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Abstract 
 
The Science of heat transfer allows us to determine the time rate of energy transfer caused by 
non equilibrium of temperatures. The importance of heat transfer in proper design of 
Automobiles has long been recognized. In this paper we determined the transient temperature 
distributions in a disc brake during a single brake application using Finite difference numerical 
technique. Hyperbolic heat conduction which includes the effect of the finite heat propagation is 
gaining importance. It is necessary to consider hyperbolic heat conduction in problems involving 
short time intervals and for very high heat fluxes. Here we considered both parabolic and 
hyperbolic heat conduction and the results are evaluated numerically, represented graphically 
and analyzed by comparing the temperature profiles corresponding to parabolic and hyperbolic 
heat conduction. 
 

  
Keywords: Heat transfer, Hyperbolic heat conduction, Temperature profile, Heat flux, 

Automobile  
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1.  Introduction 
 
Heat transfer is one of the important branches of Science and engineering, which deals with the 
mechanisms responsible for transferring energy from one place to another when a temperature 
difference exists. The science of heat transfer allows us to determine the time rate of energy 
transfer caused by non-equilibrium of temperatures. 
 
Transient heat conduction takes place in the heating or cooling of bodies, glass manufacture, 
brick burning, vulcanization of rubber, starting and stopping of various heat exchangers, power 
installations etc.  Kakac and Yener (1979), Lyknon (1972), Sachenko and Sukomel (1977), 
Balachandra et al. (1989), Blackwell (1981), Tikhe and Deshmukh (2006), Deshmuch et al. 
(2009)  and others have discussed in detail the methods of solving many important problems in 
transient heat conduction. 
 

The importance of heat transfer in the proper design of Automobiles has long been recognized.  
In this paper we determine the transient temperature distributions in a disc brake during a single 
brake application concerning to parabolic heat conduction and hyperbolic heat conduction, using 
finite difference numerical technique. We evaluated the results numerically, assuming that a car 
makes a panic stop from 150 km/h to rest in 10 seconds due to application of a sudden brake.  In 
Figure 2 and in Figure 3 we represented the variation of temperature with times when L is 0.6 
cms and 0.7 cms respectively for parabolic case. Corresponding results of hyperbolic heat 
conduction were represented in Figure 4 and in Figure 5. 
 

 
2.  Parabolic Formulation and Solution of the Problem 
 
In any four wheeler vehicle disc brakes consists of two blocks of frictional material known as 
pads which are pressed against each side of a rotating annulus, usually made of a ferrous 
material, see Figure 1. 

 
                                                             Figure 1. 
 
In a single brake application, a constant torque acts on each pad and produces a uniform disc 
deceleration. The rate of heat generation from the friction surfaces decreases linearly with time 
i.e.,  
 

(1 ),N Mt                                                                                (1) 
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where M and N are constants to be determined from the rate of evolution of heat during braking. 
Newcomb (1960) had shown that for conventional pad materials, the heat generated flows 
wholly into the brake piece and the problem can be formulated as a linear flow of heat through 
an infinite slab bounded by parallel planes x = +L and x = -L, where the thermal flux through the 
two plane boundaries decrease linearly with time. 
 
The governing heat conduction equation is 
 

 
2

2
2

.
T T

a
t x

 


 
                                                             (2) 

 
Here, a2 is the diffusivity of the brake disc and the origin is taken at the midpoint of the thickness 
of the brake disc. At the planes x =  L there is a uniformly distributed thermal flux N(1-Mt) 
together with an average loss of heat due to convention which is proportional to the temperature. 
 
The initial and boundary conditions corresponding to our problem are, 

          
( ,0) 0T x    for     0,x                                                                (3) 

       

 (1 )
T

K N Mt hT
x


  


   at    x L ,     for  all   t ,                               (4) 

 
and 
 

 (1 )
T

K N Mt hT
x


   


  at    x L  ,   for  all   t ,                           (5) 

 
where K is the thermal conductivity and h is the heat transfer coefficient. 
 
 
We obtain the solution of the problem using Finite - Difference method. Replacing the partial 
derivatives in equation (2) by finite -difference approximations, we get 
 

, 1 , 1, , 1,2
2

2

( )
i j i j i j i j i jT T T T T

a
t x 

     
  

 
 ,       

                        
i.e.,   
 

2
, 1 , 1, , 1,( 2 ),i j i j i j i j i jT T ra T T T                                             (6) 
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where 
2( )

t
r

x





    

and let 0.1.x     

 
The boundary condition at x = -L, in terms of central differences, can be written as 
 

1, 1,
,(1 ) ,

2
i j i j

i j

T T
K N M t h T

x
  

    
 

 

 
i.e.,        
 

 1, 1, ,2 (1 ) .i j i j i j

x
T T N Mt hT

K


                                    (7) 

 

Eliminating 1,i jT   from (6) and (7), we get 

 

2
, 1 , 1, , ,2 ( (1 ) ) ,i j i j i j i j i j

x
T T ra T N Mt hT T

K


 

       
 

                 

         (8) 

 
and the boundary conditions at x = L is 
 

 
1, 1,

,(1 ) ,
2

i j i j
i j

T T
K N Mt hT

x
  

   
 

 

 
 i.e.,    
 

 1, 1, ,2 (1 ) .i j i j i j

x
T T N Mt hT

K


                                            (9) 

 

Elimination of the 'fictitious' value jiT ,1  between (6) and (9) yields 

 

 2
, 1 , 1, , ,2 (1 ) .i j i j i j i j i j

x
T T ra T N Mt hT T

K


 

       
              (10) 

 
This result (10) could have been deduced from the corresponding equation at x = -L because of 
the symmetry with respect to x = 0. Choosing, r = 1/4, the difference equations (8) and (6), then, 
become 
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2

, 1 , 1,2

2
1 (1 ) ,

2i j i j i j

a x x
T h T T N Mt

a K K

 
 

         
  

                             (11)  

        i = -6,  i.e.,  at x = -L = -0.6 and  i = -7,  i.e.,  at x = -L = -0.7, 

 
2

, 1 1, , 1,2

4
( 2) ,

4i j i j i j i j

a
T T T T

a  
     
 

                                         (12) 

      i = -5, -4,-3,-2,-1, if x = -L = -0.6, and  
      i = -6, -5, -4,-3,-2,-1, if x = -L= -0.7, i.e., x ≠ -L and x ≠ 0, 

 
and the use of symmetry rather than the equation (10) gives 
 

 

2

, 1 1, ,2

2
( 1) ,

2i j i j i j

a
T T T

a 
    
 

                                                                              (13) 

            i = 0, i.e., at x = 0.                                                                                                   
 

 
3.  Hyperbolic Formulation and Solution of the Problem 
 

Transient heat transfer problems usually involve the solution of the classical Fourier heat 
conduction equation, which is of parabolic character, as a consequence, a perturbed heat signal 
propagates with an infinite velocity through the medium.  That is, if an isotropic homogeneous 
elastic continuum is subjected to a mechanical or thermal disturbance, the effect of the 
disturbance will be felt instantaneously at distances infinitely far from its source.  Such a 
behavior is physically inadmissible and contradicts the existing theories of heat transport 
mechanisms.   

It seems, therefore reasonable to modify the existing theory of heat conduction.  To remove the 
deficiencies many investigators such as Maxwell (1867), Morse and Feshbach (1953), Chester 
(1963), Gurtin and Pipkin (1968), Lebon and Lamberamont (1976), Lord and Shulman (1967), 
Nunziato (1971), Green and Lindsay (1972), have suggested some modifications. 
 
Tisza (1947) predicted the possibility of extremely small heat propagation rates (second sound) 
in liquid helium - II.  Chester (1963) discussed the possibility of existence of second sound in 
solids.  The experiments on sodium helium by Ackerman et al. (1966) and by Mc Nelly (1970) 
on sodium fluoride, have shown that second sound occurs in solids also.  The second sound 
effect indicates that wave type mechanism rather than usual diffusion process can transport heat.  
All these researches lead to the reformulation of existing Fourier heat conduction equation into a 
damped wave type equation, which is hyperbolic. 
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Morse and Feshbach (1953) postulated that the governing transient heat conduction must depend 
upon the velocity of the propagation of heat 'C'. They assumed that the following equation 
 

21 1 2 ,
2 2

T T
T

tC t 
 

  


                                                            

 
which is hyperbolic, must be the correct governing differential equation for heat conduction 
problems.  
 
In some cases, the effect of the finite speed of propagation is negligible. However this effect is 
considerable and important even at the ordinary temperature when the elapsed time during a 
transient is small. If 'C' is very large, the above equation reduces to classical Fourier heat 
conduction equation.  Ackerman and Guyer (1968) had given the estimation for ‘C’.  According 
to them it is 1/3 times the velocity of dilatational wave 'C1' which is given by 2

1 ( 2 ) /C     , 

where  and  are Lame's constants. Sharma and Siddu (1986), Sharma and Kaur (2008), 
Nowinski (1978), Chandrasekarayya (1980, 1984, and 1996) and others have done considerable 
work in this field. 
 
The governing hyperbolic heat conduction equation is 
 

2 2
2

2 2 2

1 T T T
a

C t t x

  
 

  
 .                                                                  (14) 

 
Here, a2 is the thermal diffusivity of the brake disc and C is velocity of heat propagation. 
 
At the planes x = L there is a uniformly distributed Thermal flux N (1 - M t) together with an 
average loss of heat due to convection which is proportional to the temperature. Therefore, the 
initial and boundary conditions corresponding to hyperbolic formulation are 
 

( ,0) 0T x  and   
0

0
t

T

t 





    for    0x  ,                                               (15) 

       

(1 )
T

K N Mt hT
x


  


  at    x L ,  for  all   t ,                                      (16) 

 
and 
 

        (1 )
T

K N Mt hT
x


   


  at  x L  ,  for all   t,                                 (17) 

 
where K is the thermal conductivity and h is the heat transfer coefficient. 
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We obtain the solution of the problem using Finite - difference method. Replacing partial 
derivatives in equation (14) by finite -difference approximations, we get 
 

, 1 , , 1 , 1 , 1, , 1,2
2 2 2

2 21
,

( ) ( )
i j i j i j i j i j i j i j i jT T T T T T T T

a
C t t x  

         
   

   
 

i.e., 
 

   
2 2 2 2

, 1 , 1, , 1, , 12 2 2

2 1
( 2 ) ,

1 1 1i j i j i j i j i j i j

tC r a C
T T T T T T

tC tC tC


     


    

  
  j = 1, 2, 3, ---, 399,                                

                                     
                               (18) 

where 
t

r
x




  and let  0.1.x   

 
The initial conditions at t = 0 in terms of central differences can be written as , 0i jT   and 

  

, 1 , 1
, 1 , 10, i.e., .

2
i j i j

i j i j

T T
T T

t
 

 


                          (19) 

  
Eliminating , 1i jT   from (18) and (19), we get 

 

 
2 2 2

, 1 , 1, , 1,2
2 , 0.

2i j i j i j i j i j

r a C
T T T T T j

tC      


                                                  (20) 

                                                                                            
The boundary condition at x = -L in terms of central differences, can be written as 
 

 
1, 1,

,(1 ) ,
2

i j i j
i j

T T
K N Mt hT

x
  

    
 

 

i,e., 
 

 1, 1, ,2 (1 ) .i j i j i j

x
T T N Mt hT

K


                          (21) 

 

Eliminating jiT ,1  from (18), (20) and (21), we get 

 
2 2 2

, 1 , 1, , ,2

2
{ (1 ) } ,

2i j i j i j i j i j

r a C x
T T T T N Mt hT

tC K


 

         
 

             j = 0, i.e, t = 0, i = -6 if  x = -L= -0.6 and i = -7 if  x = -L= -0.7,         (22) 
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and 
 

2 2 2 2

, 1 , 1, , ,2 2

2 2
{ (1 ) }

1 1i j i j i j i j i j

tC r a C x
T T T T N Mt hT

tC tC K

 
  

           
    

                                                                                                

                         , 12

1
,

1 i jT
t C 

  i = -6 if x = -L= -0.6 and  i = -7 if x = -L = -0.7, 

and  j = 1,2,3, ---,399,               (23)  
 

 
and the boundary condition at x = L is 
 

 
1, 1,

,(1 ) ,
2

i j i j
i j

T T
K N Mt hT

x
  

   
 

 

 
i.e., 
 

 1, 1, ,2 (1 ) .i j i j i j

x
T T N Mt hT

K


    

                     (24) 
   

Elimination of the 'fictitious' value jiT ,1  between (18), (20) and (24) yields 

 
2 2 2

, 1 , 1, , ,2

2
{ (1 ) } ,

2i j i j i j i j i j

r a C x
T T T T N Mt hT

t C K


 

                        (25) 

                              t = 0 i.e., j = 0 and i = 6 if x = L= 0.6 and i = 7 if x = L = 0.7,             
 
and 
 

  

2 2 2 2

, 1 , 1, , ,2 2

2 2
{ (1 ) }

1 1i j i j i j i j i j

t C r a C x
T T T T N Mt hT

t C t C K

 
  

           
    

               , 12

1
,

1 i jT
t C 

  i = 6 if x = L= 0.6 and  i = 7 if x = L = 0.7,  j = 1,2,3, ---,399.          

                              (26) 
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These results (25) and (26) could have been deduced from the corresponding equations at x = -L 
because of symmetry with respect to x = 0. 
 
Choosing r = 1/4, the difference equations (22), (23), (20) and (18), then become 
 

2 2 2

, 1 , 1,2 2 2

8(2 )
1 (1 ) ,

8(2 )i j i j i j

a C tC x x
T h T T N Mt

tC a C K K

  
 

           
                        

                                 j = 0, i.e., t = 0, i = -6 if  x = -L= -0.6 and i = -7 if  x = -L= -0.7.               (27) 

 
2 2 2

, 1 , 1,2 2 2

, 12

8(2 )
1 (1 )

8(1 )

1
,

1
6,if 0.6and 7,if 0.7 ,   1,2,3, ,399,            

i j i j i j

i j

a C t C x x
T h T T N Mt

t C a C K K

T
tC

i x L i x L j

  




 



           




           

 

                  (28) 
 

2 2 2

, 1 1, , 1,2 2 2

16(2 )
( 2) ,

16(2 )i j i j i j i j

a C tC
T T T T

tC a C


  

 
      

 

    i = -5, -4,-3,-2,-1 if x = -0.6 and i = -6, -5, -4,-3,-2,-1 if x = -0.7,  j = 0, i.e., t = 0         (29)             
 
and 

2 2 2

, 1 1, , 1, , 12 2 2 2

16(2 ) 1
( 2)

16(1 ) 1i j i j i j i j i j

a C t C
T T T T T

t C a C t C


    

 
       

 

       i = -5, -4,-3,-2,-1 if x = -0.6 and i = -6, -5, -4,-3,-2,-1 if x = -0.7 and j =1,2,3, …, 399,      (30) 
 
respectively, and the use of symmetry rather than the equations (25) and (26) gives 
 

 

2 2 2

, 1 1, ,2 2 2

8(2 )
1 ,

8(2 )i j i j i j

a C t C
T T T

t C a C


 

           
                              (31) 

               i = 0, i.e. x = 0 and j = 0, i.e., t = 0,                     
 
and 

2 2 2

, 1 1, , , -12 2 2 2

8(2 ) 1
1  ,

8(2 ) 1i j i j i j i j

a C t C
T T T T

t C a C t C


  

            
 

                                                            i = 0, i.e., x = 0,  j = 1,2,3, …, 399,                            (32) 
respectively. 
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4.  Numerical Evaluation 
 
 
The results obtained are evaluated corresponding to a braking from 150 kmph to rest in 10 
seconds with the following values of the parameters involved. 
                 

2 0.123a  2 / seccm ,    h = 0.0013 2/cal cm  0 c sec  

k = 0.115 cal /cm  sec 0 c ,   N = 54.2   2/cal cm  sec 

M =1/, where  is the time of a single brake application (10 seconds)    

 is density = 7.83 gm / cm3,     E is Young’s modulus = 21012 dynes / cm2 

 is Poisson's ratio = 0.3,           = 1153846  106 dynes / cm2 

 = 769230  106 dynes / cm2 


 2

1


C = 586382.9425 cm / sec 

3

C
C 1  = 338548.3496 cm / sec 

 x = 0.1 and  t = 0.0025 to determine the parabolic temperature distribution  

 x = 0.1 and  t = 0.025 to determine the hyperbolic temperature distribution 

 
Since the diffusivity of pads (nearly 2 3 210 / seca cm ) is so small compared to that of the disc 
(i.e., 2 20.123 / seca cm ), all the heat flow occurs within the disc. 
 
We analyze the results and to study the importance of hyperbolic heat conduction, we considered 
the following two cases. 
 
Case 1 
 
Here we evaluated the results by considering a brake disc of thickness 2L, where L = 0.6 cms. 
The temperature distribution at various positions and at particular times corresponding to 
parabolic heat conduction are shown in Table 1, while the corresponding results concerning to 
hyperbolic heat conduction are shown in Table 2.  Also we represented these results graphically 
in Figures 2 and 4. 
 
Case 2  
 
Here, we evaluated the results corresponding to break disc of thickness 2L, where L is 0.7cms to 
study the effect of the size of the disc on the surface temperatures. The temperature distribution 
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at various positions and at particular times corresponding to parabolic heat conduction are shown 
in Table 3, corresponding results of hyperbolic heat conduction are shown in Table 4. These 
results were also shown graphically in Figures 3 and 5. 
 
From the figures, it can be observed that temperature will go on decrease as we move away from 
the surface plane x = L and x = -L of the disc towards the plane of symmetry x = 0 of the disc.  It 
is also observed that the maximum temperature is at the points on the surface plane x = L and x = 
-L of the disc and it is minimum at the points on plane x = 0 of the disc, which is in full 
agreement with the physical nature of the problem. Also we can observe that after 10 seconds, 
there won't be any variation in the temperature and the temperature distribution will be uniform 
throughout the disc. 
 
By comparing the temperature distributions corresponding to parabolic and hyperbolic heat 
conduction, we can observe that at points on the surface of the disc, the hyperbolic temperatures 
are greater than that of parabolic temperatures, while at the points nearer to the plane of 
symmetry x = 0 of the disc, the hyperbolic temperatures are less than that of the parabolic 
temperatures. This is due to the finiteness of heat propagation velocity in hyperbolic heat 
conduction. The results corresponding to hyperbolic heat conduction are more general and 
accurate. 
 
It is also observed that after application of the sudden brakes, as time goes on, the maximum 
temperature at the points on the surface of the disc of thickness 2L, where L is 0.6 cms are higher 
than that of the maximum temperatures at the corresponding points on the surface of the disc of 
thickness 2L, where L is 0.7 cms.  Therefore, while designing the brake disc, care must be taken 
regarding the size of the disc, so that it can bear the maximum temperatures that will occur at the 
points on the surface of the disc due to high friction when brakes are applied suddenly. 

 
Table 1. Parabolic Temperature Distribution when L = 0.6 cms 

 
 

 

 
i =  -6 

x = -0.6 
i = -5 

x = -0.5 
i = -4 

x = -0.4 
i = -3 

x = -0.3 
i = -2 

x = -0.2 
i = -1 

x = -0.1 
i = -0 

x = -0.0 

 
t = 0.2 

 
t = 1 

 
t = 2 

 
t = 3 

 
t = 4 

 
t = 5 

 
t = 6 

 
t = 8 

 
t = 10 

 

 
80.1604 

 
175.0457 

 
249.1454 

 
311.3962 

 
363.7836 

 
406.4073 

 
439.2935 

 
475.961 

 
473.9897 

 

42.4043 
 

136.2878 
 

214.5144 
 

281.1507 
 

337.9218 
 

384.9175 
 

422.1645 
 

467.5184 
 

474.1873 

19.7725 
 

104.6497 
 

185.7121 
 

255.9183 
 

316.2763 
 

366.8506 
 

407.6667 
 

460.1301 
 

473.8711 

8.1159 
 

80.2102 
 

163.0237 
 

235.9906 
 

299.1388 
 

352.497 
 

396.0898 
 

454.0847 
 

473.3278 

2.9518 
 

62.9037 
 

146.6662 
 

221.5945 
 

286.7356 
 

342.0827 
 

387.6594 
 

449.6064 
 

472.7804 

1.0104 
 

52.5996 
 

136.7919 
 

212.8922 
 

279.2292 
 

335.7694 
 

382.5368 
 

446.8552 
 

472.388 

0.5381 
 

49.1802 
 

133.4906 
 

209.9806 
 

276.7162 
 

333.6543 
 

380.8186 
 

445.9274 
 

472.2465 

11

Reddy and Murthy: Temperature Profiles in a Disc Brake

Published by Digital Commons @PVAMU, 2010



250                                                                                                                        Reddy and Murthy 
 

                                                                                                          
 

 
 

Table 3. Parabolic Temperature Distribution when L = 0.7 cms 

 
 
 
 

 
 

Table 2. Hyperbolic Temperature Distribution when L = 0.6 cms 

 
i =  -6 

x = -0.6 
i = -5 

x = -0.5 
i = -4 

x = -0.4 
i = -3 

x = -0.3 
i = -2 

x = -0.2 
i = -1 

x = -0.1 
i = -0 

x = -0.0 

 
t = 0.2 

 
t = 1 

 
t = 2 

 
t = 3 

 
t = 4 

 
t = 5 

 
t = 6 

 
t = 8 

 
t = 10 

 

 
81.3262 

 
175.0956 

 
248.9376 

 
311.1852 

 
363.6025 

 
406.2677 

 
439.2051 

 
475.9865 

 
474.1259 

 

43.2605 
 

136.3721 
 

214. 3626 
 

280.9879 
 

337.7805 
 

384 8112 
 

422.1039 
 

467.5657 
 

474.3455 

19.8759 
 

104.694 
 

185.6028 
 

255.7957 
 

316.1687 
 

366.7721 
 

407.6294 
 

460.1957 
 

474.0471 

7.6612 
 

80.1659 
 

162.9441 
 

235.8999 
 

299.0579 
 

352.4408 
 

396.0712 
 

454.1646 
 

473.5175 

2.3816 
 

62.758 
 

146.6058 
 

221.5268 
 

286.6743 
 

342.0429 
 

387.6545 
 

449.6964 
 

472.9798 

0.5696 
 

52.3752 
 

136.7419 
 

212.8383 
 

279.1794 
 

335.7396 
 

382.5401 
 

446.9515 
 

472.5934 

0.1805 
 

48.9265 
 

133.4438 
 

209.9314 
 

276.6703 
 

333.6277 
 

380.8245 
 

446.0258 
 

472.454 

 
i =  -7 

x = -0.7 
i =  -6 

x = -0.6 
i = -5 

x = -0.5 
i = -4 

x = -0.4 
i = -3 

x = -0.3 
i = -2 

x = -0.2 
i = -1 

x = -0.1 
i = -0 

x = -0.0 

 
t = 0.2 

 
t = 1 

 
t = 2 

 
t = 3 

 
t = 4 

 
t = 5 

 
t = 6 

 
t = 7 

 
t = 10 

 

80.1604 
 

173.3239 
 

237.6756 
 

288.5543 
 

330.6314 
 

364.3279 
 

389.6976 
 

406.7623 
 

408.3163 

 
42.4042 

 
134.3094 

 
202.5635 

 
257.8335 

 
304.3348 

 
342.4492 

 
372.227 

 
393.6897 

 
408.3779 

 

19.7719 
 

101.8686 
 

172.3438 
 

231.2374 
 

281.4756 
 

323.3289 
 

356.838 
 

382.0235 
 

407.8294 

8.1127 
 

75.9717 
 

147.2933 
 

209.0686 
 

262.358 
 

307.2707 
 

343.8335 
 

372.0659 
 

406.9709 

2.9366 
 

56.3835 
 

127.6204 
 

191.5733 
 

247.2308 
 

294.5232 
 

333.4617 
 

364.0645 
 

406.0483 

0.9448 
 

42.7600 
 

113.4732 
 

178.9416 
 

236.2875 
 

285.2797 
 

325.9154 
 

358.2116 
 

405.2527 

0.2849 
 

34.7553 
 

104.9487 
 

171.3087 
 

229.6663 
 

279.6783 
 

321.3325 
 

354.6449 
 

404.7207 

0.1378 
 

32.1177 
 

102.1014 
 

168.7555 
 

227.4500 
 

277.8020 
 

319.7957 
 

353.4468 
 

404.5342 
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Figure 2. The parabolic temperature distribution with distance for 
different times when l= 0.6 cms 

 

 
 
 

Table 4. Hyperbolic Temperature Distribution when L = 0.7 cms 
 

i =  -7 
x = -0.7 

i =  -6 
x = -0.6 

i = -5 
x = -0.5 

i = -4 
x = -0.4 

i = -3 
x = -0.3 

i = -2 
x = -0.2 

i = -1 
x = -0.1 

i = -0 
x = -0.0 

 
t = 0.2 

 
t = 1 

 
t = 2 

 
t = 3 

 
t = 4 

 
t = 5 

 
t = 6 

 
t = 7 

 
t = 10 

 

 
81.3262 

 
173.5068 

 
237.5028 

 
288.3293 

 
330.4171 

 
364.1387 

 
389.5392 

 
406.6374 

 
408.2834 

 

 
43.2605 

 
134.5222 

 
202.4449 

 
257.6603 

 
304.1662 

 
342.3002 

 
372.1046 

 
393.598 

 
408.3776 

 

 
19.8759 

 
102.0258 

 
172.2589 

 
231.1076 

 
281.3465 

 
323.2147 

 
356.7467 

 
381.9603 

 
407.8565 

 

7.6612 
 

76.0109 
 

147.2249 
 

208.9735 
 

262.2616 
 

307.1855 
 

343.7681 
 

372.0263 
 

407.0204 

2.3816 
 

56.2758 
 

127.5560 
 

191.5045 
 

247.1602 
 

294.4608 
 

333.4166 
 

364.0434 
 

406.1151 

0.5621 
 

42.5132 
 

113.4062 
 

178.8912 
 

236.2355 
 

285.2338 
 

325.8849 
 

358.2039 
 

405.3318 

0.0902 
 

34.4101 
 

104.8778 
 

171.2692 
 

229.6254 
 

279.6424 
 

321.3109 
 

354.6452 
 

404.8072 

0.0150 
 

31.7369 
 

102.0287 
 

168.7195 
 

227.4129 
 

277.7694 
 

319.7770 
 

353.4498 
 

404.6232 
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Figure 3. The parabolic temperature distribution with distance for 
different times when l = 0.7 cms 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The hyperbolic temprerature distribution with distance 
for different times when L = 0.6 cms 
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Figure 5. The hyperbolic temperature distribution with distance 
for different times when l = 0.7 cms 
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