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Abstract

Recently, several authors have investigated Chebyshev type inequalities for numerous fractional
integral operators. Being motivated by the work done by earlier researchers and their numerous
applications in probability, transform theory, numerical quadrature, statistical problems and its sig-
nificance in fractional boundary value problems. We aim to evaluate Chebyshev type inequalities
involving fractional integral operator containing multi-index Mittag-Leffler function in the kernel.
Admissible connections of the results mentioned in this article to those associated with previously
established familiar fractional integral operators have been pointed out.

Keywords: Chebyshev type inequalities; Mittag-Leffler function; Extended Mittag-Leffler func-
tions; Fractional integral operators; Synchronous functions
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1. Introduction

Several fractional integral inequalities have proven to be a tool of great significance in the develop-
ment of pure and applied mathematics. Numerous applications of these inequalities can be seen in
probability, transform theory, numerical quadrature and statistical problems (for details, see Bansal,
Kumar, Khan, et al. (2019); Lakshmikantham and Vatsala (2007); Ramírez and Vatsala (2009);
Denton and Vatsala (2011); Debbouche et al. (2012); Sun et al. (2012); Zhao et al. (2013);
Liu et al. (2013)) along with their significance in fractional boundary value problems where they
are primarily used to establish uniqueness of solutions.

2. Preliminaries

First of all, we recall Chebyshev inequality, which is defined as follows (see Čebyšev (1982)):

1

b− a

b∫
a

p(x)q(x) dx ≥

 1

b− a

b∫
a

p(x) dx

 1

b− a

b∫
a

q(x) dx

 , (1)

where p and q denotes synchronous and integrable functions on the interval [a, b]. Notably, two
functions p and q are said to be synchronous on the interval [a, b] if

(p(x)− p(y)) (q(x)− q(y)) ≥ 0, (x, y ∈ [a, b]). (2)

Certain generalizations of the Chebyshev inequality (1) can be seen in literature, some examples
of which are stated herewith. Niculescu and Roventa (2013) established that on considering two
function p, q ∈ L∞([a, b]), the Chebyshev inequality will hold true under the following assump-
tions:

p(x)− 1

x− a

b∫
a

p(x)dx

q(x)− 1

x− a

b∫
a

q(x)dx

 ≥ 0. (3)

Chebyshev inequality without using synchronous function was proven by Dahmani et al. (2016).
Also, lately Chebyshev type inequalities including different integral operators have been presented
by a number of authors (see, e.g. Belarbi and Dahmani (2009); Dahmani (2010); Dahmani (2011);
Dahmani et al. (2016); Daiya et al. (2015); Purohit and Kalla (2014); Set et al. (2019a); Set et al.
(2019b)).

For the sake of convenience, we recall here some definitions that we will be using in our study.

If [a, b] (−∞ < a < b < ∞) is a finite interval on the real axis R, then the right-sided and
left-sided Riemann-Liouville fractional integrals operators denoted by Iγa+p and Iγb−p, respectively,
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are defined as follows ( e.g., see Kilbas et al. (2006); Podlubny (1998)):

(Iγa+p)(x) =
1

Γ(γ)

x∫
a

(x− t)γ−1p(t)dt, (x > a;R(γ) > 0) (4)

and

(Iγb−p)(x) =
1

Γ(γ)

b∫
x

(t− x)γ−1p(t)dt, (x < b;R(γ) > 0). (5)

Gos̈ta Mittag-Leffler (1903) introduced well known Mittag-Leffler function defined as:

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, (α ∈ C, R(α) > 0). (6)

Since then numerous notable generalizations of popularly known Mittag-Leffler function (6) have
been presented in literature.

Wiman (1905) present a familiar generalization of Eα(z) as

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, (α, β ∈ C, R(α) > 0). (7)

Another, generalization was introduced by Prabhakar (1971), which is given as

Eγ
α,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (α, β, γ ∈ C, R(α) > 0). (8)

Srivastava and Tomovski (2009) introduced further generalization of Eγ
α,β(z) as

Eγ,δ
α,β(z) =

∞∑
n=0

(γ)δn
Γ(αn+ β)

zn

n!
, (9)

(z, β, γ ∈ C, R(α) > max (0,R(δ)− 1),R(δ) > 0),

which was considered by Shukla and Prajapati (2007), in the special case when

δ = q (q ∈ (0, 1) ∪ N) and min (R(β),R(γ)) > 0.

Additionally, Salim and Faraj (2012) introduced and studied the following two generalizations of
above mentioned Mittag-Leffler functions:

3
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Eη,δ,q
α,β,p(z) =

∞∑
n=0

(η)qn
Γ(αn+ β)

zn

(δ)pn
, (10)

(p, q ∈ R+; α, β, η, δ ∈ C; R(α) > 0)

and

Eµ,ρ,η,q
α,β,ν,σ,δ,p(z) =

∞∑
n=0

(µ)ρn(η)qn
(ν)σn(δ)pn

zn

Γ(αn+ β)
, (11)

(p, q ∈ R+; q ≤ R(α) + p; α, β, η, δ, µ, ν, ρ, σ ∈ C; min{R(α),R(ρ),R(σ)} > 0).

Saxena and Nishimoto (2010) defined generalized multi-index Mittag-Leffler function (GMIMLF)
in the following manner:

Eγ,κ
(αj ,βj)m

(z) = Eγ,κ[(αj, βj)
m
j=1; z] =

∞∑
n=0

(γ)κn
m∏
j=1

Γ(αjn+ βj)

zn

n!
, (12)

(αj, βj, γ, κ, z ∈ C, R(βj) > 0 (j = 1, ...,m), R(
m∑
j=1

αj) > max{0,R(κ)− 1}),

where (γ)n represents the Pochhammer symbol.

Various integral operators involving distinct generalizations of Mittag-Leffler functions have been
studied by several mathematicians (for details, see Srivastava et al. (2018); Prabhakar (1971);
Srivastava and Tomovski (2009); Salim and Faraj (2012); Bansal et al. (2019b); Bansal and Choi
(2019); Bansal et al. (2019a); Bansal, Kumar, Singh, et al. (2020)). Among them, we recall the
following integral operator introduced by Srivastava et al. (2018):

(
εω;γ,κ;αa+;(αj ,βj)m;βϕ

)
(x) =

x∫
a

(x− t)β−1Eγ,κ
(αj ,βj)m

(ω(x− t)α)ϕ(t)dt, (x > a), (13)

(
α, β, αj, βj, γ, κ, ω ∈ C; min {R(β),R(κ)} > 0;R

(
m∑
j=1

αj

)
> max {0,R(κ)}

)
.

Motivated by the above cited work, we propose to investigate Chebyshev type inequalities involv-
ing fractional integral operator (13) containing GMIMLF in the kernel.
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3. Chebyshev Type Inequalities

In this part, we investigate Chebyshev type inequalities involving synchronous functions p and q
along with the fractional integral operator (13). We also point out some special cases of our main
findings involving simpler integral operators.

Theorem 3.1.

Let us consider two synchronous functions p and q on [0,∞) and also let α, β, αj, βj, γ, κ, ω, x ∈

R+ and
m∑
j=1

αj > κ. Then,

(εω;γ,κ;α0+;(αj ,βj)m;β p q)(x) ≥ 1

(εω;γ,κ;α0+;(αj ,βj)m;β1)(x)
(εω;γ,κ;α0+;(αj ,βj)m;β p)(x)(εω;γ,κ;α0+;(αj ,βj)m;β q)(x). (14)

Proof:

By definition of synchronous functions (2), we have

(p(σ)− p(µ)) (q(σ)− q(µ)) ≥ 0, (σ, µ ∈ R+
0 ). (15)

Or, equivalently,

p(σ)q(σ) + p(µ)q(µ) ≥ p(σ)q(µ) + p(µ)q(σ), (σ, µ ∈ R+
0 ). (16)

Notably,

(x− σ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− σ)α), (0 < σ < x), (17)

is positive for all variables and parameters involved therein. Now, multiplying both the sides of
(16) by (17), we obtain

(x− σ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− σ)α)p(σ)q(σ)

+ (x− σ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− σ)α)p(µ)q(µ)

≥ (x− σ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− σ)α)p(σ)q(µ)

+ (x− σ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− σ)α)p(µ)q(σ). (18)

Further, integrating both sides of (18) with respect to σ over 0 to x and applying (13), we have

5
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(εω;γ,κ;α0+;(αj ,βj)m;β p q)(x) + p(µ)q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β 1)(x)

≥ q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β p)(x) + p(µ)(εω;γ,κ;α0+;(αj ,βj)m;β q)(x). (19)

Furthermore, multiplying each side of (19) by (x−µ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x−µ)α) (0 < µ < x),
we get

(εω;γ,κ;α0+;(αj ,βj)m;β p q)(x)(x− µ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)α)

+ p(µ)q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β 1)(x)(x− µ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)α)

≥ q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β p)(x)(x− µ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)α)

+ p(µ)(εω;γ,κ;α0+;(αj ,βj)m;β q)(x)(x− µ)(β−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)α). (20)

Now, integrating both sides of (20) with respect to µ over 0 to x and further simplifying with the
help of (13), we finally obtain the required result (14). �

Remark 3.2.

Taking m = 1 in (14), we obtain the Chebyshev inequality mentioned in the above theorem
for the fractional integral operator introduced by Srivastava and Tomovski (2009). Again, setting
m = κ = 1 in (14), we establish Chebyshev inequality for the fractional integral operator sug-
gested by Prabhakar (1971).

Theorem 3.3.

Let us consider two synchronous functions p and q on [0,∞) and also let
m∑
j=1

αj > κ and

α, β, αj, βj, γ, κ, δ, ϑ, ω, x ∈ R+. Then,

(εω;γ,κ;α0+;(αj ,βj)m;β p q)(x)(εω;γ,κ;δ0+;(αj ,βj)m;ϑ 1)(x) + (εω;γ,κ;α0+;(αj ,βj)m;β 1)(x)(εω;γ,κ;δ0+;(αj ,βj)m;ϑ p q)(x)

≥ (εω;γ,κ;α0+;(αj ,βj)m;βp)(x)(εω;γ,κ;δ0+;(αj ,βj)m;ϑ q)(x) + (εω;γ,κ;α0+;(αj ,βj)m;β q)(x)(εω;γ,κ;δ0+;(αj ,βj)m;ϑ p)(x). (21)

Proof:

Proceeding on similar lines as in proof of the Theorem 3.1, we establish

(εω;γ,κ;α0+;(αj ,βj)m;β p q)(x)(x− µ)(ϑ−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)δ)

+ p(µ)q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β(1))(x)(x− µ)(ϑ−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)δ)

≥ q(µ)(εω;γ,κ;α0+;(αj ,βj)m;β p)(x)(x− µ)(ϑ−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)δ)

+ p(µ)(εω;γ,κ;α0+;(αj ,βj)m;β q)(x)(x− µ)(ϑ−1)Eγ,κ
(αj ,βj)m

(ω(x− µ)δ), (22)

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [2020], Iss. 3, Art. 3

https://digitalcommons.pvamu.edu/aam/vol15/iss3/3



AAM: Intern. J., Special Issue No. 6 (April 2020) 35

the desired result (21) can be easily obtained by integrating the above expression with respect to µ
over 0 to x and applying (13). �

Remark 3.4.

Considering, m = 1 in (21), we obtain the Chebyshev inequality mentioned Theorem 3.3 for
the fractional integral operator introduced by Srivastava and Tomovski (2009). Again, taking
m = κ = 1 in (21), we establish Chebyshev inequality for the fractional integral operator given by
Prabhakar (1971).

Theorem 3.5.

Let us consider a sequence of positive increasing functions {pi} (i = 1, · · · , n; n ∈ N) on [0,∞)

and also let α, β, αj, βj, γ, κ, ω, x ∈ R+ and
m∑
j=1

αj > κ. Then,

(
εω;γ,κ;α0+;(αj ,βj)m;β

n∏
i=1

pi

)
(x) ≥ {(εω;γ,κ;α0+;(αj ,βj)m;β1)(x)}1−n

n∏
i=1

(εω;γ,κ;α0+;(αj ,βj)m;β pi)(x). (23)

Proof:

The proof of this theorem can be established by induction on n. Firstly, taking a note that two real
valued increasing functions on a given interval are synchronous on that particular interval.

If n = 1, then the result (23) holds true.

If n = 2, then by using (14), we obtain

(
εω;γ,κ;α0+;(αj ,βj)m;βp1p2

)
(x) ≥{(εω;γ,κ;α0+;(αj ,βj)m;β1)(x)}−1×

(εω;γ,κ;α0+;(αj ,βj)m;β p1)(x)(εω;γ,κ;α0+;(αj ,βj)m;β p2)(x).
(24)

Assuming that,

(
εω;γ,κ;α0+;(αj ,βj)m;β

n−1∏
i=1

pi

)
(x) ≥ {(εω;γ,κ;α0+;(αj ,βj)m;β1)(x)}2−n

n−1∏
i=1

(εω;γ,κ;α0+;(αj ,βj)m;β pi)(x). (25)

Since, {pi} (i = 1, · · · , n; n ∈ N) are given to be positive increasing functions, then
n−1∏
i=1

pi is also

an increasing function. Henceforth, applying Theorem 3.1 to the functions
n−1∏
i=1

pi = q, pn = p , we

obtain
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(
εω;γ,κ;α0+;(αj ,βj)m;β

n∏
i=1

pi

)
(x) = (εω;γ,κ;α0+;(αj ,βj)m;β p q)(x)

≥ {(εω;γ,κ;α0+;(αj ,βj)m;β1)(x)}−1(εω;γ,κ;α0+;(αj ,βj)m;β pn)(x)

(
εω;γ,κ;α0+;(αj ,βj)m;β

n−1∏
i=1

pi

)
(x). (26)

Finally, by replacing the last factor of the right hand side (RHS) of the above inequality (26) by the
RHS of the inequality (25), we obtain the required result. �

Remark 3.6.

Taking m = 1 in (23), we obtain the Chebyshev inequality mentioned in the above theorem for
the fractional integral operator introduced by Srivastava and Tomovski (2009). Again, setting m =
κ = 1 in (23), we establish Chebyshev inequality for the fractional integral operator suggested by
Prabhakar (1971).

4. Conclusion

We conclude this paper by commenting on the development of new general extensions of Cheby-
shev type inequalities involving fractional integral operators containing multi-index Mittag-Leffler
function in the kernel. Through properly specialization the parameters, additional integral inequali-
ties concerning the variety of fractional integral operators can further be easily obtained from these
key results.
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