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Abstract 

The flow of blood through a narrow catheterized artery with an overlapping stenosis has been 
investigated. To account for the presence of red cells, blood has been represented by a 
macroscopic two-phase model (i.e., a suspension of erythrocytes in plasma). The expression for 
the flow characteristics-the flow rate, the impedance (resistance to flow), the wall shear stress in 
the stenotic region, the shear stresses at the stenosis two throats and at critical height of the 
stenosis, has been derived. It is found that the impedance increases with the catheter size, with 
the hematocrit and also with the stenosis size (height and length).  A significant increase in the 
magnitude of the impedance and other flow characteristics occur even for a small increase in the 
catheter size. Variations in the magnitude of all the flow characteristics are observed to be 
similar in nature with respect to any parameter given. 
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1.   Introduction 
 

The cardiovascular disease stenosis or arteriosclerosis, responsible for deaths in many of the 
cases, is a medical term which means narrowing of anybody passage, tube or orifice. It is an 
unnatural and abnormal growth in the arterial wall thickness that develops under diseased 
conditions, and occasionally results into serious consequences (Srivastava, 1996). Although the 
root causes of the disease are not well known, it is established that once an obstruction has 
developed, it results into significant changes in blood flow, pressure distribution, wall shear 
stress and the impedance (flow resistance). The possibility that the hemodynamic factors play an 
important role in the genesis and proliferation of the disease, since the first investigation of Mann 
et al. (1938), this area of knowledge has attracted the attention of early investigators (Young, 
1968; Young and Tsai, 1973; Deshpande et al., 1976; Caro et al., 1978; Ahmed and Giddens, 
1983; etc.). An account of the most of the theoretical and experimental investigations, reported 
so far, may be had found in Young (1979), Srivastava (1996), Sarkar and Jayraman (1998), 
Misra and Verma (2007), Mekheimer and Kot (2008), Srivastava and coworkers, (2009, 
2010a,b,c),  etc. 
 
Being a suspension of corpuscles, at low shear rates blood behaves like a non-Newtonian fluid 
(Srivastava and Srivastava, 1983). It is well known from the investigations of Haynes (1960) and 
Cokelet et al. (1972) that blood can no longer be treated as single-phase homogeneous viscous 
fluid while flowing through narrow arteries (of diameter1000μm). Srivastava and Srivastava 
(1983) observed that the individuality of red cells (of diameter 8μm) is important even in such 
large vessels of diameter up to 100 cells diameter. Thus, for an accurate description of flow 
requires the consideration of erythrocytes (red cells) as discrete particles in small blood vessels 
(Skalak, 1972; Srivastava, 2007). 
 
In modern medicine, the use of catheters is of immense importance and has become a standard 
tool for diagnosis and treatment. When a catheter is inserted into the stenosed artery, the further 
increased impedance (resistance to flow) and shear stress will alter the flow field. Recently, 
Srivastava and Srivastava (2009) have presented a brief review of the literature on artery 
catheterization with and without stenosis. A survey of the literature on stenotic development 
indicates that most of the studies in the literature are mainly concerned with single symmetric or 
non-symmetric stenoses. In a realistic situation, however, the constrictions may develop in series 
(multiple stenoses), may be of irregular shapes, overlapping, composite in nature, etc. Assuming 
the pressure variation only along the axis of the tube, Chakravarty and Mandal (1994) studied 
analytically the effects of an overlapping stenosis on arterial flow problem of blood. Layek et al. 
(2009) investigated the effects of an overlapping stenosis on flow characteristics considering the 
pressure variation in both the radial and axial directions of the arterial segment under 
consideration and most recently Srivastava et al. (2010b) addressed the problem of blood flow 
through an overlapping stenosis assuming that the flowing blood is represented by a two-layered 
macroscopic two-phase model (Srivastava, 2007). An effort is made in the present investigation 
to explore the effects of the inserted catheter in an artery with overlapping stenosis assuming that 
the flowing blood is represented by a macroscopic two-phase model (i.e., a suspension of 
erythrocytes in plasma). The wall in the vicinity of the stenosis is usually relatively solid when it 
develops in the living vasculature.  
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2.   Formulation of the Problem 

Consider the axisymmetric flow of blood through a catheterized artery with an overlapping 
stenosis. The artery is assumed to be a rigid circular tube of radius R0 and the catheter as a 
coaxial rigid tube of radius Rc. The artery length is considered large enough as compared to its 
radius so that the entrance, end and special wall effects can be neglected.                        
The geometry of the stenosis, assumed to be manifested in the arterial segment is described 
(Chakravarty and Mandal, 1994; Layek et al., 2009; Srivastava, et al., 2010b) in Fig. 1 as  
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where R (z) is the radius of the tube with stenosis, 0L  is the length of the stenosis and d indicates 

its location,  is the maximum height of the stenosis into the lumen, appears at  
 

              
        Figure 1.  Flow geometry of an overlapping stenosis in a catheterized artery. 
 
 
the two different locations: 0 / 6z d L   and 05 / 6z d L  . The height of the stenosis 

at 0 / 2z d L  , called critical height is3 / 4 .  

 
Blood is assumed to be represented by a macroscopic two-phase model, that is, a suspension of 
erythrocytes (red cells) in plasma. The equations describing the steady flow of a macroscopic 
two-phase model of blood may be expressed (Srivastava and Srivastava, 1983) as    
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with 2 22 /)/(/)/1( zrrrr   as Laplacian operator, r and z are the cylindrical polar 
coordinate system with z measured along the tube axis and r perpendicular to the axis of the tube. 
(uf, up) and (vf, vp) are the axial and radial components of the (fluid, particle velocity), f and p  

are the actual density of the material constituting the fluid (plasma) and the particle (erythrocyte) 
phases, respectively, (1-C) f is the fluid phase and C p is particle phase densities, C denotes 

the volume fraction density of the particles,  p is the pressure, s (C) ~ s  is the mixture viscosity 

(apparent or effective viscosity) , S is the drag coefficient of interaction for the force exerted by 
one phase on the other, and the subscripts f and p denote the quantities associated with the 
plasma (fluid) and erythrocyte (particle) phases, respectively. The pressure gradients have been 
assumed to be same for the two phases (fluid and particle) which is true in most of the practical 
situations (Drew, 1979; Srivastava and Srivastava, 1983). Other conditions are same as stated in 
Srivastava and Srivastava (2009). 

 
The expressions for the viscosity of suspension, s, and the drag coefficient of interaction, S for 
the present problem are chosen (Srivastava and Srivastava, 2009) as 
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mC
o
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,  

 

m = 0.07 exp [2.49C + (
T

1107
) exp (-1.69C)],                                                                      (9) 

where o  is the plasma viscosity, a o  is the radius of a red cell and T is measured in absolute 

temperature (oK ). 

 
To obtain the solution of equations (2)–(7) seems to be a formidable task due to the non-linearity 
of convective acceleration terms. Depending thus on the size of the stenosis (Young, 1968; 
Srivastava and Rastogi, 2010a), however, certain terms in these equations are of less importance 
than other. Considering, therefore, the case of a mild stenosis, under the conditions (Young, 
1968; Srivastava and Rastogi, 2009): ,1/ 0 R 1)/2( 0 LRe   and )1(~/2 00 OLR , equations  

(2)- (7) are simplified to 
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where Re is the tube Reynolds number. 

 

The boundary conditions are  

uf  =  0   on   r = R(z), 

uf  =  0   on   r = Rc .                                                          (12) 

 
 

3.    Analysis 

 

The expression for the velocities, uf and up obtained as the solution of equations (10) and (11) 
under the boundary conditions (12), are given as  
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The volumetric flow flux, Q is now calculated as 
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with  =8C (1-C) 2/ os RS , a non-dimensional suspension parameter and  =Rc/Ro. 

 
The pressure drop, p  (= p at z = 0, - p at z = L) across the stenosis is derived from equation (15) 
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The expressions for the impedance (flow resistance),   and wall shear stress in the stenotic 

region, wτ , the shear stress at the stenosis two throats, sτ  and the shear stress at the stenosis 

critical height, cτ   are given by 
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The closed form analytical evaluation of the second integral in the expression for   (equation 
(21)) seems to be a formidable task and thus shall be evaluated numerically whereas the 
evaluation of the first and the third integrals is straightforward. Following thus Srivastava et al. 
(2010b), one obtains the final expression for flow resistance, , wall shear stress, wτ , shearing 

stress at the stenosis throats, s  and the shear stress at the stenosis critical height, cτ  in their non-

dimensional form as 
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o  and o  are resistive impedance and wall shear stress, respectively for an uncatheterized 

normal artery (no stenosis) in the absence of the particle phase (C = 0). 
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In the absence of the catheter (i.e., under the limit 0 ), one derives the expressions 
for , wτ , s  and cτ , respectively for the flow of a macroscopic two-phase model of blood 

through an overlapping stenosis as 
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In addition, in the absence of the erythrocyte phase (i.e., C = 0), the results obtained in equations 
(24)–(26) assume the form 
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which correspond to the results obtained in Srivastava (1995) for Newtonian fluid case. 

4.    Numerical Results and Discussion 
 
To observe the influence of various parameters involved in the study, particularly, the catheter 
size and the hematocrit, computer codes are now developed to evaluate the analytical results 
obtained in equations (22)-(25) at the temperature of 370C. Parameter values are selected from 
Young (1968), Back (1994), Srivastava (1996) and Srivastava et al. (2010b) as 2ao (diameter of 
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an erythrocyte) = 8 m ; C (hematocrit) =0, 0.2, 0.4, 0.6; Ro (radius of normal artery) = 0.01 cm; 

oR/  (non-dimensional stenosis height) = 0, 0.05, 0.10, 0.15, 0.20; Lo (stenosis length, cm) =1; 

L (artery length, cm ) =1, 2, 5;   (non-dimensional catheter radius) = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6. The present study corresponds to the macroscopic two-phase model of blood flow through 
an uncatheterized artery, to the flow through a normal catheterized artery and to the flow of a 
single-phase Newtonian viscous fluid for parameter values:  0, oR/ = 0 and C=0, 

respectively.  
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The resistive impedance (resistance to flow), λ  increases with stenosis height, 0δ/R as well as 

with cell concentration, C in both the catheterized and uncatheterized arteries. It is observed that 
the presence of the catheter causes further significant increase in the magnitude of the 
impedance,  in addition to that has occurred due to the presence of the stenosis (Fig. 2), One 
notices that any small increase in the catheter size, ε causes reasonable effect on the flow 
resistance,  (Figure. 2). For any given stenosis height, 0δ/R , the impedance,  increases with 

hematocrit, C for any given catheter size, ε (Figure. 3). The magnitude of  increases with 
catheter size, ε for any given set of other parameters.  
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However, for small values of ε (2.5), the impedance, λ  increases steeply but increases rapidly 
for higher catheter size, ε and assumes a very high asymptotic magnitude for a given catheter 
size, ε depending on the stenosis height, 0δ/R (Figure. 4). The flow resistance,  seems to be 

increasing steeply with hematocrit, C for any given catheter size, ε and stenosis height, 

0δ/R (Figure.5). The impedance,  decreases with the increasing values of L which in turn 

implies that the flow resistance increases with increasing stenosis length, 0L (Fig. 6). 

                                                                                                                                           
At any point in the stenotic region the wall shear stress increases with increasing catheter size, ε 
for a given hematocrit, C and stenosis height, 0δ/R . The flow characteristic, wτ  increases rapidly 

from its approached value at 00 z/L  to its peak value at stenosis first throat at 1/6z/L0   in 

both the catheterized and uncatheterized arteries. It steeply decreases from its peak value at 

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 2, Art. 1

https://digitalcommons.pvamu.edu/aam/vol5/iss2/1



AAM: Intern. J., Vol. 05, Issue 2 (December 2010) [Previously, Vol. 05, Issue 10, pp. 1352 – 1368]                     265 
 

stenosis first throat to its magnitude at critical stenosis height (i.e., at 210 /z/L  ) and further 

increases steeply from its value at critical stenosis height to its peak value at stenosis second 
throat (i.e. at 650 /z/L  ). wτ  then decreases rapidly from its peak value at stenosis second throat 

to its approach value (i.e., at 00 z/L ) at the end point of the stenotic region (Fig.7). One notices 

that for a given catheter size, ε, the blood flow characteristics, wτ  increases with both 

hematocrit, C and stenosis height, 0δ/R  at any axial distance in the stenotic region (Figure.8).  

                 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

2

4

6

8

10

Fig.5 Impedance, versus hematocrit, C  for different 
    and /R

0
.

(0,0)

(0,.10)

(0,.15)

(.3,0)

(.3,.10)

(.3,.15)
Numbers (, /R

0
)



C

 

                   

0.00 0.05 0.10 0.15 0.20
0

1

2

3

4

5

6

L=5
L=2
L=1

Fig.6 Impedance,  versus stenosis height, /R
0
 for 

         different  and L.

0

0

0

.1

.1

.1

.3

.3

.3 C=.4
_____ 
---------
........... 
Numbers 



/R
0

 

11

Srivastava et al.: Particulate Suspension Blood Flow through a Stenosed Catheterized Artery

Published by Digital Commons @PVAMU, 2010



266                                                                                                                                                V.P. Srivastava et al. 
 

                

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

Fig.7 Wall shear stress in the stenotic region, 
w
 for 

         different .

0
.1

.2

.3

.4

.5

C=.4
/R

0
=.15

Numbers 


w

z/L
0

 

 
One observes that, wτ  assumes same magnitude at stenosis two throats (Fig.7and Fig. 8).  
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The shear stress at stenosis throats, sτ increases with stenosis height, 0δ/R , with hematocrit, C as 

well as with catheter size, ε (Fig. 9 and Fig. 10). Depending on the height of the stenosis, 0δ/R , 

the blood flow characteristics, sτ attains a very high asymptotic magnitude with increasing 

catheter size, ε (Fig. 10). The flow characteristics, cτ (shear stress at stenosis critical height 

located at 1/2z/L0  ) too increases with stenosis height, 0δ/R , the hematocrit, C and catheter 

size, ε (Fig. 11 and Fig. 12). For any given set of parameters, the magnitude of the blood flow 
characteristic, cτ assumes significantly lower value than the corresponding value of the shear 

stress at stenosis two throats (Fig. 9 and Fig. 11). An inspection of Figs. 2-6 and Figs. 9-12, 
reveals that the variations in the flow characteristics, sτ  and cτ  are similar to that of the flow 

resistance,  with respect to any parameter.  
 
The significance of the present work is well understood from the above discussion. The 
condition: oR/ <<1 limits the usefulness of the present study to very early stages of the vessel 

constriction, which allows the use of fully developed flow equations and closed form solutions. 
The use of the parameter oR/  is restricted to the value of up to 0.15 (i.e., 28% stenosis by area 

reduction) as beyond this value a separation in the flow may occur (Srivastava, 1996). The 
justifications for the use of the two-phase equations in the present work are given in Srivastava 
and Srivastava (1983) and Drew (1979), rigid wall assumption in Haynes (1960) and Bugliarello 
and Sevilla (1970) and the validity of steady flow model in (Young, 1968; Srivastava, 1995). 
These are therefore not repeated here for the sake of further discussion. 
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5.    Conclusions 

 
To estimate the effects of hematocrit on the increased impedance and other flow characteristics 
during artery catheterization in the presence of an overlapping stenosis, a macroscopic two-phase 
model for blood has been applied to discuss the flow through a catheterized artery with an 
overlapping stenosis. The impedance increases with hematocrit in both the catheterized and 
uncatheterized artery. The two-phase fluid seems to be more sensitive to the inserted catheter 
than a single-phase fluid. Depending on the size of the stenosis, the flow resistance assumes a 
very high asymptotic magnitude with increasing catheter size. One thus needs to choose the size 
of a catheter keeping the stenosis height in mind during the medical treatment. However, the 
study suggests that the catheter size should not exceed more than fifty percent of the artery size 
in any situation. The wall shear stress in the stenotic region, the shear stress at the stenosis two 
throats possess characteristics similar to that of the flow resistance with respect to any parameter 
given. It is important to note that the shear stress at stenosis two throats, assume the same 
magnitude and attains significantly higher value than its corresponding magnitude at the stenosis 
critical height. Although, the present study has been conducted under several restrictions 
including the rigid wall, steady flow and mild stenosis, one is still remarkably able to observe the 
effects of hematocrit on increased magnitude of the flow characteristics during catheterization in 
a stenosed artery. The considerations of a pulsatile flow and severe cases of stenosis remain the 
future scope of the study. Further careful investigations are suggested in order to address the 
problem more realistically and to overcome some of the restrictions imposed on the present 
investigation. 
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