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Abstract

A non-classical, coupled, fractionally ordered, dual-phase-lag (DPL) heat conduction model has
been presented in the framework of the two-temperature theory in the bounded Cartesian domain.
Due to the application of two-temperature theory, the governing heat conduction equation is well-
posed and satisfying the required stability criterion prescribed for a DPL model. The mathematical
formulation has been applied to a uniform rod of finite length with traction free ends considered in
a perfectly thermoelastic homogeneous isotropic medium. The initial end of the rod has been ex-
posed to the convective heat flux and energy dissipated by convection into the surrounding medium
through the last end. The State-space approach has been employed to solve the corresponding
boundary value problem to obtain the conductive and thermomechanical temperature along with
thermal displacement and stresses in the Laplace domain. The role of the time-fractional order and
delay time in the heat flux and temperature gradient has been investigated through numerical re-
sults representing graphically along the length of the rod. The classical, fractional and generalized
thermoelasticity theory have been recovered and the finite speed of thermal wave has been attained.

Keywords: Fractional thermoelasticity; Two-temperature theory; Phase-lags; Laplace trans-
form; Dual-Phase-Lag (DPL)
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1. Introduction

Solid heat conduction models came into existence after the development of the Fourier law of heat
conduction, which states that during the heat conduction process in a perfectly homogeneous and
isotropic medium, the heat flux vector and temperature gradient appears instantly at the same time
and consequently implies that the thermal signal propagates with an infinite speed. The drawback
of infinite speed in Fourier law becomes unacceptable. This motivates scientists and physicists to
search for non-classical theories required to frame the new constitutive relations.

Following the Fourier law of heat conduction, Biot (1956) has derived the coupled heat conduction
equation by coupling the thermal and mechanical forces and hence introduced the classical cou-
pled thermoelasticity. It has been found that the thermal and mechanical forces are not independent.
However, the proposed theory was failed to achieve the finite speed of thermal wave propagation.
Following Ignaczak and Ostoja-Starzewki (2010) it has been seen that Cattaneo and Vernotte have
reconstructed the Fourier law in terms of the thermal relaxation parameter called the relaxation
time. The resulting heat conduction equation was found to be hyperbolic that characterizes the
combined diffusion and wave-like behaviour of heat conduction and predicts the finite speed of
thermal wave propagation. Later, Lord and Shulman (1967) have applied Cattaneo-Vernotte law
and hence derived the generalized thermoelastic heat conduction model with one relaxation time.
Apart from the conductive temperature Chen and Gurtin (1968) have introduced the thermodynam-
ical temperature and then established the mathematical relationship between these temperatures.
The said theory is well known as the two-temperature theory.

Following generalized coupled thermoelasticity, Green and Lindsay (1972) have proposed a ther-
moelastic model where not only the heat conduction equation but also the equations of motion
and stresses were associated with the relaxation time. Hereafter, Green and Naghdi (1993) have
proposed a non-classical, generalized, coupled thermoelastic model without energy dissipation. It
was observed that during the process of heat conduction governed by the Fourier law, the heat
energy does not dissipate. Youssef (2006) introduced a generalized coupled thermoelastic model
and studied to recover various special cases in the context of two temperature theory.

To study the lagging behaviour of the heat conduction, Tzou (1995) introduced phase-lags to the
heat flux vector and temperature gradient into the Fourier law and deduced a DPL law of heat
conduction. Later, Quintanilla (2008) claimed that whenever a DPL heat conduction law is cou-
pled with the Biot’s (1956) energy equation, then the resulting problem may have a sequence
of eigenvalues such that its real part is positive and tends to infinite. Consequently, the resulting
coupled DPL heat conduction equation may not be stable and hence the proposed model is not
well-posed. Moreover, if a dual-phase lag heat conduction equation is derived in the context of
two-temperature theory introduced by Chen and Gurtin (1968), then the model established must
be well-posed. Hamilton et al. (2008) have developed a thermal model of friction stir welding that
utilizes a new slip factor based on the energy per unit length of the weld. The slip factor is derived
from an empirical linear relationship observed between the ratio of the maximum welding temper-
ature to the solidus temperature and the welding energy. The thermal model successfully predicts
the maximum welding temperature over a wide range of energy levels.

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 1, Art. 43

https://digitalcommons.pvamu.edu/aam/vol16/iss1/43



764 V. Kulkarni and G. Mittal

The non-local properties of fractional derivatives indicate that the next state of a dynamical sys-
tem depends not only on its current state but also on its historical states. Scientifically, due to the
non-local properties inherited by fractional order derivatives and integrals, fractional calculus is
frequently applied to realistic problems. In particular, the theorems on Laplace transforms derived
by Liang et al. (2013) have been studied to find the Laplace transforms of the fractional-order or-
dinary and partial differential equations most frequently nowadays. Povstenko (2004) updated the
Fourier law of heat conduction using time-fractional derivatives that gave rise to the theory of frac-
tional thermoelasticity. Later, formal theory of thermoelasticity associated with one relaxation time
was given by Sherief et al. (2010) along with the derivation of corresponding uniqueness theorem,
reciprocal theorem and the variational principle. A few years later, the theory of thermoelasticity
with two relaxation times was derived by Hamza et al. (2014).

Ezzat (2011) proposed a one-dimensional application for a conducting half-space of thermoelectric
elastic material, which is thermally shocked in the presence of a magnetic field. The problem was
solved using Laplace transform and state-space techniques and some conclusions about the newly
developed theory of magneto-thermoelasticity were discussed. Ezzat and Karamany (2009 and
2011) applied two temperature theory to fractional order thermoelasticity and proposed a couple
of new models in the field of thermal sciences.

Kulkarni and Parab (2018) developed the general analytical solution of the most generalized ther-
mal bending problem in the Cartesian domain in the context of non-homogeneous transient heat
equation subjected to Robin’s boundary conditions. The well-posedness of the problem has been
discussed by the existence, uniqueness, and stability of series solutions obtained analytically. The
convergence of infinite series solutions was discussed. Bhatta (2018) examined the effect of the
vertical rate of change in thermal diffusivity due to a hydrothermal convective flow in a horizon-
tal porous medium. Considering the vertically varying basic state the corresponding linear system
was designed through this, and hence, the critical Rayleigh and wave number were evaluated. The
marginal stability curves and linear solutions were further investigated to examine the solution
pattern for different diffusivity parameters.

Mittal and Kulkarni (2019) designed a fractionally ordered, coupled dual-phase-lag model in the
context of two-temperature theory derived by Chen and Gurtin (1968). The governing fractional-
order dual-phase-lag heat conduction equation has been derived for a couple of delay time trans-
lations called intrinsic properties of the medium and well-identified as phase-lags which are re-
sponsible to capture the phonon-electron interactions. It has been found that subjected to various
combinations of time-fractional order lying between (0, 1), various existing thermoelastic heat
conduction models proposed by Biot (1956), Lord and Shulman (1967), Sherief et al. (2010), Ez-
zat and Karamany (2009 and 2011), Mittal and Kulkarni (2018) were recovered. As a special case,
the formulation was applied to examine a spherical cavity having traction free inner and outer
boundaries which were subjected to constant thermal loading. The thermal investigations have
been done by considering various numerical values of fractional order and phase-lag values.

The present manuscript is an attempt to investigate properties of heat flow and related thermal
variation across a finite-dimensional uniform rod. The initial end of the rod has been exposed
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to the time-dependent convective heat flux whereas the heat energy dissipates due to convection
into the surrounding medium through the other end. Following Mittal and Kulkarni (2019), the
dimensionless form of fractional order heat conduction equation in the context of two tempera-
ture theory has been used for the mathematical formulation of the problem. The main aim of the
mathematical analysis is to establish the scientific role of time-fractional order and delay time in
the heat flux and temperature gradient to classify a solid conducting material as per its conduc-
tive ability. Analytical results are obtained in the Laplace domain and corresponding inversions are
computed numerically following the Gaver (1966) and Stehfest (1970) algorithm and satisfying the
Kuznetsov (2013) convergence theorem. The existing theories of classical, fractional and general-
ized thermoelasticity have been recovered and the finite speed of thermal wave has been achieved.
The mathematical model presented has a wide scope of applications in the field of material and
structural designing.

No one has presented and examined the fractionally ordered dual-phase-lag thermal stress analysis
in the framework of two temperatures in the finite Cartesian coordinate system. This is a new and
novel contribution to the field.

2. Mathematical Formulation of the Problem

The following dimensionless physical and geometrical parameters have been used to develop a
mathematical formulation of the problem,

(u∗, x∗, t∗, τ ∗1 , τ
∗
2 ) = clζ(u, x, clt , clτ1, clτ2), Θ =

(θ − θ0)γ
λ+ 2µ

, Φ =
φγ

λ+ 2µ
,

cl =

√
λ+ 2µ

ρm
, σ∗

xx =
σxx

λ+ 2µ
, ζ =

ρmcm
k

, ξ = bc2l ζ
2, ε =

γ2θ0
ρmcm(λ+ 2µ)

.

Consider a uniform rod of finite lengthL in the bounded Cartesian domain satisfying dimensionless
heat conduction equation and thermal stress formulation as (neglecting the ∗ sign)[

∂

∂t
+

τ ν1
Γ(ν + 1)

∂ν+1

∂tν+1
+

τ 2ν1
Γ(2ν + 1)

∂2ν+1

∂t2ν+1

]
(Φ + εe)

=

[
1 +

τ ν2
Γ(ν + 1)

∂ν

∂tν
+

τ 2ν2
Γ(2ν + 1)

∂2ν

∂t2ν

]
O2Θ,

(1)

Θ− Φ = ξO2Θ, (2)

∂e

∂x
− ∂Θ

∂x
=

··
u, (3)

σxx = e−Θ. (4)

where θ and φ denote the conductive and thermodynamical temperatures, the delay time transla-
tions τ1 and τ2 are called the intrinsic properties of the medium and well-identified as phase-lags
which are responsible to capture the phonon-electron interactions. Here, θ0 denotes the reference
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temperature of the medium, e is the cubical dilatation factor, and t is the time. The constant ρm,
is the density and cm is specific heat of the solid material, αt is the coefficient of linear thermal
expansion, and λ, µ are Lamé constants of elasticity connected by the fixed term γ = αt(3λ+ 2µ).
The symbol O2 represents one-dimensional Laplacian operator in the Cartesian domain.

Equations (1)-(4) describe the governing dimensionless equations of the fractional dual-phase-lag
heat conduction model presented in this manuscript.

2.1. Initial and boundary conditions

Assume that the initial end of the rod at x = 0 has been exposed to the time dependent convective
heat flux expressed by the function F : (0, ∞) −→ (0, ∞) in the context of error function given
by F (t) = erf

√
(tε) whereas the extreme end at x = L has kept at zero temperature. Then,

∂Θ

∂x
+ k1Θ = Ωe−ωtF (t)|x=0, (5)

∂Θ

∂x
+ k2Θ = 0|x=L, (6)

Θ(x, 0) = 0, (7)

where erf
√
· denotes the error function that describes the area under the Gaussian curve for the

time interval (0,
√
tε), t > 0. Physically, the heat flux function here indicates that for any fixed

value of time t > 0, the strength of energy received at the initial end x = 0 of the rod must be
strictly less than the strength Ω > 0 and approaches to zero over a long period, or how far the
heat flux could be provided from the initial end of the rod. The constants ω, ε are the positive real
numbers. The terms k1, k2 denotes the heat transfer coefficients.

The traction-free boundary conditions are given below:

σxx(x, t) = 0|x=0, x=L. (8)

Apart from these boundary conditions, it is presumed that all the initial conditions are homoge-
neous.

Equations (5) - (8) describe the heat conduction model proposed in this manuscript.

3. The Solution

In the view of zero initial conditions, application of the Liang et al. (2013) theorem to the governing
dimensionless equations (1)− (4) converts these in the Laplace domain as[

p+ pν+1 τ ν1
Γ(ν + 1)

+ p2ν+1 τ 2ν1
Γ(2ν + 1)

]
(Φ̄ + εē)

=

[
1 + pν

τ ν2
Γ(ν + 1)

+ p2ν
τ 2ν2

Γ(2ν + 1)

]
O2Θ̄,

(9)
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Θ̄− Φ̄ = ξO2Θ̄, (10)

dē

dx
− dΘ̄

dx
= p2ū, (11)

σ̄xx = ē− Θ̄. (12)

Assuming the following replacements in Equation (9) for simplicity,

α1 =

[
p+ pν+1 τ ν1

Γ(ν + 1)
+ p2ν+1 τ 2ν1

Γ(2ν + 1)

]
, (13)

α2 =

[
1 + pν

τ ν2
Γ(ν + 1)

+ p2ν
τ 2ν2

Γ(2ν + 1)

]
, (14)

using the above replacements, Equation (9) reduces to

α1(Φ̄ + εē) = α2O
2Θ̄. (15)

differentiating Equation (11) with respect to variable x, one gets

O2(ē− Θ̄) = p2ē. (16)

Transposing ē, one gets

(O2 − p2)ē = O2Θ. (17)

Expressing Φ̄ from Equation (10) in terms of Θ̄, one gets

Φ̄ = (1− ξO2)Θ̄. (18)

Eliminating Θ̄ and Φ̄ from Equations (15)− (18), one gets the following equation in ē as

{O4(α2 + α1ξ)− O2(p2α2 + α1 + α1ξp
2 + α1ε) + p2α1}ē = 0. (19)

Equation (19) can be factorized in O2 as

(O2 − g21)(O2 − g22)ē = 0, (20)

where g21 and g22 are the real characteristic values of Equation (20) given below:

g21, g
2
2 =

(p2α2 + α1 + α1ξp
2 + α1ε)±

√
((p2α2 + α1 + α1ξp2 + α1ε)2 − 4p2α1)

2(α2 + α1ξ)
. (21)

The boundary conditions in the transformed domain have been expressed by following equations
as

dΘ̄

dx
+ k1Θ̄ =

Ω
√
ε

(p+ ω)
√

(p+ ω + ε)
|x=0, (22)

dΘ̄

dx
+ k2Θ̄ = 0|x=L, (23)

σ̄xx(x, p) = 0|x=0,x=L. (24)

Equations (9)− (24) describes the governing equations of the problem in the Laplace domain.
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3.1. The analytical solutions in the Laplace domain

The generalized solution of Equation (20) is given by

ē(x, p) =
2∑
i=1

Ai(p)g
2
i cosh gix. (25)

Substituting ē(x, p) into Equation (17), one gets the conductive temperature Θ(x, p) given by

Θ̄(x, p) =
2∑
i=1

Ai(p)(g
2
i − p2) cosh gix. (26)

Replacing ¯Θ(x, p) from Equation (26) to (18), one gets the thermomechanical temperature Φ̄(x, p)
given by

Φ̄(x, p) =
2∑
i=1

Ai(p)(1− ξg2i )(g2i − p2) cosh gix. (27)

Employing ē(x, p) and Θ̄(x, p), obtained in Equations (25)− (26) to Equation (11), one gets the
displacement function ū(x, p) as

ū(x, p) =
2∑
i=1

Ai(p)gi sinh gix. (28)

Substituting results of dilatation and conductive temperature obtained in the Laplace domain to
Equation (12), the thermal stress function σ̄xx(x, p) is obtained as

σ̄xx(x, p) =
2∑
i=1

Ai(p)p
2 cosh gix. (29)

The constants A1 and A2 could be obtained through the application of the thermal boundary con-
ditions expressed by couple of simultaneous equations given below:

A1k1(g
2
1 − p2) + A2k1(g

2
2 − p2)] =

Ω
√
ε

(p+ ω)
√

(p+ ω + ε)
, (30)

A1[k2(g
2
1 − p2) cosh g1L+ g1(g

2
1 − p2) sinh g1L]

+ A2[k2(g
2
2 − p2) cosh g2L+ g2(g

2
2 − p2) sinh g2L] = 0,

(31)

A1 = −Ω
√
ε(cosh g2L+ k2g2 sinh g2L)

k1(g21 − p2)Λ
, (32)

A2 =
Ω
√
ε(cosh g1L+ k2g1 sinh g1L)

k1(g22 − p2)Λ
, (33)

where the term Λ is considered as follows:

Λ = [k2(cosh g2L− cosh g1L) + (g2 sinh g2L− g1 sinh g1L)](p+ ω)
√

(p+ ω + ε) . (34)
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The analytical results for desired thermal unknowns in the Laplace domain along with the unknown
constants A1 and A2 have been shown by Equations (25)− (34).

3.2. Transformation of the analytical results in the time domain

The inversion of analytical results obtained here in the manuscript presented by the Equations (25)-
(34) are computed through Gaver (1966) and Stehfest (1970) numerical algorithm. The finite trial
value of algorithm parameter J has been considered to implement the algorithm through MATLAB
programming. Considering the fixed Aluminium metal properties, the starting value for the Laplace
parameter p has been computed by taking fixed time value t = 0.25s to obtain the initial values
of unknown thermal parameters. The above computation procedure has been repeatedly applied to
add on the values of the desired time-domain solutions for all values of assumed parameter ranging
from 0 to 8. Hereby, the required thermal results have been computed for the fixed time domain.
Following Kuznetsov (2013), authors have noticed that for parameter values of J > 8, numerically
inverted time-domain solutions of unknown thermal values are bounded by fixed real values.

4. Numerical Computations

Following Ignaczak and Ostoja-Starzewki (2010), the unknown thermal parameters have been
computed pair wise for phase-lag and fractional order variations. In case of phase-lag variations the
numerical computations have been done by considering ν = 0, 0.5, 0.75 and ν = 1.0. However,
for the later case subjected to fixed values of phase-lags τ1 = 0.8ps, τ2 = 0.4ps the fractional
order changes were assumed as ν = 0, 0.5, 0.95 and ν = 1.0. Moreover, for both the cases are
determined for the fixed time t = 0.25s to recover the classical, fractional and generalized ther-
moelasticity theories.

4.1. Material properties and dimension

To study the rate of heat flow and thermal variations within the uniform rod, as a special case
aluminium material with following well-known properties referring Hamilton et al. (2008) has
been considered.

αt = 6.9× 10−5 K−1, κ = 167 Wm−1K−1, λ = 5.20× 1010Nm−2,

ε = 0.0709NmJ−1, µ = 2.60× 1010Nm−2, ρm = 8965 kgm−3,

cl = 4.158× 103ms−1, cm = 896 JKg−1K−1, b = 0.075, θ0 = 293K,

L = 10m ω = 20; Ω = 400K, ε = 0.08

8
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5. Results and Discussion
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Figures 1 and 2 illustrate the conductive temperature Θ(x, t), computed for several combinations
of τ1, τ2 and ν, respectively. It could be seen collectively that the conductive temperature variations
are comparatively high for the fractionally ordered DPL model rather than the Biot’s classical
(1956) and Lord-Shulman (1967) thermoelastic case. It has been observed in Figure 2 that the
conductive temperature values are maximum for fractional-order ν = 0.5, and minimum for ν =
0.0, whenever 0 ≤ x ≤ 2. However, the thermal wavefront for CTE is dominating while 4 <

x < 10, and graphically it has been found that results are similar to phase-lag comparisons with
comparatively high values considering various fractional orders under consideration. One may also
verify that as and when heat equation approaches to Lord-Shulman (1967) theory, then the heat

signals traverse with finite speed given by

√
Γ(ν + 1)

ζτ ν1
.

Figures 3 and 4 show the thermodynamical temperature ϑ(x, t) gradually increases in the range
of x ∈ [0, 2]. Hereafter, it reduces continuously from x ∈ (2, 10) for various phase-lags τ1, τ2.
The temperature variations obtained subjected to the coupled, generalized and fractional theory of
thermoelasticity are found to be significantly different within the range 0 ≤ x ≤ 4. Moreover,
one can note that the thermal fluctuations shown here appears inversely related to the applied
fractional order. It has been noted that the thermodynamical temperature computed for different
phase-lag variations are lower in magnitude but showing similar pattern to those of obtained for
the fractional orders under consideration.
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Figure 7. Thermal stress σxx(x, t), within rod for
phase-lag variations
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Figure 8. Thermal stress σxx(x, t), within rod for
fractional order ν

Figures 5 and 6, exhibit the thermal displacement u(x, t) that begins from rest is seen to have
expansive behaviour around 0 < x < 3, then compressive along 3 < x < 6, and finally approaches
to zero at the outer end x = 10 of the rod for different phase-lags and fractional-order variations
under study.

Figures 7 and 8 describe the thermal stress σxx(x, t) along the length of the rod. It has been found
that the stress variation satisfies the condition of traction free ends. Initially, the stress variations
are compressive and attain minima at x = 2. Later, it keeps on increasing and finally rests at the
other end for a couple of cases considered in this manuscript. Mathematically, connecting stress
variations to fractional orders, one can claim that the thermal stress is precisely comparable with
the applied fractional-order ν.

6. Conclusion

The main outcomes of the fractional-order dual-phase-lag heat conduction model presented in this
manuscript are as follows.

The presented heat conduction model designed in the framework of the two-temperature relation-
ship between thermodynamical and conductive temperature is well-defined and fulfills the pre-
scribed stability conditions for a generalized dual-phase-lag model.

11

Kulkarni and Mittal: Dual-phase-lag Fractional Thermal Investigation

Published by Digital Commons @PVAMU, 2021



AAM: Intern. J., Vol. 16, Issue 1 (June 2021) 773

The results for thermal variations of two distinct temperatures, thermal displacement and thermal
stress have been computed and satisfying the imposed physical restrictions for several fractional-
order and phase-lags values. Thermal parameters computed corresponding to hyperbolic and
parabolic cases of fractional DPL heat conduction equation have been illustrated by Figures 1-
8.

Whenever the time-fractional order approaches unity and τ1 > τ2, then the resulting fractional-
order dual-phase-lag heat conduction equation derived for two temperatures becomes hyperbolic.
Consequently, the thermal signals move in the respective conductive medium with finite speed.

Examining the derived two-temperature dual-phase-lag heat conduction equation for various
phase-lags and distinct fractional orders, it could be concluded that the presented model is compat-
ible with the existing theories of coupled thermoelasticity, and hence, could be used scientifically
for various physical heat transport problems. For example, the time-fractional order and applied
phase-lags terms can be used to differentiate various semiconductors and composite materials ac-
cording to their heat transport capacity.
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Nomenclature

σij (Pa) : Thermal stresses;
Θ : Non-dimensional

conductive temperature;
T (K) : Conductive temperature;
T0 (K) : Reference temperature;
τ1, τ2 (ps) : Phase-Lags;
cl (m/s) : Speed of iso-thermal

elastic wave;
cm : Specific heat capacity;
(J ·K−1 · kg−1)
e : Cubical dilatation;
u (m) : Thermal Displacement;
t (s) : Time;
O2 : The Laplacian operator;
p : The Laplace parameter;
x : The Cartesian coordinate;
ρm : Material density;
(Kg ·m−3)

ν : Fractional order;
αt (K−1) : Coefficient of linear

thermal expansion;
b : Temperature discrepancy;
ζ (m2 · s) : Reciprocal of thermal

diffusivity;
ε : Dimensionless coupling

constant;
k (W/(m ·K)) : Thermal conductivity;
λ, µ (Pa) : Lamé constants ;
γ = αt(3λ+ 2µ) : Material constant;
(Pa ·K−1)

ϕ (K) : Thermodynamical
temperature;

Φ : Non-dimensional
thermodynamical
temperature.
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