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Abstract 
 
In the presence of both magnetic field and bulk viscosity, Bianchi Type I bulk viscous fluid 
string dust cosmological model in Rosen’s bimetric theory of gravitation have been investigated 
by using the technique of Letelier and Stachel. The nature of the model is discussed in the 
absence of both magnetic field and bulk viscosity. To get a determinate solution, we have 
assumed the condition that σ is proportional to θ and ζθ = constant where σ is the shear, θ is the 
expansion in the model and  is the coefficient of bulk viscosity. Further the physical and 
geometrical significance of the model are discussed. Here, we compared between the case in the 
presence of magnetic field and bulk viscosity and the case in the absence of magnetic field and 
bulk viscosity. 
 
Keywords: Bimetric theory; bulk viscous; cosmic string, magnetic field, Bianchi type-I 
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1.  Introduction 
 
Several new theories of gravitation have been formulated which are considered to be alternatives 
to Einstein’s theory of gravitation. The most important among them are Rosen’s bimetric theory 
of gravitation and Scalar-tensor theory of gravitation. The Rosen’s bimetric theory is the theory 
of gravitation based on two metrics, see Rosen (1974).  One is the fundamental metric tensor gij 
describes the gravitational potential and the second metric γij refers to the flat space-time and 

describes the inertial forces associated with the acceleration of the frame of reference. The metric 
tensor ijg  determine the Riemannian geometry of the curved space time which plays the same 

role as given in Einstein’s general relativity and it interacts with matter. The background metric 

ij  refers to the geometry of the empty universe (no matter but gravitation is there) and describe 

the inertial forces. The metric tensor ij  has no direct physical significance but appears in the 

field equations. Therefore it interacts with ijg  but not directly with matter. One can regard ij  

as giving the geometry that would exists if there were no matter. In the absence of matter one 

would have ijg = ij . Moreover, the bimetric theory also satisfied the covariance and 

equivalence principles; the formation of general relativity. The theory agrees with the present 
observational facts pertaining to general relativity [for details one may refer Karade (1980), 
Katore and Rane (2006), and Rosen (1974, 1977)]. Thus, at every point of space-time, there are 
two metrics 
 

2 i j
i jd s g d x d x                                                                                                          (1) 

 
and 
 
      2 .i j

i jd d x d x                                                                                                                 (2) 

The field equations of Rosen (1974)’s bimetric theory of gravitation are   

j
i

j
i

j
i

j
i kTNNK  8

2

1
                                                                                                  (3) 

where  
rpsi

sjprj
i ggN 

2

1
 , 

i
iNN   , and 


g

k   together with )det( ijgg   and 

)det( ij  . Here, the vertical bar ( | ) stands for  -covariant differentiation and j
iT  is the 

energy-momentum tensor of matter fields. 

 

The several aspects of bimetric theory of gravitation have been studied by Rosen (1974), Karade 
(1980), Israelit (1981), Katore and Rane (2006), and Khadekar and Tade (2007). In particular 
Reddy and N. V. Rao (1998) have obtained some Bianchi type cosmological models in bimetric 
theory of gravitation. The purpose of Rosen’s bimetric theory is to get rid of the singularities that 
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occur in general relativity that was appearing in the big-bang in cosmological models and 
therefore recently, there has been a lot of interest in cosmological model on the basis of Rosen’s 
bimetric theory of gravitation.  

 
In bimetric theory, the background metric tensor ij should not be taken as describing an empty 

universe but it should rather be chosen on the basis of cosmological consideration.  Hence Rosen 
proposed that the metric ij be taken as the metric tensor of a universe in which perfect 

cosmological principle holds.  In accordance with this principle, the large scale structure of 
universe presents the same aspect from everywhere in space and at all times.  The fact, however, 
is that while taking the matter actually present in the universe, this principle is not valid on small 
scale structure due to irregularities in the matter distribution and also not valid on large scale 
structure due to the evolution of the matter. Therefore, we adopt the perfect cosmological 
principle as the guiding principle. It does not apply to gij and the matter in the universe but to the 

metric ij. Hence, ij describes a space-time of constant curvature. 

In the context of general relativity cosmic strings do not occur in Banchi type models, see Krori 
et al. (1994). Some Bianchi type cosmological models – two in four and one in higher 
dimensions- are studied by Krori et al. (1994). They have shown that the cosmic strings do not 
occur in Bianchi type V cosmology.  Bali and Dave (2003); Bali and Upadhaya (2003), Bali and 
Singh (2005), Bali and Pareek (2007) have investigated Bianchi type IX, I and V string 
cosmological models under different physical conditions in general relativity.  The magnetic 
field is due to an electric current produced along x-axis. Raj Bali and Anjali (2004) have 
investigated Bianchi Type I bulk viscous fluid string dust magnetized cosmological model in 
general relativity. They have assumed that the eigenvalue )( 1

1 of shear tensor )( j
i is 

proportional to the expansion )(  which is physically plausible condition. The string dust 
condition leads to   = , where   is the rest energy density and   the string tension density.  

 
Recently people like Bali et al. (2003), Pradhan et al. (2007), Pradhan (2009) and Wang (2004, 
2006) developed the models in the field of bulk viscous fluid solutions and Bianchi type string 
models which are the most useful models in general relativity. In an attempt to achieve our bulk 
viscous model in bimetric theory of gravitation, we used the terminology and the notations of 
Bali et al. (2003). 

 
In this paper, we have investigated Bianchi Type I bulk viscous fluid string dust cosmological 
model with and without magnetic field in Rosen’s bimetric theory of gravitation as there has 
been a lot of interest in cosmological model on the basis of Rosen’s bimetric theory of 
gravitation. To get determinate solution we have assumed that σ is proportional to θ and ζθ = 
constant where σ is shear, θ is the expansion in the model and   is the coefficient of bulk 
viscosity. Also the physical and geometrical significance of the model are discussed. 
 
In our models, bulk viscosity plays important role in the presence of magnetic field as well as in 
the absence of magnetic field. This agreed with the findings of Tripathy et al. (2008) that the 
bulk viscosity plays role in the evolution of the universe. 
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We consider Bianchi Type I metric 
 

22222222 dzCdyBdxAdtds   ,                                                                                 (4) 
 
where BA,  and C  are functions of t  alone. The flat metric corresponding to metric (4) is  
 

22222 dzdydxdtd  .                                                                      (5) 
 
The energy momentum tensor j

iT  for string dust is given by 

 
j

i
j

i
j

i
j

i
j

i
j

i EgxxT  )(;  
                                                                      (6) 

 
with 
 

1 i
i

i
i xx                                                                                                                    (7) 

 
and  
 

0i
i x .                                                                                                           (8) 

 
In this model,   is the rest energy density for a cloud of strings and is given by  p  

where p and  denote the particle density and the string tension density of the system of strings 

respectively, xi is the direction of strings and ζ is the coefficient of bulk viscosity. 
  
The electromagnetic field ijE  is given by Lichnerowicz (1967)  

 
















  jiijjiij hhghE

2

12   ,                                                          (9) 

 
where four velocity vector i  is given by  

 
1ji

ijg                                                                        (10) 

 

and   is the magnetic permeability and the magnetic flux vector ih  defined by  

 

jkl
ijkli F

g
h 







2
,                                                                                                       (11) 

 
where klF  is the electromagnetic field tensor and ijkl  is the Levi Civita tensor density. 
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Assume the comoving coordinates system, so that .1,0 4321   Further, we assume 

that the incident magnetic field is taken along x-axis so that  01 h  and .0432  hhh  The 

first set of Maxwell’s equation  
 

  0, kijF                                                                                                         (12) 

 
Yields F23 = constant H (say). Due to the assumption of infinite electrical conductivity, we have  
                  

.0342414  FFF  

 
The only non-vanishing component of  ijF  is .23F  So that  

 

BC

AH
h


1                                                                                                                              (13) 

 
and 
      

222

2
2

CB

H
h


 .                                                           (14) 

 
 From equation (9) we obtain  
 

22

2
4
4

3
3

2
2

1
1

2 CB

H
EEEE


 .                                                        (15) 

 
From equation (6) we obtain 
 

,;222

2
3
3

2
2,;222

2
1
1 



























 



 







CB

H
TT

CB

H
T  
















222

2
4
4

CB

H
T


 .                                        (16) 

 
Substituting these values of j

iT [equation (16)] in the Rosen’s field equations (3), we write 

     











 
;22

2

2

2
4

2

2
4

2

2
4444444

2
16 




CB

H
ABC

C

C

B

B

A

A

C

C

B

B

A

A
                             (17) 
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







 

;22

2
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2
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2
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2
4444444
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







 

;22

2

2

2
4

2

2
4

2

2
4444444

2
16 



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H
ABC

C

C
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B
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C
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B
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                                    (19) 

 











22

2

2

2
4

2

2
4

2

2
4444444

2
16

CB

H
ABC

C

C

B

B

A

A

C

C

B

B

A

A


 ,                                            (20) 

 
where 
 

4 4 4, , , etc.
dA dB dC

A B C
dt dt dt

    

 
Equations (17) to (20) are four equations in five unknowns , , , andA B C   . Therefore, to deduce 
a determinate solution; we assume a supplementary condition  
 

  ,nBCA    0n ,                                                                                                              (21) 
 
for which the shear (σ) is proportional to the scalar of expansion   . 
   
 
The universe is filled with Zel’dovich matter  string dust and perfect fluid and therefore we are 
using Zel’dovich (1980) condition         
 

                                                                                   (22) 
 

in our model. From equations (19) and (20), we obtain 
 











22

2

;
44

2

2
4 1622

CB

H
ABC

C

C

C

C


 

 .                                             (23) 

 
Adding equations (17) and (23) together and using the condition ε = λ, we get 
 











22

2

;2

2
4

2

2
4

2

2
4444444

2
216

CB

H
ABC

C

C

B

B

A

A

C

C

A

A

B

B


 

 .                                   (24) 

 
From equations (21) and (24), we write 
 

   
2 2

1 14 4 44 44
;2 2

( 1) ( 1) (1 ) ( 1) 16 32 ,
n nB C B C

n n n n K BC BC
B C B C

             
      (25) 
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where 
2

2H
K  . 

 
From equations (18) and (19), we obtain  
 

2

2
4

2

2
44444

B

B

C

C

B

B

C

C
 .                                                                                            (26) 

 
On simplifying above equation, we get 
  

 
 

 
BC

BC

BCCB

BCCB 4

44

444 



,                                                                                                        (27) 

 
which on integrating, yield 
 

LBC
C

B
C 








4

2  ,                                                                                                       (28) 

 
where L is the constant of integration. 
 

Using assumptions BC  and ,v
C

B
  equation (28) leads to 

L
v

v
4 .                                                                                                                                 (29) 

Now using equation (21) and the condition BC  and v
C

B
 , the equation (25) gives  

 

  

;22

2
4

1
44

1
32

16 



















 

Knn
nn

.                                                                 (30) 

 
Applying the condition ζθ = constant to the above equation, we get 
 

nn

n

K 

 162

2
4

44    ,                                                                   (31) 

 
where 
       


;

32 
n

 , 

 
which reduces to 
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  n

n

K
ff

d

d 
 



  222 16

2)
2

(  ,                                                                    (32)  

 
where   f4 .  
 
 
The differential equation (32) has solution  
 

2312

1

2

)1(

32 
P

nnn

K
f nn 





  ,                                                                                 (33) 

 
where P is the constant of integration. From equation (29) we write  
 

b

P
nnn

K

dL
v

nn

log

)1(

2

)1(

32
log

231









 
 


.                                                           (34) 

 
Using   f4  and expression (33), the metric (4) will be  
 

2222

2)3()1(

2
2

)1(

2

)1(

32
dz

v
vdydx

P
nnn

K

d
ds n

nn

























 ,                       (35)  

 
 where v  is determined by equation (34).  After suitable transformation of coordinates i.e., 
putting  
             

ZzYyXxT  ,,,  
 
the above metric (35) takes the form 
 

2222

2)3()1(

2
2

)1(

2

)1(

32
dZ

v

T
dYvTdXT

PTT
n

T
nn

K

dT
ds n

nn



















 

 .                     (36) 

 
This is the Bianchi Type-I bulk viscous fluid string dust cosmological model with magnetic field 
in bimetric theory of gravitation. 
  
In the absence of magnetic field i.e., K = 0, the metric (36) have the form 
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2222

)3(2
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2

)1(

2
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v

T
dYvTdXT

T
n

PT
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ds n

n
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











.                                                 (37)                         

 
In the absence of viscosity, i.e., 0 , the metric (36) takes the form 
 

2222

2)1(

2
2

)1(

32
dZ

v

T
dYvTdXT

PTT
nn

K

dT
ds n

n



















.                                                (38) 

 
 

2.   Some Physical and Geometrical Features 
 
The density (), the string tension density (), for the model (36) is given by 
 


















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 .                                                                     (39) 

 

Now, the expansion  is given by 





 

C

C

B

B

A

A 444 ,  which has the value 
T

fn )1( 
 , or 

2

1

)1()1(
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)1(
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)1( 
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
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





  nn T
n

T
nn

K
Pn

  .                                                                 (40) 

 
The components of shear tensor j

i  are given by 
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Likewise, we obtain the other components of  j

i  as 
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and 
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4  .                                                            (44) 

 
Thus,  
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and the spatial volume is 
 

 13  nTR   ,                                                                                                                       (46) 
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2
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T
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K
f
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From these results, it is learned that in the presence of magnetic field and bulk viscosity, the rest 
energy density   and string tension density  both are infinite initially, whereas   both are 
depends on viscosity coefficient   at infinite time.  The expansion   in the model increases as 
the coefficient of viscosity  decreases and it becomes maximum for   = 0.  For very very large 

value of T, the expansion , the shear   and the spatial volume 3R , are infinite and our model 
(36) does not approach isotropy. 
 
 
3.  Discussion 
 
From the results of earlier section-2, it is seen that in presence of magnetic field and bulk 
viscosity, our model (36) is expanding, when the coefficient of viscosity  decreasing, and the 
maximum expansion is 
      

   
  2

1

1

1

32
1 










 nT
nn

K
Pn


. 

 
The rest energy density   and string tension density  both are infinite initially, whereas both 
are depends on viscosity coefficient   at infinite time.  The expansion   in the model increases 
as the coefficient of viscosity  decreases and it becomes maximum for   = 0.  For very very 
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large value of  T, the expansion ,  the shear   and the spatial volume 3R  are infinite and our 
model (36) does not approach isotropy. 
 

For ,
2

1
n  there is shear 

2

L
 .  Hence, the model (36) does not approaches isotropy for large 

values of T. 
 
 
In the absence of magnetic field, K, the equation (39) leads to  
  

 
 116

12 2





n

nn


 ,                                               (47) 

 
from which we conclude that the rest energy density   , string tension density    depends only 
on viscosity coefficient . 
 

The expressions for , j
i and ,3R  in the absence of magnetic field K are given by 
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and 
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where        
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In the absence of viscosity, the rest energy density , string tension density   for the model (36) 
is given by 
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nn

nn
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and it becomes zero initially and infinite for very very large value of  T. 
 
The expressions for  , j

i   and 3R , in the absence of viscosity, are given by 
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where  
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nT
nn

K
PT


 . 

 
In the absence of magnetic field, our model (36) contracting as T and   increases, and it is 
expanding in the absence of bulk viscosity. The model does not approaches isotropy for large 
values of T. The spatial volume of our model is zero initially and it is infinite for very very large 
value of T. 
 
We compared between the case in the presence of magnetic field and bulk viscosity and the case 
in the absence of magnetic field and bulk viscosity and it is realized that our model is expanding 
as well as shearing in presence of magnetic field and bulk viscosity (for decreasing ), whereas 
it is neither expanding nor shearing in the absence of both magnetic field and bulk viscosity. 
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