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Abstract 

In this paper, an analytic technique, namely the New Homotopy Perturbation Method (NHPM) is 
applied for solving the nonlinear differential equations arising in the field of heat transfer. In this 
method, the solution is considered as an infinite series expansion where converges rapidly to the 
exact solution. The nonlinear convective–radioactive cooling equation and nonlinear equation of 
conduction heat transfer with the variable physical properties are chosen as illustrative examples and 
the exact solutions have been found for each case. 
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1.  Introduction 

 
Since most of the phenomena in our world are essentially nonlinear and hence described by 
nonlinear equations, there has developed an ever-increasing interest of scientists and engineers in 
the analytical asymptotic techniques for solving nonlinear problems. Recently, many new 
numerical techniques have been widely applied to the nonlinear problems. One of these methods 
the Homotopy Pertubation Method (HPM) attracted great attention due to its versatility and 
straightforwardness. HPM was introduced by He (2004, 2005, 2006, 2005, 1999, 2000, 2004, 
2003) and has since been used by many mathematicians and engineers to solve various 
functional equations. This simple method has also been applied to solve linear and nonlinear 
equations of heat transfer [Rajabi and Ganji (2007), Ganji and Sadighi (2007), Ganji (2006)], 
fluid mechanics [Abbasbandy (2007)], nonlinear Schrödinger equations [Biazar and Ghazvini 
(2007)], some boundary value problems and many other topics from a variety of disciplines 
[Yıldırım and Koçak (2009), Berberler and Yıldırım (2009), Koçak and Yıldırım (2009), 
Abbasbandy (2006)]. The new homotopy perturbation method (NHPM) was applied to linear and 
nonlinear ODEs [Aminikhah and Biazar (2009)] and integral equations [Aminikhah and Salahi 
(2009)]. In this article, the basic idea of the NHPM is introduced and its application in two heat 
transfer equations is studied. This numerical scheme is based upon the Taylor series expansion 
and, as we shall soon see, is capable of finding the exact solution of many nonlinear differential 
equations. 
 

 
2.  Basic ideas of the NHPM 

 
To illustrate the basic ideas of this method, let us consider the following nonlinear differential 
equation   
 

( ( )) ( ( )) 0, ( ) ,A u x f r x r x- = Î W                                                                                          (1) 

 
with the following boundary conditions  
 

( )
( ( ), ) 0, ( ) ,

u x
B u x r x

n
¶

= Î G
¶

                                                                                              (2) 

 
where A  is a general differential operator, B is a boundary operator, ( ( ))f r x  is a known 
analytical function and Gis the boundary of the domainW. The operator A  can be divided into 
two parts, L andN , where L is a linear and N is a nonlinear operator. Therefore Eq. (1) can be 
rewritten as 
 

( ( )) ( ( )) ( ( )) 0L u x N u x f r x+ - =                                                                                             (3) 
 
By the homotopy technique, we construct a homotopy ( ( ), ) : [0,1]U r x p W´ ® ¡ , which satisfies 
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0( ( ), ) (1 )[ ( ( )) ( )] [ ( ( )) ( ( ))] 0, [0,1], ( ) ,H U x p p L U x u x p A U x f r x p r x= - - + - = Î Î W         (4) 

 
or equivalently, 
 

0 0( ( ), ) ( ( )) ( ( )) ( ( )) [ ( ( )) ( ( ))] 0,H U x p L U x L u x pL u x p N U x f r x= - + + - =                            (5) 
 
where [0,1]p Î  is an embedding parameter, 0( )u x  is an initial approximation of  solution of 
Equation (1). Clearly, we have from Equations (4) and (5)  
 

0( ( ), 0) ( ( )) ( ( )) 0,H U x L U x L u x= - =                                                                                     (6) 
 

( ( ),1) ( ( )) ( ( )) 0.H U x A U x f r x= - =                                                                                       (7) 
 
 
According to the HPM, we can first use the embedding parameter p as a small parameter, and 
assume that the solutions of Equations (4) and (5) can be represented as a power series in p  as 
 

0

( ) n
n

n

U x p U
¥

=

= å .                                                                                                                    (8) 

 
Now let us write the Eq. (5) in the following form 
 

0 0( ( )) ( ) [ ( ( )) ( ) ( ( ))].L U x u x p f r x u x N U x= + - -                                                                   (9) 

 
By applying the inverse operator, 1L-  to both sides of Eq. (9), we have 
 

( ) ( ) ( )1 1 1 1
0 0( ) ( ) [ ( ( )) ( ) ( ( ))].U x L u x p L f r x L u x L N U x- - - -= + - -                                        (10) 

 
Suppose that the initial approximation of Eq. (1) has the form  
 

0
0

( ) ( ),n n
n

u x a P x
¥

=

= å                                                                                                               (11) 

 
where 0 1 2, , ,a a a K  are unknown coefficients and 0 1 2( ), ( ), ( ),P x P x P x K  are specific functions 
depending on the problem. Now by substituting (8) and (11) into the Equation (10), we get 
 

( )1 1 1 1

0 0 0 0

( ) ( ) ( ( )) ( ) ( )n n
n n n n n n

n n n n

p U x L a P x p L f r x L a P x L N p U x
¥ ¥ ¥ ¥

- - - -

= = = =

æ ö é æ ö æ öù÷ ÷ ÷ç ç ç= + - -ê ú÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øê úë û
å å å å .    (12) 

 
Comparing coefficients of terms with identical powers of p , leads to 
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( ) ( )

0 1
0

0

1 1 1 1
1 0

0

2 1
2 0 1

3 1
2 0 1 2

1
0 1 2 1

: ( ) ( ) ,

: ( ) ( ( )) ( ) ( ) ,

: ( ) ( ( ), ( )),

: ( ) ( ( ), ( ), ( )),

: ( ) ( ( ), ( ), ( ), , ( ))

n n
n

n n
n

j
j j

p U x L a P x

p U x L f r x L a P x L N U x

p U x L N U x U x

p U x L N U x U x U x

p U x L N U x U x U x U x

¥
-

=
¥

- - -

=

-

-

-
-

æ ö÷ç= ÷ç ÷çè ø

æ ö÷ç= - -÷ç ÷çè ø

= -

= -

= -

å

å

M

K

M

                                              (13) 

 
Now if we solve these equations in such a way that 1( ) 0U x = , then Equation (13) results 
in 2 3( ) ( ) 0U x U x= = =L . Therefore the exact solution may be obtained as follows: 
 

1
0

0

( ) ( ) ( ) .n n
n

u x U x L a P x
¥

-

=

æ ö÷ç= = ÷ç ÷çè øå  

 
It is worthwhile to mention that if ( ( ))f r x  and 0( )u x  are analytic at 0x x= , then their Taylor 
series defined as  
 

0 0 0
0 0

( ) ( ) , ( ( )) ( ) ,n n
n n

n n

u x a x x f r x a x x
¥ ¥

*

= =

= - = -å å  

 
can be used in Equation (12), where 0 1 2, , ,a a a* * * K  are known coefficients and 0 1 2, , ,a a a K  are 
unknown ones, which must be computed.  To show the capability of the method, we apply the 
NHPM to some examples in the next section. 
 
 
3.  Applications 
 
3.1. Cooling of a lumped system by combined convection and radiation 
 
Consider the following problem of the combined convective–radioactive cooling of a lumped 
system [Aziz and Na (1984)]. Let the system have volumeV , surface areaA , density r , specific 
heatc , emissivity E , and the initial temperature iT . At 0t = , the system is exposed to an 
environment with convective heat transfer with the coefficient of h  and the temperature aT . The 
system also loses heat through radiation and the effective sink temperature is sT . The 
corresponding governing equation of this cooling problem is as follows 
 

4 4d
( ) ( ) 0,

d
(0) .

a s

i

T
cV hA T T E A T T

t
T T

r s+ - + - =

=
                                                                     (14) 
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Under the transformations
i

T
T

q = , a
a

i

T
T

q = , s
s

i

T
T

q = , 
hA t
cV

t
r

=  and 
3

iE T
h
s

e = , Equation (14) 

can be written as  
 

4 4d
( ) ( ) 0,

d
(0) 1.

a s

q
q q e q q

t
q

+ - + - =

=
                                                                                          (15) 

 
For the sake of simplicity, we take 0a sq q= = . Therefore, we have 
 

4d
0,

d
(0) 1.

q
q eq

t
q

+ + =

=
                                                                                                               (16) 

 
The exact solution of above equation was found to be of the form 
 

3

3

1 1
ln

3 (1 )
eq

t
e q

+
=

+
. 

 
Expanding ( )q t , using Taylor expansion, about 0t =  gives 
 

2 2

2 3 3 4 3 2 4

4 5 3 2 5

5 1
( ) 1 ( 1 ) ( 2 )

2 2
7 1 14 85 35 77 1 35

( 8 ) ( )
2 6 3 24 3 3 24 2
341 245 91 1 455 82

( ) .
120 3 3 120 6 3

q t e t e e t

e e e t e e e e t

e e e e e t

= + - - + + +

+ - - - - + + + + +

+ - - - - - - + L

                  (17) 

 
 
 
3.1.1. New Homotopy Perturbation Method 
 
 
To solve Equation (16), by means of NHPM, we construct the following homotopy 
 

[ ] [ ]4
0(1 ) ( ) ( ) ( ) ( ) ( ) 0,p pt q t t t e t¢ ¢- Q - + Q + Q + Q =  

or  
 

[ ]4
0 0( ) ( ) ( ) ( ) ( )pt q t q t t e t¢Q = - + Q + Q                                                                            (18) 

 

Applying the inverse operator, 1

0
( )L d

t

x- = ×ò  to the both sides of the above equation, we 

obtain 
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( ) ( )[ ]4
0 0

0 0
( ) 0 ( ) ( ) ( ) ,d p d

t t

t q x x q x x e x xé ùQ = Q + - + Q + Qê úë ûò ò                                       (19) 

 
Suppose the solution of Equation (19) to have the following form 
  

2
0 1 2( ) ( ) ( ) ( ) ,p pt t t tQ = Q + Q + Q + L                                                                               (20) 

 
where ( )i tQ  are unknown functions which should be determined. Substituting Equation (20) into 
Equation (19), collecting the same powers of p , and equating each coefficient of p  to zero, 
results in 
 

( )

( ) ( )[ ]

( ) ( ) ( )[ ]

0
0 0

0

1 4
1 0 0 0

0

2 3
2 1 0 1

0

: ( ) 0 ( ) ,

: ( ) ( ) ,

: ( ) 4 ,

t

t

p d

p d

p d

t

t q x x

t q x x e x x

t x e x x x

Q = Q +

Q = - + Q + Q

Q = - Q + Q Q

ò

ò

ò
M

                                                                 (21) 

 

Assuming ( ) ( )0
0

( ) ( ), ( ) , 0 0k
n n k

n

a P Pq t t t t q
¥

=

= = Q =å , and solving the above equation for 

1( )tQ leads to the result 
 

2
1 0 0 1 0

2 3 3 4
2 1 1 0 2 0 1 2 0 3

4 2 2 5
0 2 0 1 0 4 1 3 3

1 1
( ) (1 ) ( 2 )

2 2
1 1 2 1 3 1 1

( 2 ) ( )
3 6 3 3 2 12 4
4 1 6 1 3 1 1

( )
5 5 5 5 10 5 20

a a a a

a a a a a a a a a a

a a a a a a a a a

t e t e t

e e t e e e t

e e e e e t

Q = - - + - - -

+ - - - - + - - - - -

+ - - - - - - - + L

 

 
Vanishing 1( )tQ  lets the coefficients ( 1, 2, 3, ...)na n =  to take the following values 
 

0

2
1

2 3
2

4 3 2
3

4 5 3 2
4

1 ,

4 5 1,

21 1
24 14 ,

2 2
140 308 85 1

70 ,
3 3 6 6
341 1225 455 1 2275 410

= ,
24 3 3 24 6 3

a

a

a

a

a

e

e e

e e e

e e e e

e e e e e

= - -

= + +

= - - - -

= + + + +

- - - - - -

M

 

 
Therefore, we gain the solution of Equation (16) as 
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2 2
0

2 3 3 4 3 2 4

1
( ) ( ) 1 ( 1 ) (4 5 1)

2
1 21 1 1 140 308 85 1

( 24 14 ) ( 70 )
3 2 2 4 3 3 6 6

q t t e t e e t

e e e t e e e e t

= Q = + - - + + +

+ - - - - + + + + + + L

 
and this in the limit of infinitely many terms, yields the exact solution of (17).  
 
 
3.2. Cooling of a Lumped System with Variable Specific Heat 
 
 
Consider the cooling of a lumped system [Y’aziz and Hamad (1977)] exposed to a convective 
environment at temperature aT  with convective heat transfer coefficienth  at time t = 0. Let the 
system have volumeV , surface areaA , density r , specific heat c and initial temperature iT . 
Assume that the specific heat c is a linear function temperature of the form 
 

[1 ( )]a ac c T Tb= + - ,                                                                                                          (22) 
 
herein ac  is the specific heat, at temperature aT  and b  is a constant. The cooling equation 
corresponding to this problem is  
 

( ) 0,

(0) .

a

i

dT
cV hA T T

dt
T T

r + - =

=
                                                                                                  (23) 

 

Introducing the dimensionless parameters a

i a

T T
T T

q
-

=
-

, 
hA t
cV

t
r

= , ( )aT Te b= - , Equation (23) 

can be transformed to the following equation 
 

( ) ( )
d

1 0, 0 1.
d

q
eq q q

t
+ + = =                                                                                            (24) 

 
The Taylor expansion of the exact solution of Equation (24) about 0t =  can be readily obtained 
using software Maple as 
 

32

3 5

2 4 2 3 5

7 9

( 1 2 )
( ) 1

1 2(1 ) 6(1 )

(1 8 6 ) ( 1 22 58 24 )
.

24(1 ) 120(1 )

e tt t
q t

e e e

e e t e e e t
e e

- +
= - + +

+ + +

- + - + - +
+ + +

+ +
L

                                         (25) 

 
 
3.2.1. New Homotopy Perturbation Method 
 
To solve Eq. (16), by means of NHPM, we construct the following homotopy  
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[ ] [ ]0(1 ) ( ) ( ) ( ) ( ) ( ) 0,p pt q t t t e t¢ ¢ ¢- Q - + Q + Q + QQ =  

 
or  
 

0 0( ) ( ) ( ) ( ) ( ) ( )pt q t q t t e t té ù¢ ¢Q = - + Q + Q Qê úë û                                                           (26) 

 

Applying the inverse operator, 1

0
( )L d

t

x- = ×ò  to the both sides of the above equation, we 

obtain 
 

( ) ( )[ ]0 0
0 0

( ) 0 ( ) ( ) ( ) ,d p d
t t

t q x x q x x e z xé ù¢Q = Q + - + Q + QQê úë ûò ò                                     (27) 

 
 
Suppose the solution of Equation (27) to have the following form  
 

2
0 1 2( ) ( ) ( ) ( ) ,p pt t t tQ = Q + Q + Q + L                                                                               (28) 

 
where ( )i tQ  are unknown functions which should be determined. Substituting Equation (28) into 
Equation (27), collecting the same powers of p , and equating each coefficient of p  to zero, 
results in 
 

( )

( ) ( )[ ]

( ) ( ) ( )[ ]

0
0 0

0

1
1 0 0 0 0

0

2
2 1 0 1 1 0

0

: ( ) 0 ( ) ,

: ( ) ( ) ,

: ( ) ,

t

t

p d

p d

p d

t

t q x x

t q x x e x x

t x e x e x x

Q = Q +

¢Q = - + Q + Q Q

¢ ¢Q = - Q + Q Q + Q Q

ò

ò

ò
M

                                                      (29) 

 

Assuming ( ) ( )0
0

( ) ( ), ( ) , 0 0k
n n k

n

a P Pq t t t t q
¥

=

= = Q =å , and solving the above equation for 1( )tQ  

leads to the result 
 

2 2
1 0 0 1 1 0 0

3 2 4
2 0 1 2 1 3 3 1 2 0 2

5
3 4 0 3 1 2 4

1
( ) (1 ) ( )

2
1 1 1 1 1 1 1 1 1

( ) ( )
3 2 3 6 4 4 8 12 3
1 1 1 1 1

( )
20 5 4 6 5

a a a a a a

a a a a a a a a a a a

a a a a a a a

t e t e e t

e e t e e e t

e e e t

Q = - - - + + +

- + + + - + + + +

- + + + + + L

 

 
 
Vanishing 1( )tQ  lets the coefficients ( 1, 2, 3, ...)na n =  to take the following values 
 

2 2 3

0 1 2 3 43 5 7 9

1 1 1 2 1 8 6 1 22 58 24
, , , , = ,

1 (1 ) 2(1 ) 6(1 ) 24(1 )
a a a a a

e e e e e e
e e e e e

- + - + - + - +
= - = = =

+ + + + +
L  
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Therefore, we gain the solution of Equation (24) as 
 

2

0 3

3 2 4 2 3 5

5 7 9

( ) ( ) 1
1 2(1 )

( 1 2 ) (1 8 6 ) ( 1 22 58 24 )
,

6(1 ) 24(1 ) 120(1 )

t t
q t t

e e
e t e e t e e e t

e e e

= Q = - +
+ +

- + - + - + - +
+ + + +

+ + +
L

 

 
which is exactly the same as the exact solution given by Equation (25). Figure 1 illustrates the 
variation of the obtained solution of Equation (24) over t for two values of e .  
 

 
Figure 1. Variation of ( )q t  over t for the second example. 

 
 
4.  Conclusion 
 
A new homotopy perturbation method (NHPM) is successful in solving two nonlinear 
differential equations arising in heat transfer problems. In the HPM and VIM [Ganji and Sadighi 
(2007), Ganji (2006)], we reach a set of recurrent differential equations, which must be solved 
consecutively to give only an approximate solution of the problem. Further computations may be 
necessary for higher orders of approximation with a greater degree of accuracy. The new 
homotopy perturbation method, however, the level of accuracy attained in the first approximate 
solution 1( )tQ  is respectfully high. [The computations corresponding to the examples have been 
performed using Maple 10.] 
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