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Abstract 
 
An algorithm has been developed for finding a number of eigenvalues close to a given shift and 
in interval [ ,Lb Ub ] of a large unsymmetric matrix pair. The algorithm is based on the shift-and-
invert Arnoldi with a block matrix method. The block matrix method is simple and it uses for 
obtaining the inverse matrix. This algorithm also accelerates the shift-and-invert Arnoldi 
Algorithm by selecting a suitable shift.  We call this algorithm Block Shift-and-Invert or BSI. 
Numerical examples are presented and a comparison has been  shown  with  the  results  obtained  
by  Sptarn  Algorithm  in  Matlab. The results show that the method works well. 
 

Keywords: Eigenvalue, Shift-and-Invert, Arnoldi method, Inverse, Block matrix, LDV    
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1.   Introduction 
 
The eigenvalue problem is one of the most important subjects in Applied Sciences and 
Engineering. So this encouraged scientists into gaining new methods for this problem. For 
standard problems, powerful tools are available such as QR, Lanczos, Arnoldi Algorithm and 
etc. see Datta (1992) and Saad (1994). Computing the eigenvalues of the generalized eigenvalue 
problem ( BxAx  ) is one of the most important topics in numerical linear algebra. 
 
The shift-and-invert Arnoldi method has been popularly used for computing a number of 
eigenvalues close to a given shift and/or the associated eigenvectors of a large unsymmetric 
matrix pair ( BxAx  ). 
 
We consider the large unsymmetric generalized eigenproblem 
 

i i iA B   ,                  (*) 

 
where A  and B  are nn  large matrices. An obvious approach is to transform (*) to a standard 
eigenproblem by inverting either A or B but if A or B are singular or ill-conditioned this manner 
will not work well. We are interested in computing some interior eigenvalues of ( BA, ) in the 
complex plane or some eigenvalues that are situated in the interval [ UbLb, ]. We will describe 
this problem and show a new method for solving this problem. 
 
One of the most commonly used techniques for this kind of problem is the shift-and-invert 
Arnoldi method Jia and Zhang (2002), which is a natural generalization of the shift-and-invert 
Lanczos method for the symmetric case Ericsson and Ruhe (1980). 
 
When BA    is invertible for , the eigenvectors of the matrix pair ( BA, ) are the same as 

those of the matrix BBA 1)(  . Therefore, we can run the Arnoldi method on the 

matrix BBA 1)(  . If the shift   is suitably selected, we set BBAC 1)(    so the Arnoldi 
method applied to the eigenproblem of the shift- and- invert matrixC . It may give a much faster 
convergence with eigenvalues in interval including shift . Instead of a fixed or constant shift , 
Ruhe provided an effective technique Ruhe (1994) for selecting the shift  dynamically, also can 
see Saberi and Shams (2005). 
 
The shift-and-invert can be used when both A and B  are singular or near singular. Since the 
shift-and-invert Arnoldi method for problem (*) is mathematically equivalent to the Arnoldi 
method for solving the transformed eigenproblem, the former has the same convergence problem 
as the latter; it is described in Section 2. This motivates us to derive a Block Shift-and-Invert 
Algorithm and to develop corresponding more efficient algorithms. In section 3, we will discuss 
on Block Shift-and-Invert Algorithm by block matrix and LDV decomposition. Then, we try to 
find eigenvalues for system ii BA   in interval [lb, ub] by selecting a suitable shift. Section 4 

describes Sptarn function in Matlab and some properties of it. Section 5 reports several 
numerical examples and compares Block Shift-and-Invert Algorithm with Sptarn Algorithm. 
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2.  Shift-and-Invert   
 
We start this section with a definition in generalized eigenvalue problem iii BA    and then 

describe shift-and-invert method. 
 
Definition 2.1:   
 
In the generalized eigenvalue problem )( iii BA   , the matrix ( BA  ) is called a matrix 

pencil. It is conveniently denoted by ( BA, ). The pair ( BA, ) is called regular if )det( BA   is 
not identically zero; otherwise, it is called singular.  
 
We would like to construct linearly transformed pairs that have the same eigenvalues or 
eigenvectors as ( BA, ) and such that one of the two matrices in the pair is nonsingular. We have 
a theorem, see Golub and Van Loan (1989), Saad (1988) that shows when the pair ( BA, ) is a 

regular pair, then there are two scalars ** ,  such that the matrix BA **    is nonsingular. 
 
When one of the components of the pair ( BA, ) is nonsingular, there are simple ways that 

generalized problem transfer to a standard problem. For example iiiiii ABBA   1  

or iiiBA  1 , or when BA,  are both Hermitian and, in addition B  is positive definite, we 

have TLLB   (Cholesky factorization)   iii
TALL  1 . None of the above transformations 

can be used when both A  and B  are singular. In this particular situation, a shift can help for 
solving the equation. 
 
 
2.1. Reduction to Standard Form 
 
We know that for any pair of scalars 21 ,  the pair ( ABBA 21 ,   ) has the same 

eigenvectors as the original pair ( BA, ) in BxAx    or BxAx



 . An eigenvalue (  , ) of 

the transformed matrix pair is related to an eigenvalue pair (  , ) of the original matrix pair 

by 1     ,   2 . 

 
Shift-and-invert for the generalized problems corresponds through two matrices (A, B), typically 
the first. Thus, the shift-and-invert pair would be as follows: 
 

))()(,( 2
1

1 ABBAI    . 
 

The most common choice is 02   and 1 which is close to an eigenvalue of the original matrix 
Saad (1992). 
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2.2. The Shift- and- Invert Arnoldi Method 
 
 If the matrix BA   is invertible for some shift , the eigenproblem (*) can be transformed into 
the standard eigenproblem 
  

i i iA B   .                 (1) 

 

i i i i iA B B B         . 

11
( ) ( ) ( )i i i i i

i

A B B A B B       
 

     


. 

 
Hence, 
 

i i iC   ,                 (2) 

 

where 






i

i

1
. 

 
It is easy to verify that ( ii  , ) is an eigenpair of problem (*) if and only if ( ii  , ) is an 

eigenpair of the matrixC . Therefore, the shift- and- invert Arnoldi method for the eigenproblem 
(1) is mathematically equivalent to the standard Arnoldi method for the transformed 
eigenproblem (2). It starts with a given unit length vector 1  (usually chosen randomly) and 

builds up an orthonormal basis mV  for the krylov subspace ),( 1vckm  by means of the Gram- 

Schmidt orthogonalization process. 
 
In finite precision, reorthogonalization is performed whenever same sever cancellation occurs Jia 
and Zhang (2002), Saad (1988). Then the approximate eigenpairs for the transformed 
eigenproblem (2) can be extracted from ),( 1vckm . The approximate solutions for problem (1) can 

be recovered from these approximate eigenpairs. The shift- and- invert Arnoldi process can be 
written in matrix form 
  

1 *
1, 1( ) ,m m m m m m mA B BV V H h v e 
                  (3) 

 
and 
 

1( ) ,m m mA B BV V H                   (4) 

 
where me  is the thm coordinate vector of dimension m , ),,,(),( 12111   mmmm vvvvVV   is an 

)1(  mn  matrix whose columns form an orthonormal basis of the )1( m  dimensional krylov 

subspace 1 1( , )mk c  , and mH
~

 is the mm  )1(  upper Hessenberg matrix that is same as mH  

expect for an additional row in which the only nonzero entry is mmh ,1  in the position ( mm ,1 ). 
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Suppose that  
 

miyii ,,2,1,)~,
~

(    

 
are the eigenpairs of the matrix mH .  Then,                              

 

m i i iH y y   ,                 (5) 

 
and 

 
1

i
i

 


 
  and .i m iV y                 (6) 

 

When the shift-and-invert Arnoldi method uses ( ii  ~,
~

) to approximate the eigenpairs ( ii  , ) of 

the problem (1), the i
~

and i
~  are called the Ritz values and the Ritz vectors of A  with respect 

to 1( , )mk c  . For details, refer to Ericsson and Ruhe (1980). 

 
Defining the corresponding residual 
 

( )i i ir A B     .                 (7) 

 
Then, we have the following theorem: 
 
Theorem 2.1:   
 

The residuals ir
~  corresponding to the approximate eigenpairs ( ii  ~,

~
) by the shift-and-invert 

Arnoldi method satisfy:  
 

*
1,i m m i m ir h A B e y                       (8) 

 
 
Proof:  
 
From relations (3), (4) and (6), we obtain  
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1

1

1

*
1,

( ) ( ) (( ) ( ) )

( )( ( )( ) )

( )(( ) )

( )

.

i i i i m i i m i

i m i

i i m i

i m m i i i

m m i m i

r A B A B V y A B B V y

A B I A B B V y

A B A B B I V y

A B V H I y

h A B e y

     

   

    

   

  









       

    

    

   

  

     

 

  

   

 

 

 
 
3.   A Technique for Computing Eigenvalues ( iii BA   ) 

 
Below, we try to show the inverse matrix by LDV decomposition and block matrix. Then by 
selecting a suitable shift we try to find eigenvalues for ii BA    in special interval [Lb,ub].  

 
In the last section, we described that the shift-and-invert Arnoldi method for the eigenproblem 

i i iA B    is mathematically equivalent to   the standard   Arnoldi   method for the transformed 

eigenproblem   
 

11
( ) ( ) ( )i i i i i i i i

i

A B B A B B C          
 

       


,  

 
or 
 

1 1
( ) , ,i i i i i i i

i

A B A B B       
 

    


 

 
where   is a shift. For computing 1)(  BA  , we can use block matrix method as follows:   
 
In this method the matrix divided in blockblock  22  matrix and by applying LDV 
decomposition, Datta (1994) the inverse is computed  
 

1

1

1
1 1 1 1 1

1
1 1 1 1 1

1
1 1 1 1 1

1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 11

1 1 1 11
1 1 1 1 1 1

0 0
( )

0 0

( )

0 0
.

0 0

A B I A I A B
M A B M

C D C A I S I

S D C A B

A I A A B S C A A B SI A B
M

C A I S C A SI S








      


   

      
          

       
 

        
              

 

 
 
We can show that if the inverse of M  exists, then the matrices 1A and 1S are invertible. In fact, 

by this decomposition instead of finding 1M  we compute the inverse of L, D, and V, which is 
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much easier and faster than finding the inverse of M directly.  In Matlab “inv” function (it 
calculates inverse matrix) requires 32n operations for a matrix with dimension n but we can see 
block inverse needs only 3n operations. When we can find 1M set BMC 1  and Arnoldi 
Algorithm can be used for solving iiiC   . 

 

We choose
21

UbLb 
 . If )( 1BAM   is not invertible we set 1Ub  and 

22

UbLb 
 . 

So, we bisect the interval [Lb, ub] to find a suitable shift. 
 
 
Algorithm (Block Shift-and-Invert [BSI]): 
 
 Step 1: Input UbLbBA ,,, ; 
 
 Step 2: While ( )Lb Ub  do 

                  (a) BAM
UbLb  


 ,

2
; 

                  (b) If M  is singular 
                         Ub ; 
                         go to (a) ; 
                      Else go to the next step; 
 
Step 3:  Use Block Inverse method for computing 1M , 
 

1

1

1
1 1 1 1 1

1
1 1 1 1 1

1
1 1 1 1 1

1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 11

1 1 1 11
1 1 1 1 1 1

0 0
,

0 0

( ),

0 0
;

0 0

A B I A I A B
M

C D C A I S I

S D C A B

A I A A B S C A A B SI A B
M

C A I S C A SI S







      


   

      
        
       

 

        
              

 

 
 
Step 4: BMC *1 ; 
 
Step 5: Gain eigenvectors and eigenvalues ( lmV , ) of matrix C  by Arnoldi Algorithm; 
 
Step 6: For 1i  to (rank matrix) 

                     
)(

1
)ln(

ilm
i   ; 
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Step 7: For i=1 to (rank matrix) 
            
            If ( ln( )Lb i Ub  )   
                    ln( )i is the eigenvalue. 
            Else 
                 (“There are not any eigenvalues for input argument”); 
 
Step 8: Stop. 
 
 
 
4.   Sptarn  
 
In this function the Arnoldi algorithm with spectral transformation is used.  
 

),,,(],,[ UbLbBAsptarniresultlmbxv  . 
 

This command finds eigenvalues of the equation 0)(  xBA   in the interval ],[ UbLb . BA, are 
nn matrices, Lb  and  Ub   are  lower  and  upper  bounds  for   eigenvalues  to  be  sought. A 

narrower interval makes the algorithm faster. In the complex case, the real parts of lmb  are 
compared to Lb  and .Ub  x are eigenvectors, ordered so that norm 
( )(lmbdiagxvBxvA  ) is   small. lmb  is the sorted eigenvalues. 
 
If 0iresult  the algorithm   succeeded  and  all  eigenvalues  in  the  intervals  have  been  
found .  If  0iresult   the algorithm is not successful, there may be more eigenvalues, try with a 
smaller interval. Normally the algorithm stops earlier when enough eigenvalues have converged. 
The shift is chosen at a random point in the interval [ UbLb, ] when both bounds are finite. The 
number of steps in the Arnoldi run depends on how many eigenvalues there are in the interval. 
After a stop, the algorithm restarts to find more Schur vectors in orthogonal complement to all 
those already found. When no eigenvalues are found in Lb lmb Ub   , the algorithm stops. If it 
fails again check whether the pencil may be singular.  
 
 
5.  Numerical Tests and Comparisons 
 
Sptarn Algorithm and Block Shift-and-Invert (BSI) Algorithm are tested for various matrices by 
Matlab Software. All tests are performed on a Intel(R) Celeron(R) M, CPU 1.46 GHZ Laptop, 
Matlab Version 7.5. We save eigenvalues in box [ UbLb, ] for different Matrix with different 

conditions. Sptarn Algorithm and BSI Algorithm are marked with (1) and (2), for example 1ir  

shows the value “iresult” in Sptarn function and 2ir  shows the number of eigenvalues by BSI 

Algorithm. 
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 1 2,ir ir , denote the number of eigenvalues in interval [ UbLb, ] 

 21 , tt are the CPU times in seconds 

 21 , FF  are the smallest eigenvalue in [ UbLb, ] 

 21 , EE  are  the  largest eigenvalue in [ UbLb, ] 

  “n.c” failure to compute all the desired eigenvalues 
 21 , rr  are residual ( )( BxAxnorm  ) for the smallest eigenvalue  

 
 
Example 1:  
 
We were interested in finding the eigenvalues of BxAx  . BA,  are sprandom, and 
unsymmetric matrices of different rank. Set a region [ UbLb, ] with 5 ,Lb i    and 5 .Ub i   

 
Table 1: Results of Example 1 

Dimension 1ir  2ir  1( )t s  2 ( )t s  1r  2r  1F  2F  1E  2E  

10x10 9 9 0.0514 0.0022 
 

8.7155x10-15 

 

 
4.739x10-15 

 

 
-0.1347+0i 

 

 
-0.1347+0i 

 

 
-2.750700 

 

 
-2.75070 

 
 

20x20 
 

 
19 

 

 
19 
 

 
0.0493 

 
0.0053 9.7515x10-15 

 
8.6045x10-15 

 

 
0.0262+0i 

 

 
0.0262+0i 

 

 
3.4984+0i 

 

 
3.4984+0i 

 
 

50x50 
 

 
50 

 

 
50 
 

 
0.1198 

 

 
0.0673 

 

 
9.6086x10-14 

 

 
3.6083x10-14 

 

 
-0.1509+0.0758i 

 

 
-0.1509+0.0758i 

 

 
-4.6028+0i 

 

 
-4.6028+0i 

 
 

100x100 
 

 
98 

 

 
98 
 

 
0.5520 

 
0.4170 

 
2.8376x10-13 

 

 
2.1188x10-13 

 

 
-0.029+0i 

 

 
-0.029+0i 

 

 
4.1323-4.8307i 

 

 
4.1323-4.8307i 

 
 

300x300 
 

 
-68 

 

 
290 

 

 
118.8775 

 

 
10.3623 

 

 
n.c 

 
1.1161x10-12 

 
-0.8611+0.647i 

 

 
0.0127+0.0435i 

 

n.c 
 

 
0.7588+9.8360i 

 

500x500 
 

-82 
 

 
486 

 

 
404.9588 

 

 
49.5601 

 

 
n.c 

 

 
8.8866x10-12 

 

 
-0.224+0.3783i 

 

 
0.0016+0i 

 

 
n.c 

 
-2.6521-7.3638i 

 
1000x1000 

-80 977 

     
2.7393x103

 

 

 395.7286 n.c 9.6210x10-11 -0.1023+0.6254i 0.015+0i n.c 
-3.3883-
16.8165i 

 
 
It is seen from Table 1 that BSI Algorithm is much more efficient than Sptarn Algorithm in all 
cases.  For example Sptarn Algorithm fails for some matrices such as n=300, 500, 1000. 
 
 
Example 2:  
 
In this example we assume A  to be an ill conditioned matrix such as Hilbert and B  is Identity 
matrix on region [0, 1]. 
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Table 2: Results of Example 2 

Dimension 
 

Cond A 
 

1ir  2ir  1( )t s  2 ( )t s  1r  2r  1F  2F  1E  2E  

10x10 
 

1.0625x1013 
 

9 9 0.5635 0.3804 
 

3.6456x10-16 

 

 
3.3112x10-16 

 

 
1.0930x10-13 

 

 
1.0925x10-13 

 
0.3429 0.3429 

20x20 
 

 
2.9373x1018 

19 
 

19 
 

0.1922 0.0020 1.3004x10-14 
 

5.1988x10-16 
 

 
3.3307x10-16 

 

 
3.3307x10-16 

 
0.4870 0.4870 

50x50 
 

 
2.6060x1019

 
20 
 

39 
 

0.1684 0.0070 
 

7.375x10-16 

 

 
3.1470x10-16 

 

 
5.5511x10-17 

 

 
5.5511x10-17 

 
0.6797 0.6797 

100x100 
 

 
4.2276x1019 26 

 
74 0.2485 0.0694 

 
8.9034x10-16 

 

 
3.735x10-16 

 

 
2.70756x10-17 

 

 
2.70756x10-17 

 
0.8214 0.8214 

200x200 
 

 
1.5712x1020 20 

 
125 0.1374 0.2500 

 
1.4683x10-15 

 

 
3.5940x10-16 

 
1.2934x10-14 1.2934x10-14 0.9571 0.9571 

500x500 
 

5.1045x1020 22 
 

286 0.6536 4.2190 
5.0413x10-15 

 
3.7338x10-16 

 

 
2.5535x10-15 

 

 
2.5535x10-15 

 
0.4056 0.4056 

 
1000x1000 

 
9.1197x1020 25 590 2.9654 38.0649 

5.9611x10-15 

 
1.5014x10-15 1.1102x10-16 

 
1.1102x10-16 

 
0.4925 0.4925 

 
2000x2000 

 
3.7286x1021 26 1192 17.0001 365.7796 

 
8.3289x10-15 

 
8.2702x10-16 3.1697x10-14 3.1697x10-1 0.5809 0.5809 

 
 
We can see that BSI Algorithm works better than Sptarn Algorithm for large and ill conditioned 
matrices.  For example we can compare columns 1ir  and 2ir for large matrices.  Numbers of 

eigenvalues that are gained by BSI Algorithm are more than the eigenvalues that are gained of  
Sptarn  Algorithm in  region [0, 1], for matrix with dimension 2000 Sptarn Algorithm finds only 
26 eigenvalues in region [0, 1] but BSI Algorithm finds 1192 eigenvalues in this interval. 
 
Example 3:  
 
Has been taken from Bai and Barret (1998), Consider the constant coefficient convention 
diffusion differential equation 
 

),(),(),(),(),( 321 yxuyxupyxupyxupyxu yx   

 
On a square region ]1,0[]1,0[  . With the boundary condition 0),( yxu , where 21 , pp  and 3p  

are positive constants discretization by five point finite differences on uniform nn   grid points 
using the row wise natural ordering gives a block tridiagonal matrix of the form 
 
 































TI

I

ITI

IT

A

)1(

)1(

)1()1(

)1(








  

 
with 
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



































41

1

141

14


T , 

 

where 2
321 ,)2

1(,)2
1( hphphp   and )1(

1
 nh . The order of A  is 2nN  . By 

taking 11 p , 032  pp  and B = Identity matrix, for different order on the region [5,7] we  

have Table 3.  
 

Table 3. Results of Example 3 
Dimension 1ir  2ir  1( )t s  2 ( )t s  1r  2r  1F  2F  1E  2E  

9x9 3 3 0.5072 0.1179 
 

5.9618x10-16 

 

 
4.4409x10-16 

 
5.4142 5.4142 5.4142 5.4142 

 
36x36 

 
2 12 0.0619 0.0043 2.2767x10-14 

 
1.6398x10-15 

 
5.247 5.2470 5.8019 50.8019 

100x100 30 30 0.2147 0.0204 
 

2.2828x10-15 

 

 
2.0940x10-15 

 
5.3097 5.3097 5.9190 5.9190 

 
225x225 

 
72 75 1.5919 0.2692 

5.0565x10-15 

 

 
2.5288x10-15 

 
5.1111 5.1111 5.9616 5.9616 

 
400x400 

 
95 139 9.6975 1.5786 

 
8.5051x10-15 

 
3.9222x10-15 5.4661 5.0000 5.9777 5.9777 

900x900 
 

99 300 37.7165 18.9227 
 

4.6226x10-15 

 

 
5.5997x10-15 

 
5.6415 5.0579 5.9897 5.9897 

1600x1600 61 520 157.3872 116.0561 
 

2.6665x10-15 

 
9.0427x10-15 5.0871 5.0871 5.3307 5.9941 

 
2500x2500 

 
73 834 369.7465 551.2750 

 
3.9148x10-15 

 
1.5793x10-14 5.1047 5.0000 5.2053 5.9962 

 
 
As we can see BSI Algorithm gives more eigenvalues in less time and with higher accuracy than 
Sptarn Algorithm for different matrices. 
 
 
Example 4:  
 
Has been taken from Bai and Barret (1998) Dielectric channel waveguide problems arise in 
many integrated circuit applications.  
 
Discretization of the governing Helmholtz equation for the magnetic field H  

 
2 2 2 2

2 2 2 2

( , )

( , ) .

x x x

y y y

H k n x y H H

H k n x y H H





  

  
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By finite difference leads to an unsymmetric matrix eigenvalue problem of the form 
 



































y

x

y

x

H

H

B

B

H

H

CC

CC

22

112

2221

1211  , 

 
where 11C  and 22C  are five- or- tridiagonal matrices, 12C  and 21C  are (tri-) diagonal 

matrices, 11B and 22B  are nonsingular diagonal matrices. The problem has been tested in the 
region [0, 10]. 
 

Table 4: Results of Example 4 
Dimension 1ir  2ir  1( )t s  2 ( )t s  1r  2r  1F  2F  1E  2E  

10x10 10 10 0.0504 0.0018 

 
7.7702x10-

15 

 

 
6.0311x10-15 

 

 
1.3692-

(0.0871)i 
 

 
1.36920-
(0.0871)i 

 

 
8.3760 

 
8.3760 

50x50 
 

50 50 0.0678 0.0181 
2.6101x10-

14 

 

 
1.2672x10-14 

 

 
1.0145-

(0.1702)i 
 

 
1.0145-

(0.1702)i 
 

8.9395 
 

8.9395 

100x100 
 

100 100 0.2743 0.1334 
 

5.575x10-14 

 

1.6864x10-14 
 

1.0038-
0.087i 

 

1.0038-
0.087i 

 

8.9634 
 

8.9634 

300x300 
 

n.c 300 147.1122 3.8444 
n.c 

 
2.7922x10-14 

n.c 
 

 
1.0004-
0.0294i 

 

n.c 
 

8.9708 

500x500 n.c 500 463.1583 18.5093 
n.c 

 
3.3542x10-14 

n.c 
 

 
1.0002-
0.0177i 

 

n.c 
 

8.9714 

 
 
We can see Sptarn Algorithm failed to compute the desired eigenvalues for some matrices. The 
results of this example are plotted as Figure1 and Figure2. The broken lines are shown the results 
of BSI Algorithm and connected lines are shown the results of Sptarn Algorithm.  
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6.   Conclusions 
 
In this paper, we have considered Block Shift-and-Invert (BSI) Algorithm. In this method we 
compute 11 )(   BAM  . This computation has been done by block matrix and a suitable shift. 
As we have shown that if we need all eigenvalues in interval [Lb, ub] or close to a given shift for 
singular matrix, the BSI Algorithm obtains them with very high speed and accuracy. All 
numerical examples have been compared with corresponding results from Sptarn Algorithm in 
Matlab. It has been shown that BSI results were much more efficient than Sptarn results.  
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