) and one of the following inequalities 
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dzDdzD nnn
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2 )1(*   ,                                                                                    (2.16) 

 
where 
 

,   for n = 0, 1 and ,w  for n = 0, 1, 2, 
 

we have 
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Equating the real and imaginary parts of equation (2.17) equal to zero and using 0ip , we get 
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and   
 

0)(
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1
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0

222222   dzaRdzaRdzwaDw ST 
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.                                      (2.19) 

 

Multiplying equation (2.19) by rp and adding the resulting equation to (2.18), we have 
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Equation (2.19) implies that 
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
                                                                                 (2.21) 

Since   ,,w  vanish at z = 0 and z = 1, therefore Rayleigh-Ritz inequality [Shultz (1973)] yields 
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2 22
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Combining inequalities (2.21) and (2.22), we get 

       

1 12 2
2 22

0 0
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a
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 

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Also upon using inequality (2.24), we have 
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Combining inequalities (2.25) and (2.26), we have 
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2 2 22 2
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a
R a D a dz w dz

 

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Further, utilizing Schwartz inequality, we have 
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Inequality (2.22) together with inequality (2.28) yields 
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Multiplying equation (2.9) by the complex conjugate of equation (2.9) and integrating the 

resulting equation over the vertical range of z, we get 
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Integrating the above equation by parts an appropriate number of times and using either of the 

given boundary conditions, we get 
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Since 0rp , therefore from equation (2.30) , we have 
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Also emulating the derivation of inequalities (2.28) and (2.29) we derive the following inequality 
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Using inequality (2.32) in equality (2.31), we get 
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Making use of inequalities (2.27), (2.29) and (2.34), equation (2.20) yields 
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Therefore, we have 
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Now, the maximum value of 
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, therefore inequality (2.39) 
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Using inequality (2.40) in inequality (2.38), we get 
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This completes the proof of the theorem. 
 
 
Theorem 1 from the point of view of hydrodynamic stability theory may be stated as: 
 
The complex growth rate ir ippp  of an arbitrary oscillatory perturbation of growing 

amplitude ( 0rp ) in thermosolutal convection problem of Veronis’ type coupled with cross- 

diffusion lies inside a semi- circle in the right-half of the ir pp - plane whose centre is at the 

origin and whose radius 
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Corollary 1. If (p, w,  ,  ),  p = pr + ipi, pr ≥ 0 0ip  is a non -trivial solution of equation 

(2.1)–  (2.3) together with one of the boundary conditions (2.4)-(2.6)  with, 0TR ,  0SR and 

M 1   , then 0rp . 
 

Proof:  

Follows from Theorem 1. 

 
Corollary 1 implies that oscillatory motions of growing amplitude are not allowed in 

thermosolutal convection problem of Veronis type coupled with cross- diffusion if  M     
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Corollary 2. For thermohaline convection ( 0 TT SD ) the complex growth rate p = pr + ipi, 

of an  arbitrary oscillatory perturbation of growing amplitude lies inside a semi-circle in the  

right-half of the ir pp - plane whose centre is at the origin and whose radius is 

   



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2

2

4
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Corollary 3. For Soret –driven thermosolutal convection ( 0TD )  the   complex  growth  rate  

 p = pr + ipi, of an arbitrary oscillatory perturbation of growing amplitude lies inside a semi-

circle in the  right-half of the ir pp - plane whose centre is at the origin and whose radius is 
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Corollary 4. For Dufour –driven thermosolutal convection ( 0TS ) the complex growth rate  

p = pr + ipi, of an  arbitrary oscillatory perturbation of growing amplitude lies inside a semi-

circle in the  right-half of the ir pp - plane whose centre is at the origin and whose radius is 
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3. Conclusions 

 
In the present paper, thermosolutal convection problem of Veronis’ type configuration coupled 
with cross- diffusion is considered. The investigation of cross –diffusion effect is motivated by 
its interesting complexities as a thremosolutal or double diffusive phenomenon which has its 
importance in various field such as high quality crystal production, oceanography, production of 
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pure medication, solidification of molten alloys, exothermally heated lakes and magmas. The 
analysis made brings out the following main conclusions: 
 
(i)   The complex growth rate ir ippp  of an arbitrary oscillatory perturbation of growing 

amplitude ( 0rp ) in thermosolutal convection problem of Veronis’ type coupled with 

cross- diffusion lies inside a semi- circle in the right-half of the ir pp - plane whose centre is 

at the origin and whose radius is 
   

 





2
2

2

4

1

k

MRT . 

 

(ii)   The oscillatory motions of growing amplitude are not allowed in thermosolutal convection 

problem of Veronis type coupled with cross- diffusion if M    










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