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Abstract

The aim of this paper is to study certain properties of generalized Apostol-Hermite-Euler polyno-
mials with three parameters. We have shown that there is an intimate connection between these
polynomials and established their elementary properties. We also established some identities by
applying the generating functions and deduce their special cases and applications.
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1. Introduction

In mathematics and physics, Hermite polynomials form a well-known class of orthogonal poly-
nomials. In quantum mechanics they appear as eigenfunctions of the harmonic oscillator and in
numerical analysis they play a role in Gauss-Hermite quadrature. The functions are named after
the French mathematician Charles Hermite.

Importance and potential for applications of Apostol-Hermite polynomials in certain problems in
number theory, combinatorics, classical and numerical analysis and other fields of applied math-
ematics, several kinds of special numbers and polynomials have recently been studied by many
authors.

Generalized Apostol-Hermite-Euler’s polynomials and generalized Apostol-Euler’s numbers have
various practical applications in many branches of higher level mathematics such as calculus, dif-
ferential equations, discrete mathematics, trigonometry, complex analysis, statistics, mathematical
physics, etc. They show unique properties that simplify many functional equations and patterns.

A generating function is a way of encoding an infinite sequence of numbers (an) by treating them
as the coefficients of a power series. These functions are defined by linear polynomials and differ-
ential equations, such as functional equations. We derive various functional equations using these
generating functions for generalized Apostol-Hermite-Euler polynomials.

2. Properties of Euler Polynomials

In this section, we have obtained certain useful properties of the generalized Apostol-Hermite-
Euler polynomials

HE
[m−1,α]
n (x, y; a, c, λ)

defined by Pathan et al. (2015) and the relationship between these polynomials.

Pathan et al. (2015) defined new classes of order α ∈ C known as generalized Hermite-based
Apostol-Euler polynomials E[m−1,α]

n (x;λ) for m ∈ N .

The generalized Apostol-Hermite-Euler polynomials HE
[m−1,α]
n (x, y; a, c, λ) for arbitrary real or

complex parameter α and for a, c ∈ R+, m ∈ N , λ ∈ C are defined in a suitable neighborhood of
t = 0 with |t log(a)| < | log(−λ)| , by means of the following generating functions:

2mα[B(λ, a; t)]αcxt+yt
2

=
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

tn

n!
, (1)
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where B (λ, a; t) is given below:

B(λ, a; t) =

(
λat +

m−1∑
h=0

(t log a)h

h!

)−1
. (2)

.

Theorem 2.1.

For any integer n ≥ 0, we have

HE
[m−1,α]
n (x+ 1, y; a, c, λ) = (ln c)n

n∑
k=0

(
n

k

)
HE

[m−1,α]
k (x, y; a, c, λ). (3)

Proof:

Multiplying both sides of Equation (1) by ct , we get

2mα[B(λ, a; t)]αc(x+1)t+yt2 =
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

(t)n

n!
ct .

We can write the above equation as

2mα[B(λ, a; t)]αc(x+1)t+yt2 =
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

∞∑
n=0

(t ln c)n

n!
.

Applying Cauchy-Product formula, we obtain

2mα[B(λ, a; t)]αc(x+1)t+yt2 = (ln c)n
∞∑
n=0

n∑
k=0

HE
[m−1,α]
n (x, y; a, c, λ)

×
∞∑
n=0

tk

k!

tn−k

n− k!
.

2mα[B(λ, a; t)]αc(x+1)t+yt2 = (ln c)n
∞∑
n=0

n∑
k=0

HE
[m−1,α]
n (x, y; a, c, λ)

×
∞∑
n=0

(
n

k

)
tn

n!
. (4)

Using (1) in above equation, we can write

2mα[B(λ, a; t)]αc(x+1)t+yt2 =
∞∑
n=0

HE
[m−1,α]
n (x+ 1, y; a, c, λ)

tn

n!
. (5)

Equating the R.H.S. of equations (4) and (5), we get the desired result of Theorem 2.1. �
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The Complementary Argument Theorem

Theorem 2.2.

If the argument x and (α− x) are complementary, then

HE
[m−1,α]
n (α− x, y; a, c, λ) = (−1)n HE[m−1,α]

n (x, y; a, c, λ) . (6)

Proof:

Using (1) we can write
∞∑
n=0

HE
[m−1,α]
n (α− x, y; a, c, λ) = 2mα[B(λ, a; t)]αc(α−x)t+yt

2

=
2mα[B(λ, a; t)]αc(α−x)t+yt

2 · c−αt

c−αt

= 2mα[B′(λ, a; t)]αc(−x)t+y(−t)
2

= (−1)n(2)mα[B′(λ, a; t)]αc(−x)t+y(−t)2

= (−1)n
∞∑
n=0

HE
[m−1,α]
n (x, y; a, c, λ)

(−t)n

n!
. (7)

Equating the coefficient of tn on both sides of Equation (7), we get the desired result of Theorem
2.2. �

Theorem 2.3.

For generalized Apostol-Hermite-Euler polynomials,

d

dx
[HE

[m−1,α]
n (x, y; a, c, λ)] = n(ln c)HE

[m−1,α]
n−1 (x, y; a, c, λ). (8)

Proof:

Differentiating (1) with respect to x on both sides, we get
∞∑
n=0

d

dx
HE

[m−1,α]
n (α, y; a, c, λ) = t · 2mα[B(λ, a; t)]αcxt+yt

2 · ln c

= t(ln c)2mα[B(λ, a; t)]αcxt+yt
2

. (9)
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Using (1), we can write (9) as
∞∑
n=0

d

dx
HE

[m−1,α]
n (α, y; a, c, λ) = (n+ 1) ln c

×
∞∑
n=0

HE
[m−1,α]
n (α, y; a, c, λ)

tn+1

n+ 1!
. (10)

Comparing the coefficient of tn on both sides of (10), we get the required result of Theorem 2.3.�

Remark 2.4.

For generalized Apostol-Hermite-Euler polynomials. If c = e, then
d

dx

[
HE

[m−1,α]
n (x, y; a, e, λ)

]
= n× HE

[m−1,α]
n−1 (x, y; a, e, λ) . (11)

Theorem 2.5.

For generalized Apostol-Hermite-Euler polynomials

(ln c)

∫ q

p
HE

[m−1,α]
n (x, y; a, c, λ) dx =

1

n+ 1
[HE

[m−1,α]
n (q, y; a, c, λ)

− HE
[m−1,α]
n (p, y; a, c, λ)] . (12)

Proof:

Integrating (1) with respect to x from p to q on both sides, we get

∞∑
n=0

tn

n!

∫ q

p
HE

[m−1,α]
n (x, y; a, c, λ) dx =

∫ q

p

2mα [B (λ, a; t)]α cxt+yt
2

dx

= 2mα [B (λ, a; t)]α
1

t(ln c)

[
cqt+yt

2 − cpt+yt2
]

=
1

t(ln c)
· 2mα [B (λ, a; t)]α cqt+yt

2

− 1

t(ln c)
· 2mα [B (λ, a; t)]α cpt+yt

2

. (13)

Using (1) in RHS of (13), we get

∞∑
n=0

tn

n!

∫ q

p
HE

[m−1,α]
n (x, y; a, c, λ) dx =

1

(ln c)

∞∑
n=0

tn−1

n!
HE

[m−1,α]
n (q, y; a, c, λ)

− 1

(ln c)

∞∑
n=0

tn−1

n!
HE

[m−1,α]
n (p, y; a, c, λ) . (14)
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Replacing n by n+ 1 in R.H.S. of (14), we have

∞∑
n=0

tn

n!

∫ q

p
HE

[m−1,α]
n (x, y; a, c, λ) dx =

1

(ln c)

∞∑
n=0

tn

n+ 1!
HE

[m−1,α]
n+1 (q, y; a, c, λ)

− 1

(ln c)

∞∑
n=0

tn

n+ 1!
HE

[m−1,α]
n+1 (p, y; a, c, λ)

=
1

(n+ 1)(ln c)

[
∞∑
n=0

tn

n!
HE

[m−1,α]
n+1 (q, y; a, c, λ)−

∞∑
n=0

tn

n!
HE

[m−1,α]
n+1 (p, y; a, c, λ)

]
. (15)

Comparing the coefficient of tn on both sides of (15), we get the required result of Theorem 2.5.�

3. Conclusion

We found a number of interesting properties of Apostol Hermite-Euler polynomials. These formu-
las of the Apostol-Hermite Euler numbers and polynomials of higher order are further developed
and supplement the contents of the recent cognate results developed by us, concerning the gener-
alization of Apostol-Hermite Euler polynomials and numbers of higher order with more variables
and more parameters.
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