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Abstract 
 
In this paper, we present a comparative study of Sinc-Galerkin method and differential transform 
method to solve Sturm-Liouville eigenvalue problem. As an application, a comparison between 
the two methods for various celebrated Sturm-Liouville problems are analyzed for their 
eigenvalues and solutions. The study outlines the significant features of the two methods. The 
results show that these methods are very efficient, and can be applied to a large class of 
problems. The comparison of the methods shows that although the numerical results of these 
methods are the same, differential transform method is much easier, and more efficient than the 
Sinc-Galerkin method. 
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1.  Introduction 
 
The concept of an eigenvalue problem is rather important, both in pure and applied mathematics, 
in physical systems such as pendulums and vibrating and rotating shafts. The Sturm-Liouville 
systems arise from vibration problems in continuum mechanics. In physics, they describe 
boundary value problems corresponding to simply harmonic standing waves. A general Sturm-
Liouville problem (SLP) can be written as the following differential equation 
 

 ( )
( ) ( ) ( ) ( ) ( ) ( ), (0,1),

d dy x
L y p x r x q x y x f x x

dx dx
       

                                     (1.0.1) 

 
subject to the boundary conditions  
 

(0) 0, (1) 0,y y                                                                                                             (1.0.2) 
 
where ( ) 0, ( ) 0p x r x   and ( ) 0q x  , also, ( )p x , ( )r x , ( )q x , and ( )f x  all are continuous 
on the closed interval [0,1]. The values of the parameter   for which equation (1.0.1), together 
with appropriate boundary conditions, like (1.0.2), gives rise to non-trivial solution y, are called 
eigenvalues, while the corresponding non-trivial solutions y  are called eigenfunctions of the 
problem. It is well known that there exists an infinite number of eigenvalues for equation (1.0.1) 
together with the associated conditions (1.0.2). They are real, simple, countable, and isolated see 
Chanane (2007). 
 
In recent years there has been a considerable renewal of interest in the SLP, from the point of 
view of both mathematics and its applications to physics and engineering. For many important 
applications in science and engineering, it is required to determine the eigenvalues as well as the 
corresponding eigenfunctions. In an application involving vibration and stability of deformable 
bodies, for example, the viral piece of information required is the smallest eigenvalue Bujurke, et 
al. (2009). Engineers are often interested in the location of the smallest eigenvalue since this 
gives potentially the most visual structure of dynamical systems. The eigenvalues are also crucial 
in finding the stability region of solutions of SLP Bender and Orszag (1987). For the solution of 
SLP, some studies have been carried out. Bujurke et al. (2009) used truncated Haar wavelet 
series for the computation of eigenvalues and solutions of SLPs. The collocation method of the 
weight residual methods is investigated for the approximate computation of higher SLP Ibrahim 
(2005). Chanane (2007) has used Shannon sampling theory to compute the eigenvalues of 
regular SLP. Asymptotic formulas for eigenvalues associated with Hill’s equation have been 
studied by Guseinov and Karaca (2004). The Sinc-Galerkin method was used to approximate 
solutions of nonlinear problems involving nonlinear second, fourth, and sixth-order differential 
equation El-Gamel and Zayed (2004). The Sinc-Galerkin method was also used by Ramos 
(2005) to solve two-point boundary value problem with applications to chemical reactor theory. 
Adel and El-Gamel (2009) compared the performance of the collocation and Galerkin methods 
using Sinc bases for solving linear and nonlinear second-order two-point boundary value 
problem. 
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Differential transform method was used by Siraj-Ul et al. (2009) to find numerical solution of 
special 12th order boundary value problems with two point boundary conditions. In order to 
obtain more efficient numerical results, several ways have been devised in the last years, for 
example, see Farlow (1982), Kadakal and Mukhtarov (2007), Trim (1990) and Ugour (2006). 
 
In this paper we introduce two methods for solving (1.0.1), (1.0.2), namely, Sinc-Galerkin 
Method, and Differential Transform Method (DTM for short). DTM, which is based on Taylor 
series expansion, has been introduced by Zhou (1986) in a study about electrical circuits. It gives 
exact values of the nth derivative of an analytical function at a point in terms of known and 
unknown boundary conditions in a fast manner for more detail, see Vedat and Shaher (2007). 
Stenger (1993) originally proposed the numerical solution of ordinary differential equations with 
the Sinc-Galerkin method. Excellent expositions of the use of Sinc function to approximate 
differential equations are found in Norman et al. (1987), McArthur and Kelly (1989), and 
Stenger (1993). A basis element may be transformed to any connected subset of the real line via 
a composition with a suitable conformal map in conjunction with the Galerkin method for 
differential equations.  
 
There are several reasons to approximate by Sinc functions. First, they are easily implemented 
and give good accuracy for problems with singularities. Secondly, the most distinctive feature of 

the basis is its resulting exponential convergence rate of the error  c Ne  , where 0c   and the 

2 1N   basis functions is used to build the approximation. We should mention that the effect of 
any such singularities will appear in some form for any scheme of numerical solution rather that 
the Sinc function.  
 
Moreover, the convergence rate maintains when the solution of the differential equation has 
boundary singularities. Of equal practical significance is that the technique's implementation 
requires no modification in the presence of singularities. Specifically, the statement of the 
quadrature, the mesh definition and the resulting matrix structure depend only on the parameters 
of the differential equation whether it is singular or nonsingular. 
 
This paper is organized as follows. The Sinc solution together with the Galerkin method and the 
development of the scheme is treated in Section 2. Also we formulate an iterative procedure to 
solve (1.0.1), (1.0.2) using Differential Transform method in Section 3.  Section 4 provides 
numerical examples which demonstrate the exponential convergence of the Sinc method and 
compare its performance with DTM. 
 
 
2.  Sinc Function Approximation 
 
 
A thorough review of Sinc function properties and the general Sinc-Galerkin method can be 
found in Norman et al. (1987) and Stenger (1993). In this section, an overview of the basic 
formulation of the Sinc function required for our subsequent development is presented. 
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2.1 Sinc Function Properties 
 
The Sinc-Galerkin procedure for solving problem (1.0.1) subject to (1.0.2) begins by selecting 
composite Sinc functions appropriate to the interval (0,1) so that their translates form a basis 
functions for the expansion of the approximate solution ( )y x . In what follows, overviews of the 
properties of the Sinc function that will be used in this paper are given. The Sinc function 
(known in engineering as the band-limited function) is defined on the whole real line by 
 

sin( )
, 0,

sinc( )
1, 0.

x
x

x x
x




  
 

 

 
For 0h  , the translated Sinc functions with evenly spaced nodes are given as 
 

sin ( )
, , 0, 1, 2,...,

( , )( ) sinc
( )

1, , 0, 1, 2,....

x kh
h

x kh x kh k
S k h x

x khh
h

x kh k





                
    

 

 
If f is defined on the real line, then for 0h   the series 
 

( ) ( , )( ) ( ) ( , )( )
k

k

f x C f h x f kh S k h x




    

 
is called the Whittaker cardinal series of f whenever this series converges. 
 
 
Definition 2.1: 
 
 Let 0d   and dD denote the open strip 

 

 :| Im( ) | .dD z C z d                                                                                                 (2.1.1) 

 
 
Theorem 2.1:  
 
Stenger (1993): Let D  be a simply connected domain, and , ba D  be such thata b . Then, 

there exists a conformal map : dD D   satisfying 1( ) ( )R R    , and such that for 

z  , we have lim ( )
z a

z


   and lim ( )
z b

z


  . 
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The class of functions such that the known exponential error estimates exist for Sinc 
interpolation is denoted by ( )B D  and defined as follows: 
 
Definition 2.2:  
 
Let ( )B D  be the class of functions such that f is holomorphic on the simply connected domain 
D; 
 

( )

( ) ( ), ,
a

t L

f w dw t t
 

    

 

where  0,1a , and  :L iy y d  ; and 

 

( ; ) lim inf ( )
C D C D

C

f D f w dw
 

   , 

 
where C  is a simple closed curve in D. 
 
 
Definition 2.3:  
 
Let ( )f B D ,   be a conformal one-to-one mapping of D onto dD with inverse   and 

1( ) ( )t R R    . Then,  f
  is said to decay exponentially with respect to  ,  if there 

exist positive constants M  and   such that 
 

( )
exp( ( ) ),

( )

f t
M t t

t
 


  


.                                                                                      (2.1.2) 

 
The importance of the class ( )B D  with regard to numerical integration is summarized in the 
following theorem, whose proof can be found in Stenger (1993). 
 
Theorem 2.2:  
 
If f satisfies Definition 2.3 and ( )kz kh , then for h sufficiently small we have 

 

2 /( ) ( ; )
( ) .

( ) 1
d hk

d
k k

f z f D
f z dz h e

z e











 

   

 

Further, if  f
  decays exponentially with respect to  , and taking 2 / ( )h d N   gives 
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2 /( )
( ) .

( )

N
d hk

k N k

f z
f z dz h M e

z
 






 
                                                                             (2.1.3) 

 
 
 
2.2.  The General Sinc-Galerkin Method 
 
 
The orthogonalization of the residual in the Sinc-Galerkin method for a differential equation of 
the form 
 

u FL                                                                                                                             (2.2.1) 
 
can be treated as follows:  
 
Define the approximate solution by 
 

( ) ( ),
N

T j j
j N

y x y S x


                                                                                                       (2.2.2) 

 

where ( ) ( , ) ( )jS x S j h x  . The unknown coefficients  jy  in (2.2.2) are determined by 

orthogonalizing the residual Tu FL  with respect to the functions N

j j N
S


, which yields the 

discrete system 
 

, 0, .T ju F S N j N    L                                                                                       (2.2.3) 

 
The most direct development of the discrete system for (2.2.1) is obtained by substituting (2.2.2) 
into (2.2.3). This approach, however, obscures the analysis that is necessary for applying Sinc 
quadrature formulas (2.1.3). An alternative approach is to analyze instead 
 

, 0, ,jy F S N j N    L                                                                                         (2.2.4) 

 
where, for now, a general weight function w  is used in the inner product 
  

1

0

, ( ) ( ) ( ) .f g f x g x w x dx   

 
The discrete system resulting from (2.2.4) is the same as that arising from (2.2.3) within the 
accuracy of the method. The accurate approximation of the integrals arising from (2.2.3) is 
accomplished in the next subsection. 
 
 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 1, Art. 11

https://digitalcommons.pvamu.edu/aam/vol5/iss1/11



134                                                                                                             Alquran and Al-Khaled 
 

2.3.  The Sinc Methodology 
 
Approximations using the Sinc functions on (0,1) are obtained from corresponding 
approximations on R  via a conformal map. For a function ( )f C R  to be approximated on R, 
f must obey certain analyticity and boundedness conditions in a strip in the complex plane C, 
which contains R.  
 
Through the conformal map, we obtain a corresponding "eye-shaped" region see Figure 1.7, pp. 
68, of Stenger (1993) containing the interval (0,1). Our integrand must obey certain analyticity 
and boundedness conditions. To construct approximations on the interval (0,1), which is used in 
this paper, the eye-shaped domain in the z-plane 
 

 : arg( / (1 )) / 2ED z x iy C z z d                                                               (2.3.1) 

 

is mapped conformally onto the infinite strip dD  via ( ) ln
1

z
w z

z
      

,  and this is a 

suitable domain for the Sinc-Galerkin method for boundary value problems of the form (1.0.1). 
The basis functions on (0, 1) are taken to be the composite translated Sinc functions 
 

( )
( ) ( , ) ( ) sinc , .j E

z jh
S z S j h z z D

h

     
 

  

 
The inverse map of ( )w z  is 
 

1 exp( )
( ) ( )

1 exp( )

w
z w w

w
   

     
 

 

Thus, we may define the inverse images of the real line and of the evenly spaced nodes   j
jk




 

as 
 

 ( ) : (0,1)Et D t         

 
and, 
 

exp( )
( ) , 0, 1, 2,...

1 exp( )j

jh
x jh j

jh


 
      

, 

 
respectively. To proceed with the development of the approximate solution of equation (1.0.1), 
simplify equation (1.0.1) as 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y x x y x R x y x Q x y x F x      ,                                                 (2.3.2) 
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where ( ) ( ) / ( )x p x p x  , ( ) ( ) / ( )R x r x p x , ( ) ( ) / ( )Q x q x p x , and ( ) ( ) / ( )F x f x p x . 
The most direct development of the discrete system for equation (2.3.2) is obtained by 
substituting 
 

( ) ( )
N

T j j
j N

y x y S x


                                                                                                   (2.3.3) 

 
onto equation (2.3.2), where ( )Ty x  is the approximated solution and jy  are unknowns to be 

determined.  
 
 
Define the residual 
 

T TR u F L                                                                                                                   (2.3.4) 

 
and the weighted inner product <.,.> is taken to be  
 

1

0

, ( ) ( ) ( )f g f x g x w x dx  .                                                                                         (2.3.5) 

 
Here, ( )w x  plays the role of a weight function, which may be chosen for a variant of reasons. 
Although other reasons exist, a choice we make here is due to the requirement that the boundary 
condition vanish. For the case of second order boundary value problems, it is convenient to take 

( ) 1/ ( )w x x .  
 
A complete discussion on the choice of the weight function can be found in Norman et al. (1987) 
and Stenger (1993). Orthogonalizing the residual with respect to 
 

1

N

N

N

S

S
S

S








 

 
 
 
 
 
 



 





                                                                                                                (2.3.6) 

 
leads to the system 
 

, ( ) , ( ) , ( ) , ,T T T Ty S x y S R x y S Q x y S F S     
    

.                                  (2.3.7) 

 
For ease of notation, from now on we replace Ty by y . Following the standard Sinc-Galerkin 

method, the first term in equation (2.3.7) is integrated by parts twice and the second term once. 
Assuming the boundary conditions (0) 0 (1)y y  , equation (2.3.7) leads to 
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1 1 1

0 0 0

1 1

0 0

( )[ ] ( ) ( )[ ] ( ) ( )[ ]( )

( )[ ]( ) ( )[ ]( ) .

y x Sw x dx y x Sw x dx y x RSw x dx

y x QSw x dx y x FSw x dx

   

 

  

 

  

 
                            (2.3.8)                

 
To construct an approximate solution via the Sinc-Galerkin method, we need to evaluate the 
integrals in (2.3.8) and hence to derive a linear system, the Sinc quadrature rule (2.1.3) will be 
used (for details of the quadrature rule and conditions governing its error bounds, see Stenger 
1993). We only state that if an integral of a function ( )G x over the interval (0, 1) satisfies the 

hypothesis of the quadrature rule, then for 1( )kx kh  we have  

 

 
1

0

( )
( )

( )

N
M Nk

k N k

G x
G x dx h e

x




  
 . 

 
The Sinc-Galerkin method requires derivatives of composite Sinc functions evaluated at the 
nodes. For a one-to-one conformal mapping   of the simply connected domain ED  onto D, we 

need the following expressions required for the present work: 
 

(0)
,

1, ,

0, ,i j

i j

i j



  

                                                                                                             (2.3.9) 

 

 (1)
,

1 , ,

( ) ( 1)
, ,j

j i
i j i x x

i j
d

h S x
i jd

j i

 






     

                                                             (2.3.10) 

 
 

 

2

2
(2) 2
, 2

2

, ,
3

( )
2( 1)

, .
( )

ji j i x x j i

i j
d

h S x
d

i j
j i



 
  


   

  
 

                                                 (2.3.11) 

 
Therefore, the terms in the ith equation of (2.3.8) are approximated by 
 

1

0

(2) (1) (0)
, , ,2

( )[ ] ( )

( ) ( )1 1
( ) ( ) ( ) 2 ( ) ( ),

( ) ( )

i

N
j j

i j j j i j j j i j j
j N j j

y x S w x dx

x w x
h x w x w x w x y x

h h x x




   

 

 

   
          







 

 
while 
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1

(1) (0)
, ,

0

( ) ( )1
( )[ ] ( ) ( ) ( ) ( )

( )

N
j

i i j j j i j j
j N j

w x
y x S w x dx h x w x y x

h x


    



 
     

  . 

 
Also, 
 

1
(0)
,

0

( )
( )[ ]( ) ( ) ( )

( )

N
j

i i j j j
j N j

w x
y x RS w x dx h R x y x

x
   




  , 

 
1

(0)
,

0

( )
( )[ ]( ) ( ) ( )

( )

N
j

i i j j j
j N j

w x
y x QS w x dx h Q x y x

x
 




  , 

 
and 
 

1
(0)
,

0

( )
( )[ ]( ) ( )

( )

N
j

i i j j
j N j

w x
F x S w x dx h F x

x
 




  . 

 
The following notations will be necessary for writing down the system.  
 
Define the (2 1) (2 1)N N    matrices: 
 

( ) ( )
, , 1, 2.p p

i jI p                                                                                                        (2.3.12) 

 
For example, the matrix (2)I  is the (2 1) (2 1)N N    is the matrix whose i, jth entry is given by 
(2.3.11). 
 
Let ( )D y  be the (2 1) (2 1)N N    diagonal matrix defined by: 
 

( ) [ ( ),..., ( )]TN ND y diag y z y z , 

 
where the superscript "T " denotes the transpose of the matrix. The discretized Sinc-Galerkin 
system corresponding to (2.3.8) has the more compact matrix representation as 
 

2 1 2 1( ) ( ) ,N N

w w w
A B D R D D Q D Y D F

   

      
                 

 
                                       (2.3.13) 

 
where the matrix A can be regarded as the Sinc discretization of y  , is given by 
 

(2) (1)
2

1 1
( ) ( 2 )

w
A I D w I D w w D

h h


 

            
                                               (2.3.14) 
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and 
 

   (1)1
( )

w w
B I D w D D D D

h
 

 
                     

. 

 
With this in mind, we have arrived at the following theorem: 
 
 
 
Theorem 2.3:  
 
If the assumed approximate solution of the Sturm-Liouville eigenvalue problem (1.0.1) subject to 
the conditions in equation (1.0.2) is equation (2.3.3), then the discrete Sinc-Galerkin system for 

the determination of the unknown coefficients   , ,...,jy j N N   is given by (2.313). 

 
Now we have a linear system of 2 1N   equations of the 2 1N   unknown coefficients, namely, 

 N

j j N
y


. We can obtain the coefficient of the approximate solution by solving the linear 

system (2.3.13) by the LU  decomposition method. The solution  ,...,N NY y y


 gives the 

coefficients in the approximate Sinc-Galerkin solution ( )Ty x of ( )y x . 

 
 
3.  Differential Transform Method 
 
The differential transform technique, which was first proposed by Zhou (1986), is one of the 
numerical methods for ordinary and partial differential equations, which use the form of 
polynomials as the approximation to the exact solutions that are sufficiently differentiable. The 
differential transform technique provides an iterative procedure to obtain higher-order series 
solution. Basic definitions and operations of differential transformation are introduced as 
follows: 
 
An arbitrary function ( )y x  can be expanded in Taylor series about a point 0x   as 
 

0 0

( ) .
!

k k

k
k x

x d y
y x

k dx



 

 
  

 
                                                                                                     (3.0.1) 

 
The differential transformation of ( )y x  is defined Zhou (1986) as 
 

0

1
( ) .

!

k

k

x

d y
Y k

k dx


 
  

 
                                                                                                        (3.0.2) 
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Then, the inverse differential transform is 
 

0

( ) ( )k

k

y x x Y k




  .                                                                                                         (3.0.3) 

 
In actual application, the function ( )y x  is expressed by a finite series 
 

0

( ) ( )
n

k

k

y x x Y k


  .    

                                                                                                      (3.0.4) 
 

Table 1: Fundamental operations of differential transform method 
Original Function Transformed function 

1 2( ) ( ) ( )f x c g x c h x   1 2( ) ( ) ( )F k c G k c H k   

( ) ( )nf x g x  ( )!
( ) ( )

!

k n
F k G k n

k


   

( ) ( ) ( )f x g x h x  

1

1 1
0

( ) ( ) ( )
k

k

F k G k H k k


   

( ) nf x x  1,
( ) ( )

0,

k n
F k k n

k n



    

 

( ) sin( )f x wx    
( ) sin

! 2

kw k
F k

k

    
 

 

( ) cos( )f x wx    
( ) cos

! 2

kw k
F k

k

    
 

 

                     
 

Equation (3.0.3}) implies that 
1

( )k

k n

x Y k


 
  is negligible small. In Table 1 the fundamental 

operations related to one-dimensional problems are listed. The proofs are well known in the 
literature Ugour (2006), Zhou (1986) and will not be proven here. To solve equation (1.0.1) 
subject to the boundary conditions in (1.0.2) using DTM. Following Abdel-Halim (2002), by 
applying Differential Transformations to equation (1.0.1), and using Table 1, we obtain 
 

 
0 0

0

( 1) ( 1)( 1) ( 1) ( )( 1)( 2) ( 2)

( ) ( ) ( ) ( ),

k k

i i

k

i

i P i k i Y k i P i k i k i Y k i

R i Q i Y k i F k

 



            

   

 


    (3.0.5) 
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where the upper case symbols ( ), ( ), ( ), ( ), and ( )P k Q k R k Y k F k are used to denote the 
differential transformed function of ( ), ( ), ( ), ( ), and ( ),p x q x r x y x f x  respectively. Taking the 
differential transform of the first equation in (1.0.2) yields  
 

(0) 0Y  ,                                                                                                                         (3.0.6) 
 
while the differential transform of the second equation in (1.0.2) becomes 
 

0

( ) 0
n

k

Y k


 .                                                                                                                    (3.0.7) 

 
Putting (1)Y c  at 0k  into (3.0.5) yields 
 

(0) (1)
(2)

2 (0)

F cP
Y

P


 .                                                                                                       (3.0.8) 

 
Following the same procedure as above, we calculate the nth term ( )Y n  and substituting 

(1) ,..., ( )Y Y n  into (3.0.7) yields a polynomial of  corresponding to n  denoted by ( )nf  . 

Solving ( ) 0nf    we get , 1, 2,...i i   , as the nth  estimated eigenvalue corresponding to n . 

Substituting i  into (0), (1) , ..., ( )Y Y Y n  and using 
0

( ) ( )
n

k

k

y x x Y k


  , we obtain the 

eigenfunctions 
0

( )
i

n
k

i
k

y x x Y 


  . 

 
 
4.  Numerical Applications 
 
 
To show the efficiency of the two methods described in the previous sections, four examples in 
this section will be tested using the two methods. The examples reported in this section were 
selected from a large collection of problems to which the Sinc-Galerkin and DTM could be 
applied. For purposes of comparison, examples with known solutions were chosen. For the Sinc-
Galerkin method, d is taken to be / 2  and 1/ 2  . The step size and the summation limit 
N are selected so that the error is asymptotically balanced. Once N  is chosen, the step size 

h N . We use the absolute error which is defined as sincs exactE y y   

and T exact transformE y y  . 

 
Some of the following considered examples can be reduced to the standard Sturm-Liouville 
eigenvalue problem and written in the form of equation (2.3.2).   
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Example 4.1: Singular Problem 
 
Consider the singular two-point boundary value problem [Ravi and Aruna (2008)] 
 

2 2 3 4

2

3 1 29 13 3
1 1 1 ( ) 5

2 2 2 2 2 2 2

x d y dy x x x x x
y x

dx x dx
                   
     

,                   (4.0.1) 

 
subject to the following boundary conditions 
 

(0) 0 , (1) 0y y  .                                                                                                         (4.0.2) 
 
The exact solution for this problem is 2 3( )y x x x  . For solution using Sinc-Galerkin method, 

( ) 2x x   , ( ) 1R x   , ( ) 0Q x  , and ( )F x is the right hand side of equation (4.0.1), and 

since the interval is (0,1), our conformal mapping will be ( ) ln
1

z
z

z
     

. The matrix A in 

(2.3.13) was set up by means of calculating the functions   ,
 




, and 





. Upon passing 

simple Mathematica rules, we solve the discrete system in equation (2.3.13) for 32N  . The 
results in Table 2 indicate that the exponential rate is maintained even with the presence of 
singularities. For solution using DTM, the transformed version of equation (4.0.1) is 
 

0 0

1
( 1) ( 1) ( 2) ( 2)( 1)( 2) ( 2)

2

k k

i i

i k i Y k i i k i k i Y k i 
 

                

 

0 0

3 3 1
( 1) ( 1) ( 1) ( 1) ( 1) ( 2) ( )

2 2 2

k k

i i

k Y k i k i Y k i i Y k i 
 

              

 

0

29 13 3 1
( 1) ( ) 5 ( 1) ( 2) ( 3) ( 4) ( 5) 0

2 2 2 2

k

i

i Y k i i i i i i     


              . 

 

The transformed boundary conditions are (0) 0Y   and 
0

( ) 0
n

k

Y k


 . Using the transformed 

equation and boundary conditions for 7n  , we obtain 8 8  system of algebraic equations with 
unknowns (0) , (1) , ..., (7)Y Y Y . Solving this system and using the inverse transformation rule 

(3.0.3), we get the closed form solution 2 3( )y x x x  , which is our exact solution for the given 
problem. This shows excellent performance of the DTM. 
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Table 2:  The absolute error using Sinc-Galerkin method when 
solving the discrete system (2.3.13) when 32N   for 
Example 4.1  

 
x  sE  

0 106.02 10  
0.1 82.05 10  
0.2 84.82 10  
0.3 84.94 10  
0.4 83.21 10  
0.5 96.05 10  
0.6 84.85 10  
0.7 83.36 10  
0.8 87.05 10  
0.9 81.23 10  
1.0 104.82 10  

 
 
 
Example 4.2: Titchmarch Equation 
 
We consider the Titchmarch model 
 

 
2

2
2

( )
( ) 0, (0) (1) 0md y x

x y x y y
dx

     ,                                                            (4.0.3) 

 
where m  is a nonnegative integer. For the Sinc solution, we follow the procedure outlined in 
subsection 2.3 to find numerical solution for (4.0.3). The first eigenvalue listed in Table 3 is 
computed from the matrix system (2.3.13) when 32N   for three different values of the 
parameter m . 
 
                  Table 3: An estimate to the first eigenvalue 1  for Example 4.2  

m  Sinc-Galerkin ( 32N  ) Differential Transform ( 10n  ) 
0 10.933 10.932 
1 10.702 10.701 
2 10.345 10.345 
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For the solution using DTM, using Table 1 and by taking Differential Transform for both sides 
of (4.0.3), we have 
 

0

!
( 2) ( 2 ) ( ) ( )

( 2)!

k

i

k
Y k i m Y k i Y k

k
 



    
  .                                                       (4.0.4) 

 

The differential transform of the boundary conditions become (0) 0Y   and
0

( ) 0
n

k

Y k


 . For the 

first eigenvalue, substituting (0) 0Y  , and putting (1)Y c  at k = 0, 1, 2, ..., 10 into (4.0.4), we 

get the values of (2) , (3) , ..., (10)Y Y Y . Then, substituting (0) , ..., (10)Y Y  into
10

0

( ) 0
k

Y k


 , we 

get 10 ( ) 0f   , for some function f.  Solving for 1 , we obtain an estimate for the first eigenvalue 

for different values of the parameter m . These results are shown in Table 3.  
 
The first eigenvalue of the comparison equation ( ) ( ) 0, (0) (1) 0y x y x y y      is 2 . 

Table 3 predicts an estimate for the least eigenvalue 1  that satisfies 2
1 11   , which is 

consistent with the results obtained in Bujurke, Salimath and Shiralashetti (2009). The 
corresponding eigenfunction to the first eigenvalue 1  for equation (4.0.3) when 2m   was 

computed at some points in its domain. The results are listed in Table 4. 
 
 

Table 4:  Comparison of solutions corresponding to the first eigenvalue 

1  for Example 4.2, when 2m   using the two methods.  

x  Sinc-Galerkin ( 32N  ) Differential Transform ( 10n  ) 
0 0 0 
0.125 0.5461 0.5477 
0.250 1.002 1.006 
0.375 1.321 1.326 
0.500 1.422 1.416 
0.625 1.321 1.326 
0.750 1.002 1.006 
0.875 0.5301 0.5312 
1.000 0 0 

 
 
Example 4.3:  
 
Consider the second order differential equation 
 

 
2

2
2

( )
cos ( ) ( ), (0) ( ) 0

d y x
x y x y x y y

dx
      .                                                 (4.0.5) 
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For the Sinc method, the computed eigenvalues i  are obtained from the solution of the 

(2 1) (2 1)N N   system (2.3.13) when 32N  , where in this case ( ) ln
x

x
x



    

, and 

1

kh

k kh

e
x

e





, ( ) 1p x   , ( ) 0x  , 2( ) cosQ x x , ( ) 1R x   , ( ) 0F x  . For the solution 

using DTM, we follow the procedure outlined in the previous two examples and obtain 
numerical values for eigenvalues of equation (4.0.5). The errors listed in Table 5 were computed 
and compared with the exact eigenvalues listed in Eggert et al. (1987) for equation (4.0.5). 
 

Table 5: The absolute error in computing eigenvalues using Sinc-
Galerkin ( 32N  ) and Differential Transform ( 10n  ) 
compared with the exact eigenvalues listed in Eggert et al. 
(1987) for example 4.3  
True eigenvalue [5] 

sE  TE  

1 1.24242   51.42 10  53.19 10  

2 4.49479   44.85 10  41.70 10  

3 9.50366   39.91 10  31.83 10  

4 16.50208   11.31 10  13.81 10  
 
 
 
Example 4.4: Non-Fickian diffusion problem 
 
The following example is taken from Ramos (2005). We consider a linear, one-dimensional non-
Fickian diffusion problem in composite media with a potential field in Cartesian coordinates. 
Such a problem is governed by a telegraph equation for the mass concentration which, upon 
applying the Laplace transform in time, yields the following second-order ordinary differential 
equation 
 

2
2

2
( ) 0 , (0) 1 , (1) 0

d c d
pc c c c

dx dx
     ,                                                                  (4.0.6) 

 
where : 0 1x x   is the Cartesian coordinate, c  is the concentration,   is related to the 
exponent of the kernel of the Laplace transform, and p  is the quadratic drift force given by 
 

2( ) ( ) ( )p p p p pp x a x x b x x c                                                                                  (4.0.7) 

 
and  , ,p p pa b c  are constants. The reader is referred to Ramos (2005) for detailed discussions 

about the model in equation (4.0.6)). Equation (4.0.6) is linear, but has variable coefficients. 
Therefore, it is in general impossible to obtain analytical solutions for this equation. In this 
example (0) 0c  , so that the development leading to equation (2.3.13) is not applicable for the 
Sinc solution.  
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Therefore, for the nonhomogeneous boundary condition (0) 1c  , a change of variable 

( ) ( ) (1 )y x c x x    is employed to transform the differential equation with nonhomogeneous 
conditions (4.0.6) to one with homogeneous boundary conditions. For the Sinc-Galerkin 
solution, set 
 

( ) ( ) (1 )
N

j j
j N

c x c S x x


   . 

 
The coefficient matrix for the Sinc solution of this problem is identical to that in (2.3.13), 
whereas the right-hand side differs in another function F , which replaces F . To show the 
effects of the drift force ( )p x  on the concentration profiles, we have applied both methods to 
equation (4.0.6) with quadratic ( )p x  of equation (4.0.7). Some numerical results are computed 
and tabulated in Table 6. The results presented in Table 6 show that the steepness of the 
concentration profiles near 0x   decreases as :0 1p px x   is increased. This is consistent 

with the results obtained by Ramos (2005). 
 

Table 6: Concentration ( )c x of equation (4.0.6) 

x  0px   0.5px  1px 

0 1 1 1 
0.1 0.973 0.761 0.433 
0.2 0.912 0.556 0.235 
0.3 0.778 0.486 0.102 
0.4 0.609 0.390 0.092 
0.5 0.515 0.315 0.073 
0.6 0.322 0.248 0.068 
0.7 0.198 0.192 0.052 
0.8 0.108 0.127 0.030 
0.9 0.052 0.086 0.018 
1.0 0 0 0 

                                        
 
Using Sinc-Galerkin method ( 32N  ) and DTM ( 10n  ) for the case 1  , 10pa  , 

0p pb c  , 0,0.5,1x   give identical results shown in Table 6. 

 
 
5.  Conclusion 
 
In this study, we have introduced two methods: Sinc-Galerkin method and DTM to solve Sturm-
Liouville eigenvalue problems (1.0.1)-(1.0.2). The results of the previous section indicate that 
our procedures can be applied to obtain accurate numerical solutions. The accuracy of the 
methods depends on the value of n  for DTM, and N  for Sinc-Galerkin method. The DTM is 
simple in applicability as it does not require discretization. 
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