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Abstract 

The present paper studies the effects of Soret and Dufour on MHD boundary layer slip flow over 

a flat plate. The governing partial differential equations are converted to a set of nonlinear 

ordinary differential equations by using similarity transformations. Then, these equations are 

solved numerically by implicit Finite Difference Scheme. The numerical solutions for Velocity, 

Temperature and Concentration profiles for the related essential physical parameters are 

visualized through graphs and discussed. Results show that the velocity rises whereas the 

temperature and concentration reduces with the respective slip parameters. The increase in Soret 

number or decrease in Dufour number reduces the temperature and enhances the concentration of 

the fluid. 
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1. Introduction 
 

The boundary layer flow past a flat plate was the first example considered by Blasius, to 

illustrate the application of Prandtl’s boundary layer theory. The important concept of boundary 

layer was applied to power-law fluids by Schowalter (2004). Acrivos (1960) investigated the 

boundary layer flows for such fluids in 1960. The effect of magnetic field on electrically 

conducting fluid flows was studied by various authors such as Damseh et al. (2006), Anderson et 

al. (1992), Cortell (2005), Howell et al. (1997). The effect of suction/blowing was studied by 

Mahapatra (2012) on MHD power-law fluid flow over an infinite porous flat plate. Oahimire and 

Olajuwon (2014) investigated the effects of radiation, absorption and thermo-diffusion on MHD 

heat and mass transfer flow of a Micro-polar fluid in the presence of heat source. 

 

Quasi-linearization approach to MHD effects on boundary layer flow of power-law fluids past a 

semi infinite plate with thermal dispersion was studied by Kishan and Shashidar (2011). Jadhav 

(2013) examined laminar boundary layer flow of a non-Newtonian power-law fluid past a porous 

flat plate. Kishan and Shashidar (2013) studied MHD effects on non-Newtonian power-law fluid 

past a continuously moving porous flat plate. 

 

Some researchers like Hayat and Hendi (2012) have not presented Dufour and Soret effects on heat 

and mass transfer according to Fourier’s and Flick’s laws. However, Devi and Devi (2011) have 

shown that, when density differences exist in the flow regime, these effects cannot be neglected. 

Afify (2009) has shown that when heat and mass transfer occurred in a moving fluid, the energy 

flux can be generated by a composition gradient namely, the Dufour or Diffusion Thermo effect 

and the mass fluxes developed by the temperature gradient namely, the Soret or Thermal-

Diffusion effect. Rashidi et al. (2015) studied the effect of Soret and Dufour on heat and mass 

transfer for MHD visco elastic fluid flow over a vertical stretching sheet. Pal and Chartterjee 

(2013) studied the MHD mixed convection with the combined action of Soret and Dufour on 

heat and mass transfer of a power-law fluid over an inclined plate in a porous medium. Non-

Newtonian Prandtl fluid over stretching permeable surface was discussed by Jain and Timol 

(2016).  

 

Martin and Boyd (2006), Bhattacharyya et al. (2011) incorporated velocity and thermal slip 

conditions in their studies of laminar flow across flat plates to further refine our understanding of 

boundary layer flow. Hirschhorn et al. (2016) studied MHD boundary layer slip flow and heat 

transfer of power-law fluid over a flat plate. Ibrahim and Shanker (2013) investigated MHD 

boundary layer flow and heat transfer of a Nano-fluid past a permeable stretching sheet with 

Velocity, Thermal and Solutal slip boundary conditions. Heat and mass transfer in MHD Micro-

Polar fluid in the presence of Diffusion Thermo and Chemical reaction was investigated by Kiran 

Kumar et al. (2016).  

 

Recently, Saritha et al. (2016) examined heat and mass transfer of laminar boundary layer flow 

of non-Newtonian power-law fluid past a porous flat plate with Soret and Dufour effects. 

Motivated by these studies and the related applications, the current analysis aims to deliberate 

the effects of Soret and Dufour on heat and mass transfer MHD boundary layer flow of non-
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Newtonian power-law fluid past a porous flat plate with Velocity, Thermal and Concentration 

slip boundary conditions.  

 

2. Mathematical Analysis 
 

The flow of non-Newtonian power-law fluid past semi infinite porous flat plate is considered.  x-

axis is chosen in the direction of the flow and y-axis is considered perpendicular to it. The 

magnetic field strength B0 is assumed along the direction of y-axis. We assumed that Tw(x) = T∞ 

+ bx and Cw(x) = C∞ + cx, where b and c are constants such that the uniform wall temperature Tw 

and concentration Cw are higher than those of their full stream values T∞ , C∞. By invoking all the 

boundary layer approximations, the governing equations for the flow in this investigation can be 

written as  
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(4) 

In the foregoing equations, u and v are the velocity components along the x and y-axes, n is the 

power-law index, K is the power-law fluid parameter,  is density, μ is the magnetic 

permeability, σ is the electrical conductivity of the fluid,  = k/cp is the thermal diffusivity, k is 

the thermal conductivity, cp is the specific heat at a constant pressure, kT is the thermal diffusion 

ratio, cs is the concentration susceptibility, Dm is the coefficient of mass diffusivity, T is the 

temperature, C is the fluid concentration and Tm is the mean fluid temperature. 

 

The boundary conditions associated with the present problem are as follows 

 

𝑢 = 𝐿1 (
𝜕𝑢

𝜕𝑦
) ,   𝑣 = 0,    𝑇 = 𝑇𝑤 + 𝐷1 (

𝜕𝑇

𝜕𝑦
) ,   𝐶 = 𝐶𝑤 + 𝑃1 (

𝜕𝐶

𝜕𝑦
) 𝑎𝑡 𝑦 = 0,           (5a)  

𝑢 → 𝑈∞,    𝑇 → 𝑇∞, 𝐶 → 𝐶∞   𝑎𝑠   𝑦 → ∞,      (5b) 

where 𝐿1 = 𝐿√𝑅𝑒𝑥  is the velocity slip factor with L being the initial value at the leading edge, 

𝐷1 = 𝐷√𝑅𝑒𝑥  is the thermal slip factor with D being the initial value at the leading edge and 

𝑃1 = 𝑃√𝑅𝑒𝑥  is the concentration slip factor with P being the initial value at the leading edge. 

Here Tw and Cw are the temperature and concentration of the flat plate, T∞ and C∞ are the free 

stream temperature and concentration, and 𝑅𝑒𝑥 =
𝑈∞

2−𝑛𝑥𝑛𝜌

𝐾
  is the local Reynolds number. 
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3. Method of Solution 
 

To facilitate the analysis, we follow the previous studies Jadhav (2013) and Rashidi et al. (2015) 

and use the similarity variables 

𝛹(𝜂) = (𝛾𝑥𝑈2−𝑛)
1

𝑛+1 𝑓(𝜂) ,               (6a) 

𝜂 = 𝑦 [ 
𝑈2−𝑛 

𝛾𝑥
]

1

 𝑛+1
 ,       (6b) 

𝜃(𝜂)  =   
𝑇−𝑇∞

𝑇𝑤−𝑇∞
 ,                (6c) 

𝜑(𝜂) =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
 ,               (6d) 

where Ψ is the stream function defined in the usual way and   f  is the reduced stream function for 

the flow.  Then, the velocity components are defined using the similarity variables as 

𝑢 =
𝜕𝛹

𝜕𝑥
= 𝑈𝑓′(𝜂),                                                                                                                (7a) 

𝑣 = −
𝜕𝛹

𝜕𝑦
=

1

𝑛+1
(𝛾

𝑈2𝑛−1

𝑥𝑛
)

1

𝑛+1
(𝜂𝑓 ′ − 𝑓).            (7b) 

Introducing equation (6) and equation (7), the continuity equation is satisfied and the 

momentum, energy and concentration equations are transformed into a set of ordinary 

differential equations as follows:  

 𝑛(−𝑓′′)𝑛−1𝑓 ′′′ +
1

𝑛+1
𝑓𝑓 ′′ − 𝑀𝑓 ′ = 0 ,              (8) 

𝜃 ′′ + 𝑃𝑟 (
1

𝑛+1
𝑓𝜃 ′ − 𝑓′𝜃) + 𝐷𝑢∅′′ = 0 ,              (9) 

1

𝐿𝑒
∅′′ + 𝑃𝑟 (

1

𝑛+1
∅′𝑓 − 𝑓′∅) + 𝑆𝑟𝜃 ′′ = 0 ,           (10) 

Here, primes denote differentiation with respect to η and 

𝑀 =  
𝜎𝐵0

2𝑥

𝜌𝑈
 is the Magnetic parameter, 

𝑅𝑒𝑥 =
𝑈2−𝑛𝑥𝑛

𝜈
 is the Reynolds number, 

𝑃𝑟 =
𝑈𝑥

𝛼
𝑅𝑒𝑥

−
1

𝑛+1  is the Prandtl number, 

 𝐿𝑒 =
𝛼

𝐷𝑚
  is the Lewis number, 

𝐷𝑢 =
𝐷𝑚𝑘𝑇

𝑐𝑠𝑐𝑝
 .

(𝐶𝑤−𝐶∞)

(𝑇𝑤−𝑇∞)𝛼
  is the Dufour number and 

𝑆𝑟 =
𝐷𝑚𝑘𝑇

𝑇𝑚𝛼
 .

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
  is the Soret number. 

Boundary conditions given by equation (5) are transformed into 

𝑓(𝜂) = 0,   𝑓 ′(𝜂) = 𝐴1𝑓 ′′(𝜂), 𝜃(𝜂) = 1 + 𝐵1𝜃 ′(𝜂), ∅(𝜂) = 1 + 𝐶1∅′(𝜂)  𝑎𝑡  𝜂 = 0, 
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𝑓 ′(𝜂) → 1,    𝜃(𝜂) → 0,     ∅(𝜂) → 0    𝑎𝑠    𝜂 → ∞ ,            (11) 

where A1, B1 and C1 are respectively the velocity, temperature and concentration slip parameters, 

which are further defined as  

𝐴1 = 𝐿
𝑈∞𝜌

𝐾
,     𝐵1 = 𝐷

𝑈∞𝜌

𝐾
  and 𝐶1 = 𝑃

𝑈∞𝜌

𝐾
 .      (12) 

The physical quantities of engineering interest in this problem are the local Nusselt number and 

local Sherwood number, which are defined respectively by 

  

𝑁𝑢𝑥 =
𝑞𝑤𝑥

𝑘(𝑇𝑤−𝑇∞)
= −𝜃 ′(0)𝑅𝑒𝑥

1 𝑛+1⁄
   and   𝑆ℎ𝑥 =

𝐽𝑤𝑥

𝐷𝑚(𝐶𝑤−𝐶∞)
= −∅′(0)𝑅𝑒𝑥

1 𝑛+1⁄
,   

 

where the rate of heat transfer qw and rate of mass transfer Jw are defined as 

  

𝑞𝑤 = −𝑘 [
𝜕𝑇

𝜕𝑦
]

𝑦=0
 and  𝐽𝑤 = −𝐷𝑚 [

𝜕𝐶

𝜕𝑦
]

𝑦=0
.   

 

4. Numerical Method 

The combined effects of various physical parameters will have large impact on heat and mass 

characteristics. The transformed governing equation (8), equation (9) and equation (10) are 

coupled and highly non-linear. The non-linearity of the basic equations and additional 

mathematical difficulties associated with the solution part has led us to use the numerical 

method.  Hence, the solutions of these equations with the boundary conditions equation (11) are 

solved numerically using implicit finite difference scheme. 

 

The numerical solutions can be obtained in the following steps: 

  

 Linearize equation (8) using Quasi Linearization method (1965),  

 Write the difference equations using implicit finite difference scheme,  

 Linearize the algebraic equations by Newton’s method, and express them in matrix-

vector form, and  

 Solve the linear system by Gauss Seidal Iteration method.  

 

Since the equations governing the flow are nonlinear, iteration procedure is followed. To carry 

out the computational procedure, first the momentum equation is solved which gives the values 

of f necessary for obtaining the solution of coupled energy equation and concentration equations 

under the given boundary conditions by Thomas algorithm. The numerical solutions of    are 

considered as (n+1)
th

 order iterative solutions and F are the n
th

 order iterative solutions.  To 

prove convergence of finite difference scheme, the computation is carried out for slightly 

changed value of h by running same program. No significant change was observed in the value. 

The convergence criterion used in this study is that the maximum change between the current 

and the previous iteration values in all the dependent variables satisfy 10
-5

.  

 

5. Results and Discussion 
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In this section, by applying the numerical values to different flow parameters, the effects on 

velocity, temperature and concentration fields are discussed. Graphical illustration of the results 

is very useful and practical to discuss the effect of different parameters. All the numerical 

solutions are found for Newtonian and non-Newtonian fluids. In non-Newtonian fluids two cases 

were considered i.e., Pseudo-Plastic Fluids (n = 0.5) and Dilatant Fluids (n = 1.5). Hence, the 

graphs are shown for three cases, i.e. Newtonian Fluids (n = 1.0), Pseudo-Plastic Fluids (n = 0.5) 

and Dilatant Fluids (n = 1.5). 

 

The influence of varying the velocity slip parameter A1 on the fluid velocity f’(η) for Power-law 

fluids is shown in Figure 1. As the velocity slip parameter increases, the fluid velocity also 

increases for a given distance from the plate. Figure 2 depicts the variation of fluid temperature 

with temperature slip parameter B1 for Power-law fluids. It is evident from the illustrations that 

the temperature of the power-law fluid θ(η) decreases with the increase in the slip parameter for 

a given distance from the plate. The thickness of the thermal boundary layer decreases due to the 

fluid at the surface of the flat plate having a temperature lower than that of the flat plate. Figure 3 

shows the behavior of Concentration slip parameter C1 on the concentration profiles ϕ(η) for 

Power-law fluids. It is clear from the graphs that the fluid concentration decreases with an 

increase in the slip parameter near the plate. Hence, the concentration boundary layer decreases 

at the surface of the plate. 

 

Figure 4 demonstrates the effect of variation of the Prandtl number Pr on the temperature θ(η). It 

is revealed from the plots that with an increase in the values of Prandtl number, the fluid 

temperature reduces. It is due to the fact that by increasing the Prandtl number, the thermal 

diffusivity of the fluid reduces and hence the temperature also decreases. Figure 5 illustrates the 

influence of concentration profiles for power-law fluids with different values of Lewis number 

Le. It shows that effect of Lewis number is to decrease the concentration of the fluid. It is due to 

the fact that Lewis number (diffusion ratio) is the ratio of Schmidt number and Prandtl number. 

 

The influence of Soret and Dufour on the Temperature and Concentration of the fluids is 

demonstrated in the Figure 6 and Figure 7, respectively. The Soret effect is a mass flux due to 

temperature gradient which appears in concentration equation whereas the Dufour effect is heat 

flux due to concentration gradient which appears in energy equation. We have considered the 

effects of Soret and Dufour such that their product remains constant. It is clear from the graphs 

that the increase in Soret number or decrease in Dufour number reduces the fluid temperature 

and enhances the concentration of the fluid. We notice that this behavior is a direct consequence 

of Soret effect which produces a mass flux from lower to higher solute concentration driven by 

the temperature gradient. Hence, increase in Soret number cools the fluid and reduces the 

temperature. 

 

6.  Conclusion 
 

In this paper we considered the flow of non-Newtonian power-law fluid past semi infinite porous 

flat plate taking into account Soret and Dufour effects. The governing partial differential 

equations are converted to set of non-linear ordinary differential equations by using similarity 

6
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transformations. Then, these equations are solved numerically by implicit Finite Difference 

Scheme. From the above investigation the following conclusions may be drawn: 

 

 Velocity at the surface of the plate increases with the increase in the velocity slip 

parameter. 

 Thickness of the boundary layer decreases with the increase in the Prandtl number and 

the temperature slip parameter. 

 Concentration boundary layer thickness decreases with the increase in the Lewis number 

and the concentration slip parameter. 

 The effect of Soret number is to reduce the temperature and enhance the concentration. 
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Figure 1.    Velocity profiles for various values of Velocity Slip parameter A1 with Pr = 1, Le = 

1, Sr = 0.05, Du = 0.08, M = 0.1, B1 = 0, C1 = 0 

 

   
Pseudo-Plastic Fluids (n = 0.5)      Newtonian Fluids (n = 1.0) 

0

0.5

1

0 1 2 3 4 5

A1 = 0.0

A1 = 0.2

A1 = 0.4

A1 = 0.6

f ' 

η 

0

0.5

1

0 1 2 3 4 5

 A1 = 0.0

A1 = 0.2

A1 = 0.4

A1 = 0.6

f ' 

η 

0

0.5

1

0 2 4 6

B1 = 0.2

B1 = 0.4

B1 = 0.6

B1 = 0.8θ 

0

0.5

1

0 1 2 3 4 5

B1 = 0.2

B1 = 0.4

B1 = 0.6

B1 = 0.8

θ θ 

η η 

0

0.5

1

0 1 2 3 4 5

 A1 = 0.0

A1 = 0.2

A1 = 0.4

A1 = 0.6

f ' 

η 

9

Reddy and Saritha: MHD Boundary Layer Slip Flow over a Flat Plate

Published by Digital Commons @PVAMU,



40                                                                                                                              B. Shashidar Reddy and K. Saritha 
 

 
Dilatant Fluids (n = 1.5) 

Figure 2.  Temperature profiles for various values of Temperature Slip parameter B1 with Pr = 1,   

Le = 1, Sr = 0.05, Du = 0.08, M = 0.1, A1 = 0, C1 = 0 
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Figure 3.  Concentration profiles for various values of Concentration Slip parameter C1 with  Pr 

= 1, Le = 1, Sr = 0.05, Du = 0.08, M = 0.1, A1 = 0, B1 = 0 
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Pseudo-Plastic Fluids (n = 0.5)      Newtonian Fluids (n = 1.0) 
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Figure 4.  Temperature profiles for various values of Prandtl number Pr with Le = 1, Sr = 0.05, Du = 

0.08, M = 0.1, A1 = 0, B1 = 0, C1 = 0 
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Dilatant Fluids (n = 1.5) 

Figure 5.  Concentration profiles for various values of Lewis number Le with Pr = 1, Sr = 0.05, 

Du = 0.08, M = 0.1, A1 = 0, B1 = 0, C1 = 0 
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Figure 6.   Temperature profiles for various values of Soret and Dufour number with Pr = 1, 

Le=1, M = 0.1, A1 = 0, B1 = 0, C1 = 0 
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Figure 7.  Concentration profiles for various values of Soret and Dufour number with Pr = 1, 

Le=1, M = 0.1, A1 = 0, B1 = 0, C1 = 0 
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