@dm% Applications and Applied Mathematics: An International
o Journal (AAM)

Manuscript 1843

Optimal Inequalities for Submanifolds of an Indefinite Space Form

Rifat Glines
Mehmet Giilbahar
Sadik Keles

Erol Kilig

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam

6‘ Part of the Geometry and Topology Commons


https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol14%2Fiss5%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol14%2Fiss5%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

GUine? et al.: Optimal Inequalities for Submanifolds

podifim,
4 ' \ Available at Applications and Applied
(ﬂ d m http://pvamu.edu/aam Mathematics:
B ’f Appl. Appl. Math. An International Journal
ISSN: 1932-9466 (AAM)

Special Issue No. 5 (August 2019), pp. 13 - 32

Optimal Inequalities for Submanifolds of
An Indefinite Space Form

'Rifat Giines, >*Mehmet Giilbahar, *Sadik Keles and “Erol Kili¢

1.34In6nii University
Faculty of Science and Arts
Department of Mathematics
Malatya, Turkey

2Harran University
Faculty of Science and Arts
Department of Mathematics
Sanlwurfa, Turkey
lrifat.cunes @inonu.edu.tr; >mehmetgulbahar @harran.edu.tr; ®sadik.keles @inonu.edu.tr;
4erol.kilic@inonu.edu.tr

* Corresponding Author

Received: February 28, 2019; Accepted: May 28, 2019

Abstract

Optimal inequalities involving the scalar curvature, the mean curvature vector and the second fun-
damental form for pseudo Riemannian submanifolds are proved and the equality cases of these
inequalities are discussed. These results are studied for submanifolds of various indefinite contact
space forms.

Keywords: Curvature; Contact space form; Indefinite metric; Mean curvature vector; Pseudo
Riemannian submanifold; Second fundamental form

MSC 2010 No.: 53B30, 53C40
13

Published by Digital Commons @PVAMU,



Submission to Applications and Applied Mathematics: An International Journal (AAM)

14 R. Giines et al.

1. Introduction

In the celebrated Nash’s embedding theorem (Nash (1956)) sense, A. Friedman (1965) proved
that any n-dimensional pseudo-Riemannian manifold of index ¢ with analytic metric can be an-
alytically and isometrically embedded in a semi-Euclidean space of dimension %n(n + 1) and
index > ¢. This result gave an effective motivation to geometers to study pseudo-Riemannian
submanifolds and discover simple sharp relationships between intrinsic and extrinsic invariants
of a pseudo-Riemannian submanifold. The main extrinsic invariant is the mean curvature and the
main intrinsic invariants include the classical curvature invariants, namely the scalar curvature, the

sectional curvature, and the Ricci curvature.

On the other hand, Kulkarni (1979) showed that if the sectional curvature of a connected, smooth
manifold with a smooth indefinite metric is either bounded from above or bounded from below,
then M is of constant curvature. Furthermore, Dajczer and Nomuzi (1980) and Harris (1982) re-
marked that if the absolute value of the sectional curvature is bounded for all timelike 2-planes II
(or for all spacelike 2-planes II) at p € M, then M has constant sectional curvature at p € M. These
facts eliminate the comparison between the intrinsic and extrinsic curvature invariants for a pseudo-
Riemannian submanifold while there exist a variety of type relations in Riemannian case (Akram
et al. (2017); Chen (1993); Chen (1996); Chen (2011); Lee et al. (2017); Mihai and Ozgiir (2011);
Sahin (2016); Tripathi (2003); Zhang and Zhang (2016)).

In 2004, Schuller and Wohlfarth (2004) and in 2007, Punzi et al. (2007) recognized that the do-
main of the sectional curvature map is not a linear subspace. It is a polynomial subspace of a
projective vector space. They stated that the sectional curvature map is only defined on the re-
striction of this variety to non-null planes since the restriction of the domain of A to non-null
planes is unnatural, while a restriction to some subvariety of the Grassmannian would be natu-
ral. Therefore, they imposed the notion of bounded sectional curvature on a Lorentzian manifold.
This innovative development makes it possible to establish some relationships between the intrin-
sic and extrinsic curvature invariants for submanifolds of a Lorentzian manifold. For this purpose,
the authors presented some relations dealing rigidity theorems in degenerate and non-degenerate
submanifolds of a pseudo-Riemannian manifold (Gulbahar et al. (2013a); Gulbahar et al. (2013b);
Kili¢ and Giilbahar (2016); Poyraz and Yasar (2016); Poyraz et al. (2017); Tripathi et al. (2017)).

In this paper, we focus on scalar curvature of non-degenerate submanifold, due to an analogy with
the theory of submanifolds in Riemannian manifolds. We give some relationships between the
intrinsic and extrinsic curvature invariants for submanifolds of pseudo-Riemannian manifolds and
investigate these relationships for submanifolds of various indefinite contact space forms.

2. Pseudo-Riemannian manifolds and submanifolds

Let M be an 7i-dimensional pseudo-Riemannian manifold with a non-degenerate metric g of con-
stant index ¢. Suppose that IT is an area spanned by vectors X and Y related by the general linear
group GL(2,R) in the tangent space 7,,M at p € M. Let us denote 2-Grassmannian on 7,,// under
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the special orthogonal group SL(2,R) by
Grz(TpM) = (TPM®TPM)/SL(27R)' (1)

Then, the sectional curvature map is defined by

K : G, (T,M)N {1l : G(ILII) # 0} — R, )
where
Suppose {e€, ..., €z} is an orthonormal basis for the tangent space Tp]\N/[ and II be an area spanned
by e;and €j, 7 # j € {1,...,m} which are mutually orthonormal vectors. Then we have

K(II) = K(&;,¢;) = &5 R(&;,€;,¢;,), 3)
where £, = g(€y, €p), ¢ € {1,...,m} (Punzi et al. (2007)).

The Ricci curvature of a fixed unit vector €;, i € {1,...,m} and the scalar curvature at a point
p € M are defined by

lilvc(gz) = Z &qﬁ(é,gj,%,é) = Z [A{—ija 4)
i#j=1 i#j=1
and
7’\:(p> = Z 5i5jR(giagj7’éj7gi) = % Z Kij? (5)
1<i<j<m ij=1
respectively.

Now, let (M, g) be an n-dimensional pseudo-Riemannian submanifold of (M, §) with constant
index ¢ and co-dimension n. Then M is called a spacelike submanifold and timelike submanifold
if ¢ = 0 and ¢ = n respectively.

The Gauss and Weingarten formulas for a pseudo- Riemannian submanifold are given by
VY =VxY +0(X,Y), VxN=—Ayn(X)+ VLN, (6)

forall X, Y € TM and N € T+ M, where 6, V and V+ are, respectively, the pseudo-Riemannian,
the induced pseudo-Riemannian and the induced normal connections in the ambient pseudo-
Riemannian manifold M, the pseudo-Riemannian submanifold M, and the normal bundle 7+ M
of M respectively.

Denote the inner product of both the metrics ¢ and g by (,). Let R and R be the Riemannian
curvature tensors of (M, g) and (M, g), respectively. For any non-null vectors X, Y, Z, W € T M,
there exists the following relation between the tensors R and R:

R(X,Y,Z,W) = R(X,Y, Z,W) + (o(X, W), 0(Y, 2)) — (o(X, Z),0(Y,W)). (7
The equality (7) is also known as algebraic Gauss equation (Chen (2011)).
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Let {ey,...,e,} be an orthonormal basis of 7, M. From (7), it follows that

€i€jR(€j7 €;, €4, €j) = €i€j§(€j, €;, €4, €j) + €i€j <O'(€i, Bi), U(Bj, €j>> — &€y <U(€i, €j), O'(ej, 61)> .

Thus, we have

n

27(p) = 27, m(p) + Z ErEs Z €i€j01;05; — Z Er Z 51‘53‘(0-;')2, (8)

r,s=n-+1 i,j=1 r=n-41 i,j=1

where 77, 3/ (p) is the n-scalar curvature with respect to 7, M defined by

TT m(p Z K(e;,e;), 9)
7,] 1
and oj;, 7 € {n +1,...,n}, are the coefficient of the second fundamental form given by
o(e;,ej) = Z Er0;. (10)
r=n+1

The mean curvature vector H(p) at p € M is given by

1
H(p) = —trace Zej o(ej,ej). (11)

We note that M is called totally geodesic if 0 = 0 and minimal if H = 0.If o(X,Y) = (X, Y)H
forall X,Y € T'M, then M is called totally umbilical (O’Neill (1983)). Also, M is called pseudo-
minimal or quasi-minimal if H # 0 and (H (p), H(p)) = 0 at each point p € M (Rosca (1972)).

3. Timelike and spacelike distributions

Let (M g) be an m-dimensional pseudo-Riemannian manifold of constant index ¢. A distribution
on M is called maximally timelike if it is timelike and has rank ¢. A distribution on M is called
maximally spacelike if it is spacelike and has rank (m — q). Also we note that every max1mally

timelike (or spacelike) distributions on M are isomorphic as smooth vector bundles over M (Baum
(1981); Nardmann (2014)).

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of (Mv ,g) with constant index
q and co-dimension n. Suppose that V is a maximally timelike and # is a maximally spacelike
distribution on M. Then there exists the following decomposition:

TM =YV ®H. (12)

Thus we can find an orthonormal frame {ey, ..., e, €441, .., €,}, wWhere eq, ..., e, are timelike
and e,41,. .., e, are spacelike, such that

V = Span{ey, ..., e.}, H = Span{egi1,..., €}

With a similar deduction, we can state maximally timelike and spacelike subbundles of the normal
bundle T+ M of index ¢ as follows.
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Let V be the maximally timelike and H be the maximally spacelike subbundle of the normal bundle
T-+M. Thus, we have a g-orthogonal decomposition of the normal bundle T+ M as follows:

T M=V & (13)
From (13), we can choose an orthonormal frame {ey, ..., €z €341, ..., €5}, Where €1, ..., ez are
timelike and €541, . . . , €5 are spacelike, such that

V= Span{é},...,é}}, H = Span{gq+1,...,gﬁ}.
Now we can write the second fundamental form and the mean curvature vector as

o (X,Y)=0"(X,Y)+ 0™ (X,Y), XY €TM,
H(p)= H|;(p) + H|z(p), (14)

where 0¥ (X,Y), H|3(p) € Vand o® (X,Y), H|;(p) € H.

The pseudo-Riemannian submanifold M is called timelike V-geodesic if 017’ = 0, timelike H-
v

geodesic if 0‘7) = 0, timelike mixed geodesic if 0‘7 = 0, timelike geodesic if 0~ =0,
H VXH

spacelike V-geodesic if aﬁ‘ = 0, spacelike H-geodesic if Uﬁ‘ = 0, spacelike mixed geodesic
1% H

if aﬁ‘ = 0, spacelike geodesic if oM = 0, mixed geodesic if ol ,, = 0 (Tripathi et al.
VXH
(2017)).

Furthermore, the submanifold M is

(1) timelike geodesic if and only if 09‘ = Oj}‘ = oV =0,
)’ i VxH
(2) spacelike geodesic if and only if 07| = o®| = O'H‘ =0,
v VxH
(3) mixed geodesic if and only if o = oM =0.
VxH VxH

Fore more details, we refer to Tripathi et al. (2017).

4. Indefinite contact space forms

We shall recall some basic definitions and notations on various almost contact pseudo-metric man-
ifolds.

A (2m + 1)-dimensional (odd dimensional) pseudo-Riemann manifold is called almost contact
pseudo-metric manifold if it is endowed an almost contact structure (¢, £, 7, g) including of a (1, 1)
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tensor field ¢, a vector field &, a 1-form 7 and the compatible-pseudo metric g satisfying

0’ X = —X +n(X)E, (15)
n(X) =¢e9(X, %), (16)
n(€) =1, (17)
g(¢X,9Y) =g(X,Y) —en(X)n(Y), (18)

for any vector fields X, Y on M, where ¢ = g(&,&) = F1. Tt is clear from (18) that ¢.X and X
have the same casual character for any X on M.

Now, let us denote any (2m + 1)-dimensional almost contact pseudo-metric manifold of even index
and odd index by M;™*! and M;ﬁjl, respectively, throughout this paper. In this case, we obtain

e = 1for My™"" and e = —1 for M3 1". Also, we note that an almost contact pseudo metric
manifold becomes

i) an almost contact metric manifold (Riemannian case) if ¢ = 1 and s = 0;
ii) an almost contact Lorentzian manifold (Lorentzian case) if e = —1 and s = 0.

An almost contact structure is said to be normal (Sasaki and Hatakeyama (1961)) if the induced
almost complex structure J on the product manifold M x R defined by

d d
J(X,A%):<¢X—A§,U(X)E), (19)

isN integrable, where X is tangent to M, ¢ is the coordinate of R and A is a smooth function on
M x R. The condition for an almost contact structure being normal is equivalent to vanishing of
the torsion tensor

(¢, 9] + 2dn @ ¢,

where [, ¢| is the Nijenhuis tensor of ¢, given by
[0.0] (X,Y) = [6X,9Y] = ¢ [¢X, Y] = ¢ [X,0Y] + ¢* [X,Y].
We note that an almost contact pseudo-metric manifold is called Sasakian if
(Vxo)Y =G(X,Y)E—n(Y)X, X, Y eTM, (20)

Also, a contact pseudo-metric manifold M is Sasakian if and only if the curvature tensor R satisfies

RIX, V)¢ =n(Y)X —n(X)Y, X,Y €TM. Q1)

In an almost pseg\clo—contact metric manifold M. , if the fundamental 2-form ® and the 1-form 7
are closed, then M is said to be an almost cosymplectic manifold (Goldberg and Yano (1969)).
It is known that an almost contact metric structure is cosymplectic if and only if Vi = 0 (Blair
(2002)).

https://digitalcommons.pvamu.edu/aam
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An almost contact pseudo-metric manifold is called a generalized indefinite contact space form if
there exist three smooth functions f;, fo and f35 on M such that its curvature tensor satisfies

R(X,Y)Z = fi{glY,Z2)X —g(X,2)Y}
+ fo{9(X,02)pY —g(Y, pZ2)pX + 29(X, Y )pZ} (22)
+ fsin(X)n(2)Y —n(Y)n(2) X + g(X, Z)n(Y)E —g(Y, Z)n(X)&},

forall X,Y, Z €T M. Tn this case, we will write M (f1, f2, f3). We also note that a generalized
indefinite contact space form is called

i) an indefinite Sasakian space form if

c+ 3¢ c—e¢
fl 4 ) f2 f3 4 ) ( )
ii) an indefinite cosymplectic space form if
c
f1=f2=f3:£—1§ (24)
iii) an indefinite Kenmotsu space form if
c+3 c+1
fi 1 f2=13 1 (25)
S. Scalar curvature
We begin this section with recalling the following algebraic lemma:
Lemma 5.1. (Tripathi (2003))
If ay,...,a, are n (n > 1) real numbers then
1 n 2 n
- | < 2
H(Xn) =T
i=1 i=1
with equality if and only if @y = - - - = a,,.
Theorem 5.2.
Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of index ¢. Then
a)
~ ~1 12 2 -
27(p) = 27(p) + n*(H, H) + n(Hg, Hl) — || [ |o¥| |"=2]0” (26)
v H VxH

The equality case of (26) is true for all p € M if and only if M is spacelike mixed geodesic and
the shape operator of M takes the following form

—a, I, 0
A, = , re{l,...,q} 27)
0 a

Published by Digital Commons @PVAMU,
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b)

o7 (p) < 27(p) + n(H, H) — n{H|z, H|5) + ) H+‘ ]

(28)

VXH‘

The equality case of (28) is true for all p € M if and only if M is timelike mixed geodesic and the
shape operator of M takes the form

—b1, 0 B N
A, = , re{qg+1,...,n}. (29)
0 blny
¢) The equalities in both cases (26) and (28) are true simultaneously if and only if M is mixed
geodesic.
Proof:

We have from (8) that

-y <i<az>zj+ (> <az;->2)

r=g+1 \i,j=1 r=1 \izj=q+1

n n q q n
S (S @)y s e
r=q+1 \%,j=q¢+1 r=1 i=1 j=q+1
n q n
2303 () (30)
r=g+1 i=1 j=q+1
Using Lemma 5.1 in (30) we get (26). If the equality case of (26) is true, then we get
q q n
Z(Z )>=07 Z(Z )—0 (1)
r=1 \i#j=1 r=1 \i#j=q+1
and
n q n
> 2> () =0 (32)
r=g+1 i=1 j=q+1

which imply that M is spacelike mixed geodesic and the shape operator of M takes the form as
(27). The converse part is straightforward. This completes proof of the statement (a). Similarly,
the proofs of statements (b) and (c) are straightforward. =

Now, we shall need the following lemma for later uses.

https://digitalcommons.pvamu.edu/aam
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Lemma 5.3.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of a generalized indefinite con-

tact space form (M, g) and {ejy,es,...,e,} be an orthonormal basis of 7,,M at a point p € M.
Then, we have the followings:

i) For any non-degenerate plane section II = Span{e;, e;}, it follows that

K(I) = fi+3frei; G(dei ;) — f3 {ein® (er) + ;77 (e5)} - (33)

ii) For any unit vector e; on 7, M, we have

Ii\i/CTpM(ei) =(n-1) f1+3f25i|¢€i’2+f3 ‘ft 2, (34)
where &' is the tangential part of £ with respect to (M, g).
1ii)
Frou(p) =n(n—1) fi+3f |6 +n fy ¢ (35)
Proof:

From (3) and (22), we find (33). Next, using (33) in (4) and (5), we get (34) and (35), respectively.n

From Lemma 5.3 and Theorem 5.2, we get the following corollary:

Corollary 5.4.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of ¢ index. Then we have the
following table.
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Ambient manifold Inequality

27 2
927 () 2 2n(n = 1) 1+ 602 1912 + 20 g [¢1]7 4 n2 01, 10 4 il w1l | F] |

2 - 2
|l -2
@ Generilazed indefinite contact space form H 2 VXH _ P
B2r(p) € 20(n— 1) 1+ 62 1912 + 20 f [61[% 4 021, B) — (i1 HIgp + |07 |
< 12 . 2
+| [ 2]
H VXH
: - - 2
a27(p) > n(n — 1) (SF2) + 30550 (012 + n(25h) [¢t] + n2(H, H) + n(HIG, HIg)
s — 12 - 2
LI e M i
?2) Indefinite Sasakian space form 1&722:n+1 13 v H VXH

b27(p) < n(n = 1) (F2) + 3551 1812 + n(SFY) |68 + n2(H, 1) — n(H I, HIZ)
e - 12 . 2
L+ 2]
% H

VXH

W27 (p) 2 n(n — 1) (532) + 3051 1612 4 n(SfL) €8] 4+ n2(H, 1) 4 n(H]

— |2 — 2 2

i M
. % H \éXH

W2r(p) < nn— 1) (552) +3(2EL) 012 + n(efh) |¢f] +nz<H,H>—n<H|,7,H\,;>

o HIG)

V|

e Sasakian s ~2m+41
3) Indefinite Sasakian space form 1VI2 s+1

AN I
#| P L 2]
v H

VXH

W27(p) 2 §{n(n — 1) +3 |12 +n [e*]®) + n2 (5, H) + n(HIG, HIg)

12 ~ 2 S
o M A e M T N
@) Indefinite cosymplectic space form ) v 2 H ) VXH
B27(p) < §{n(n —1) +3 (6| +n [¢']*} + n2(H, H) - n(H|z Hizp)
Sl12 S 2 = 2
P P 2|
v H VXH
2
a27(p) > n(n — 1) (SF2) + 32 1912 + n(ZED) [t + w20, 1) + n(H I, HIG)
7l 12 712 = 2
i N Il R M I L
) Indefinite Kenmotso space form v H VXH

2
B 27(p) < n(n — 1) (SF2) + 355 1012 + n(SEL) [¢b]? + n2(H, H) — n(HI g HIp)
_ 2 < 2 . 2
| [ 2]
% H

VXH

1. The equality case of inequalities (a) in the previous Table is satisfied if and only if M is space-
like mixed geodesic and the shape operator of M takes form as (27).

ii. The equality case of inequalities (b) in the previous Table is satisfied if and only if M is time-
like mixed geodesic and the shape operator of M takes the form as (29).

iii. The equalities in both cases (a)-(b) are satisfied simultaneously if and only if M is mixed
geodesic.

Proof:

Using (35) in the equation (26), we find (1). Replacing fi = <2, f, = f3 = <* we get (2).
Replacing f; = <2, f, = f3 = <* we get (3). Putting (24) and (25) in (26), we obtain (4) and
(5) respectively. Rest of the proof is straightforward. n

Theorem 5.5.

Let (M, g) be a 2¢-dimensional pseudo-Riemannian submanifold of index ¢. Then we have

https://digitalcommons.pvamu.edu/aam
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a)

~ 12 ~1 12 Y
27(19)22?(p)+4q2<H,H>+2q<H|v7H|\7>_“’H‘ ’ _‘UH‘ ‘ i
v H

(36)
VxH

The equality case of (36) is true for all p € M if and only if M is spacelike mixed geodesic and
trace (Ae,) = 0forr € {1,...,q}.

b)

<1 12 -2 . 2
2T(p)§27~'(p)+4q2<H,H>—2q<H|g,H|g>+‘O’v’V‘ +’0V‘H’ 42|07 .37

VXH

The equality case of (37) is true for all p € M if and only if M is timelike mixed geodesic and
trace (A.,) =0forr € {g+1,...,n}.

¢) The equalities in both cases (36) and (37) are true simultaneously if and only if M is mixed
geodesic and minimal.

Proof:

If we put n = 2¢ in (26), we obtain (36). The equality case of (36) is true if and only if M is
spacelike mixed geodesic and

—a,1; 0
A, = , red{l,...,q}, (38)

0 a.ly
which shows that
trace (A.,) =0, re€{l,...,q}.
Similarly, if we put n = 2¢ in (28), we obtain (37). Equality case of (37) is true if and only if M

is spacelike mixed geodesic and

—a,1;, 0 _ _
A, = , re{qg+1,...,n}, (39)
0 al,

which shows that
trace (A, ) =0, re{qg+1,...,n}.

Taking into consideration (38) and (39), the equality cases of both (36) and (37) are true simulta-
neously if and only if M is mixed geodesic and minimal. n

Corollary 5.6.

Let (M, g) be a 2g-dimensional pseudo-Riemannian submanifold of index g. Then we have the

Published by Digital Commons @PVAMU,
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following table.

Ambient manifold Inequality

W27(p) > 2n(n — 1) f1 + 652 1912 +2n f3 [¢t[” + 402 (H, H) + 20¢H| 5, HIg)
2

T I -
= = P 2]
(1) | Generilazed indefinite contact space form v 2 H . v e H
D 27(p) < 2n(n — 1) f1 +6f3 |17 +2n f3 |6t]” + 49 (H, H) — 2q(H | HIzp)
- 2 N 2
+ ] [ 2|
H VXH
k — — 2
W27(p) > n(n — 1) (TF2) + 30250 1012 + n(252) || + 4> (H, H) + 20(HI, HIg)
2, B _
= = P - 2]
. N ~2m—+1 Vv H VXH
?) Indefinite Sasakian space form M2 o - _ 2
s m27(p) < n(n - 1) (52) + 3551 1012 + (250 |68 + 40®(H, H) - 20(H| 7, Hg)

2

S 2
SR
H

VXH

W2r(p) 2 n(n — 1) (532) +3(%5L) 1612 + (<L) [t + 492 (H, H) + 20081, Hg)

=2 12
LA P % i et
. N . —2m+1 v H VXH
3) Indefinite Sasakian space form M S . .
2ot W27(p) < nn - 1) (552) +305F) 1612 + n(FL) [f° + 20?8, B) — 20081, HI
< 2 < |2 — 2
w2
v H VXH

W2r(p) 2 §{n(n = 1) +3 612 +n [¢f|*) + 402 (H, H) + 20(HI 5, HIG)
2 2 - 2
L i el e
v H

VXH
b 2r(p) < §{n(n — 1) +3 1612 +n [t} + 492 (H, H) — 2a(H |7, HIz)

@ | Indefinite cosymplectic space form

— 2
|
VxH

5 2 S 2
#| [ 1]
v H

W27 (p) 2 nln — 1) (SF3) +3(5FL) 1012 + n(<FL) [et|” + a9, 1) 4 2a(H G, HIG)

2 —~ 2 2

IR M
. % H 2V><’H
w2r(p) < n(n — 1) (F2) +3(5FL) 012 + n(efh) |¢t] “"Z”" H) — 2q(H| 7, Hl37)

,|(,H

) Indefinite Kenmotso space form

UH‘

5 2 5 2
#| [ L 2
v H

VXH

i. The equality case of inequalities (a) in the previous table is satisfied if and only if M is space-
like mixed geodesic and trace (A.,) = 0 forr € {1, ..., q}.

ii. The equality case of inequalities (b) in the previous Table is satisfied if and only if M is time-
like mixed geodesic and trace (A4.,) = 0forr € {g+1,...,n}.

iii. The equalities in both cases (a)-(b) satisfy simultaneously if and only if M is mixed geodesic
and minimal.

Proof:

Using (35) in the equation (36), we find (1). Replacing fi = <2, f, = f3 = <* we get (2).
Replacing f; = <2, f, = f3 = <* we get (3). Putting (24) and (25) in (36), we obtain (4) and
(5) respectively. The rest of the proof is straightforward. n

Corollary 5.7.

Let (M,g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ of an (n + n)-
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dimensional pseudo-Euclidean space of index g. Then we have

7(p) < 27(p) + w

The equality case of (40) is true for all p € M if and only if the shape operator of M takes the

form
A —a, 1, B, { } “n
e, = , re{l,... . n},
Bl a,I,,

T

(H,H) + | o]y (40)

where I, is the ¢ X ¢ identity matrix, [,,_, is the (n — ¢) x (n — ¢) identity matrix, B, ¢ X (n —q)
submatrix, BY is the transpose of B,.
Proof:

Under these assumptions, ¥ = 0 and § = 0. Taking into consideration (28), we have (40). From
(27), equality case of (40) is true if and only if the shape operator of M takes form as (41). -

Corollary 5.8.

Let (M,g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ of an (n + n)-
dimensional pseudo-Euclidean space of index ¢q. Then we have the following table.

Ambient manifold Inequality
1 Generilazed indefinite contact space form 27(p) > 2n(n — 1) f1 + 6f2 |62 + 2n f3 ‘Et'z + 7”("';1) (H, H) + | "‘VX’H‘Q i
@ | Indefinite Sasakian space form A72T 1 27(p) > n(n — 1) (5£3) +3(°51) 1612 + n(S5H) ‘gt|2 20D g Ey 4 | U‘VX%f .
@ | Indefinite Sasakian space form A5 1 27(p) 2 n(n — 1) (52) +3(5F) 1912 + (L) [et + 2D im, 1)y + [ olyen|?
@) Indefinite cosymplectic space form 27(p) > §{n(n —1) +3 112 +n ‘gt}z} + %(H, H) + ‘ O"VX'H‘Z :
®) | Indefinite Kenmotso space form 2r(p) 2 n(n — 1) (52 430250 1612 4 () e + 207D () kol

The equality case of inequalities in the previous table is satisfied for all p € M if and only if the
shape operator of M takes the form as (41).

Proof:

Using (35) in the equation (40), we get (1). The proof of other statements could be obtained by
considering (23), (24) and (25). n
Corollary 5.9.

Let (M,g) be an n-dimensional spacelike submanifold of an (n 4+ n)-dimensional pseudo-
Euclidean space. Then we have

27(p) > 27(p) + n2(H, H) + n(H|g, H|5) — ‘UH] , (42)

and

27(p) < 27(p) +n*(H, H) = n(H|, Hlg) + |0 . 3)
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The equality cases of (42) and (43) are true simultaneously if and only if M is totally umbilical.

Proof:

Under these assumptions, ¥ = 0 and ¢ = 0. Thus, from (26) and (28) we get (42) and (43),
immediately. From (41), the equality cases of (42) and (43) are true simultaneously if and only if
M is totally umbilical. n

Corollary 5.10.

Let (M, g) be an n-dimensional spacelike submanifold. Then we have the following table.

Ambient manifold Inequality

. 2 t]2 2 #|?
D27(p) > 2n(n — 1) f1 + 6f2 1612 + 2n f3 [6!]7 + n2(H, H) + n(HIG, HIg) — |0
[§)) Generilazed indefinite contact space form 2 ~2
D27() < 20(n = 1) 1 + 653 1912 + 20 g [61]% + 02 (H ) — n(H g HIg) + oY

; c+3 c—1 2 e—1 t)|2 2 N _ #|?
o g | #2702 00— 0 (S5 a5 1012 4 n(<5h) [+ n2 i) + i HIg) - [oF|
@ | Indefinite Sasakian space form M5 5 ) L . Ly
W2r(p) < nin = 1) (S5 +3(FL) 1612 + n(FL) (667 + n20H, 1) — ntig 1 + |0V

. B . 12
920(p) 2 nn = 1) (552) + 3055 1012 + (D) [¢f]7 + n2 (0 1) + nalg, HIG) - |o 7|
‘2

- . = 2m41
3) Indefinite Sasakian space form MQS +1

W2r(p) < nin — 1) (552) + 3054 1612 + n(SEL) [ef” + n2er, BY — n(H I, HIZ) + 10\7

2 12
D27(p) > §{n(n — 1) +3 1912 +n [¢']°} + n2(H, H) + n(H|G, HIg) — |o7
. . 2 v v
@) Indefinite cosymplectic space form

512
D27() < §{nn = 1) +3 (0% +n [¢7) + n2 (5 1) — alHIg HIg) + |2V

E . 712
W27 (p) 2 n(n — 1) (5F3) +8(FEL) 1912 + n(<EY) [et? 4+ n20m, 1) + 01, HIG) — ]a“\
(5) | Indefinite Kenmotso space form 5 o
»27(p) < n(n — 1) (SF2) + 354 1912 + n(SFL) [¢* + n2(H, H) - n(HIg HIp + |a"‘

The equalities in both cases (a)-(b) satisfy simultaneously if and only if M is totally umbilical.

Proof:

Using (35) in the equations (42) and (43), we get (1). The proof of other statements could be
obtained by considering (23), (24) and (25). =

Now, we need following algebraic lemma for later uses.

Lemma 5.11.
Letay,...,an,, b1,...,b,, and cq,.. ., c,, be real numbers. Then
2
1 n1 %) ns ny N2 ns
T i+ b= e <> (@) + D> (b)) + Y (@), (44)
i=1 j=1 k=1 i=1 j=1 k=1
with the equality if and only if
Y=Y =3 u=0 @
i=1 j=1 k=1
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Proof:

From the Binomial theorem we have

=1 j=1 k=1 i=1 Jj=1 k=1

ni N2 ns 2 n1 No ns 2
A (Som S Ea) +(SoarSon 3
i=1 j=1 k=1 j=1 k=1

i=1

=D (@)Y )+ (), (46)
i=1 j=1 k=1

which is equivalent to (44). Equality case of (44) is true if and only if
YSUED S iy
i=1 j=1 k=1
SUED SRS iy @)
i=1 j=1 k=1

n1

Zai—kibj—i—ick:(),
j=1 k=1

i=1
which implies (45). -

Theorem 5.12.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ (¢ # 0). Then
a)
- 5 n?
27(p) 227(p) +n*{H, H) + " (H]5. Hly)
) (48)
-2

O'V

V’ H VxH

The equality case of (48) is true for all p € M if and only if the mean curvature vector is spacelike.
b)

2
2r(p) < 27(p) + n*(H, H) — - (H, Hlz)
2 (49)

~1 2 < 12 _
—l—’av‘ ‘ —l—‘av) ‘ +2|oM
V H

VXH

The equality case of (49) is true for all p € M if and only if the mean curvature vector is timelike.

¢) The equalities in both cases (48) and (49) are true simultaneously if and only if M is minimal.
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Proof:

From (8) we have

q n

2r(p) =27(p) + n*(H, H) + > Y (0’ +>_ > (of)?

r=1 =1 r=1 i#j=q¢+1

q q n q n n
DD = D0 )= Y D (o)’ (50)
r=1 i#j=1 r=q+11,j=1 r=q+11%,j=q+1

n q

=23 3 Y o2y >y (o)

r=1 i=1 j=q¢+1 r=q¢+1 i=1 j=q¢+1

Applying Lemma 5.11 in (50) we obtain (48).

Equality case of (48) is true if and only if

n q n

DD DRCTES 35 SILTD 35 9 SCA (5)

r=1 i#j=q+1 r=1 i#j=1 r=q+1 1=1 j=q+1

Furthermore, we have from Lemma 5.11 that
H|y =0, (52)

which yields to the mean curvature is spacelike.
Similarly, the proofs of the statements (b) and (c) are straightforward. -

Corollary 5.13.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ (¢ # 0). Then we
have the following table.
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Ambient manifold Inequality

2 "2 27 a7 2
W 27(p) > 2n(n — 1) f1 +6f2 1912 + 20 f3 [6¢F + n2(H, H) + B (HIg, HIG) — | o™ |7 = | o™
47Ty v H
~ 2
o gv‘
(1) | Generalized indefinite contact space form 5 VXH 5 s 2
B2r(p) < 2n(n — 1) f1 + 62 |12 +2n 3 [€17 + n2(H, H) = 25 (H| o Hl ) +“’v‘ ‘ +|"V‘ ‘
% H
— 2
+2 GH‘
VXH
3 - . 2 2 7 2
2r(p) 2 n(n = 1) (552) +3(552) 1012 + (S5 (¢ 4 n20m ) + 2 HIg HIG) - |07
9 \Z
~|oH], [ 2]
@ | Indefinite Sasakian space form A727 1 . ) H ) 2\)><H ) .
c+i QrC— 2 c— t 2 %
m2r(p) < n(n — 1) (F2) +3(552) 1012 + n(eFh) |eb]® + n2(m, 1) - %(H\g,mﬁw‘a M
< 2 — 2
V] [ ]
H VXH
— 2 2 a7 2
W27(p) > n(n — 1) (552) +3(2EE) 012 + n(Sfh) |6t + n2(H, H) + 20 (HI|G, HIG) — |0H' ‘
2 %
[ o]
@A) Indefinite Sasakian space form 1\7122:1*1 1 i ) H 2\) X ’Ht ) _ )
»27(p) < n(n — 1) (552) +3(SFL) 1912 + n(EL) [¢f|° + nP¢, 1) - "T(H\,g,ng)Jr'av‘ ‘
%
< 2 — 2
o ¥ [ 2]
H VXH
2 2 a7 2 vl 2
A27(p) > §{n(n — 1) +3 (912 +n [¢}]*} + n2(H, H) + B2 (H|5, HIg) — |7 e
2 1 v v v u
~ 2
—2 a"‘
“@ Indefinite cosymplectic space form 5 VXH 5 _ 5 ~ 5
b 2r(p) < §{n(n — 1) +3 1612 +n [et[*} +n2H, H) = BE (7, HIZ) +'UV‘ ‘ +‘0V‘ ‘
v H
— 2
+2 g”‘
VXH
2 2 a7 2
w2r(p) 2 nin = 1) (S5 + 3L 1012 + 0 (L) [e 4 n2 0 a4 2 (I, HIG) - o] |
2 2 v
| -]
5) Indefinite Kenmotso space form H VXH

2 5 2
»2r(p) < nin — 1) (5523 +3(EL) 1917 +n(SE) [et* + n? (a1 - 2 (m o B +|GV‘V‘
~1 |2 . 2
+]e¥] [ 2] %
H

VXH

1. The equality case of inequalities (a) in the previous Table is satisfied if and only if the mean
curvature vector is spacelike

ii. The equality case of inequalities (b) in the previous Table is satisfied if and only if the mean
curvature vector is timelike.

iii. The equalities in both cases (a)-(b) satisfy simultaneously if and only if M is minimal.

Proof:

Using (35) in the equations (48) and (48), we get (1). The proof of other statements could be
obtained by considering (23), (24) and (25). =

From the statament (b) of Theorem 5.12, we get the following corollary.

Corollary 5.14.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ (¢ # 0) of an m-
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dimensional semi-Riemannian manifold of index ¢. Then

- 3n?
7(p) < 27(T,M) + ?(Hv H) + |ovsnl” - (53)

The equality case of (53) is true for all p € M if and only if M is minimal.

Proof:
Under the assumption, H = TM~* and V = 0. From (49) we have

o

27(p) < 27(T,M) + n*(H, H) — T, H) 420,07

which is equivalent to (53). The equality case of (53) is true if and only if

i%ﬁ; = Zq: ol = Xn: o;; =0, (54)
i=1

i=ni+1 i=q+1
which shows that M is minimal. =

Corollary 5.15.

Let (M, g) be an n-dimensional pseudo-Riemannian submanifold of index ¢ (¢ # 0) of an m-
dimensional pseudo-Euclidean space of index ¢q. Then we have the following table.

Ambient manifold Inequality
o 2
(1) | Generilazed indefinite contact space form 27(p) < 2n(n — 1) f1 + 6f |$|2 + 2n f3 'Ef‘z + 825 (m, 1) + ‘”vm-z‘z
- - e —2m—+1 -4+3 -1 -—1 2 2 2
2) Indefinite Sasakian space form M 5 [ 27(p) < n(n — 1) (%) + S(LT) 1612 + "(LT) '5t‘ + 3%(H, H) + ‘GVXH‘
X . = 2mtl -3 1 41 £|2 2 2
®) | Indefinite Sasakian space form A3 27(p) < n(n — 1) (552) +3(5FL) 1612 + () |ef]* + 325 (1, H) + oy ou|
) ) A c . 2 |2 3n2 2
4 | Indefinite cosymplectic space form 27(p) < §{n(n —1) +3 [$|2 +n ‘g | }+ 325w, H) + ‘UVXH‘ .
) : 2
() | Indefinite Kenmotso space form 27(p) < n(n — 1) (F2) + 3(<EL) 1612 + n(ED) ‘51"2 + 325 (H, H) + |"v><7-¢|2 .

The equality case of inequalities in the previous Table is satisfied if and only if M is minimal.

Proof:

Using (35) in the equations (53), we get (1). The proof of other statements could be obtained by
considering (23), (24) and (25). n

6. Conclusion

In this paper, we show the necessary conditions for pseudo-Riemann submanifolds and submani-
folds of indefinite contact space forms to be space-like mixed geodesic, time-like mixed geodesic,
mixed geodesic, minimal, totally umbilical submanifolds. Thus, we discover simple sharp relation-
ships between the intrinsic and extrinsic invariants of a pseudo-Riemannian submanifold and we
get some characterizations for pseudo-Riemannian submanifolds.

https://digitalcommons.pvamu.edu/aam

18



GUline? et al.: Optimal Inequalities for Submanifolds

AAM: Intern. J., Special Issue No. 5 (August 2019) 31

Acknowledgment

The authors would like to thank the editor Dr. James Valles and the reviewers for their helpful
advice and various comments examined in this paper.

REFERENCES

Akram, A., Uddin, S., Othman, W.A.M. and Ozel, C. (2017). Curvature inequalities for C-totally
real doubly warped products of locally conformal almost cosymplectic manifolds, Filomat,
Vol. 31, pp. 6449-6459.

Baum, H. (1981). Spin-Strukturen und Dirac-Operatoren iiber pseudoriemannschen Mannig-
faltigkeiten, (German) [Spin structures and Dirac operators on pseudo-Riemannian mani-
folds], Teubner Texts in Mathematics. 41 BSB B. G. Teubner Verlagsgesellschaft, Leipzig.

Blair, D. E. (2002). Riemannian geometry of contact and symplectic manifolds, Progress in Math-
ematics, 203 Birkhauser Boston, Inc., Boston, MA.

Chen, B.-Y. (1993). Some pinching and classification theorems for minimal submanifolds, Arch.
Math., Vol. 60, No. 6, pp. 568-578.

Chen, B.-Y. (1996). Mean curvature and shape operator of isometric immersions in real space
forms, Glasgow Math. J., Vol. 38, pp. 87-97.

Chen, B.-Y. (2011). Pseudo-Riemannian geometry, d-invariants and applications, World Scientific
Publishing, Hackensack, NJ.

Dajczer, M. and Nomuzi, K. (1980). On the boundedness of Ricci curvature of an indefinite metric,
Bol. Soc. Brasil. Mat., Vol. 11, pp. 25-30.

Friedman, A. (1965). Isometric embedding of Riemannian manifolds into Euclidean spaces, Rev.
Mod. Phys., Vol. 37, pp. 201-203.

Goldberg, S. I. and Yano K. (1969). Integrability of almost cosymplectic structures, Pacific J.
Math., Vol. 31, pp. 373-382.

Giilbahar, M., Kilig, E. and Keles, S. (2013a). Chen-like inequalities on lightlike hypersurfaces of
a Lorentzian manifold, J. of Inequal. Appl., Vol. 2013, No. 266.

Giilbahar, M., Kili¢, E. and Keles, S. (2013b). Some inequalities on screen homothetic lightlike
hypersurfaces of a Lorentzian manifold, Taiwan. J. Math., Vol. 17, No. 6, pp. 2083-2100.
Harris, S.G. (1982). A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J.,

Vol. 31, pp. 289-308.

Kilig, E. and Giilbahar, M. (2016). On the sectional curvature of lightlike submanifolds, J. of
Inequal. Appl., Vol. 2016, No. 57.

Kulkarni, R. S. (1979). The values of sectional curvature in indefinite metric, Comment. Math.
Helvetici, Vol. 54, pp. 173-176.

Lee, C. W., Lee, J. W. and Vilcu, G. E. (2017). Optimal inequalities for the normalized )-Casorati
curvatures of submanifolds in Kenmotsu space forms, Advances in Geometry, Vol. 17, No. 3,
pp- 355-362.

Published by Digital Commons @PVAMU,

19



Submission to Applications and Applied Mathematics: An International Journal (AAM)

32 R. Giines et al.

Mihai, A. and Ozgiir, C. (2011). Chen inequalities for submanifolds of complex space forms and
Sasakian space forms endowed with semi-symmetric metric connections, The Rocky Mount.
J. Math., pp. 1653-1673.

Nardmann, M. (2014). Pseudo-Riemannian metrics with prescribed scalar curvature,
arXiv:math/0409435v2

Nash, J. F. (1956). The imbedding problem for Riemannian manifolds, Annals of Math., Vol. 63,
No. 1, pp. 20-63.

O’Neill, B. (1983). Semi-Riemannian geometry with applications to relativity, Academic Press Inc.

Poyraz, N. O. and Yasar, E. (2016). Chen-like inequalities on lightlike hypersurface of a Lorentzian
product manifold with quarter-symmetric non-metric connection, Kragujevac J. Math., Vol.
40, No. 2, pp. 146-164.

Poyraz, N. O., Dogan, B. and Yasar, E. (2017). Chen Inequalities on Lightlike Hypersurface of a
Lorentzian Manifold with Semi-Symmetric Metric Connection, Int. Electron. J. Geo., Vol. 10,
No. 1, pp. 1-14.

Punzi, R., Schuller, F. P. and Wohlfarth, M. N. R. (2007). Geometric obstruction of black holes,
Ann. Phys., Vol. 322, pp. 1335-1372.

Rosca, R. (1972). On null hypersurfaces of a Lorentzian manifold, Tensor N.S., Vol. 23, pp. 66-74.

Sahin, B. (2016). Chen’s first inequality for Riemannian maps, Ann. Pol. Math., Vol. 117, pp.
249-258.
Sasaki, S. and Hatakeyama, Y. (1961). On differentiable manifolds with certain structures which
are closely related to almost contact structure II, Tohoku Math. J., Vol. 13, pp. 281-294.
Schuller, F. P. and Wohlfarth, M. N. R. (2004). Sectional curvature bounds in gravity: regularisation
of the Schwarzchild singularty, Nuclear Physics B, Vol. 698, pp. 319-334.

Tripathi, M. M. (2003). Certain basic inequalities for submanifolds in (k, 11)-space, Recent ad-
vances in Riemannian and Lorentzian geometries (Baltmore, MD), pp. 187-202.

Tripathi, M. M., Giilbahar, M., Kili¢, E. and Keles, S. (2017). Inequalities for scalar curvature of
pseudo-Riemannian submanifolds, J. Geo. and Phys., Vol. 112, pp. 74-84.

Zhang, P. and Zhang, L. (2016). Inequalities for Casorati curvatures of submanifolds in real space
forms, Advances in Geometry, Vol. 16, No. 3, pp. 329-335.

https://digitalcommons.pvamu.edu/aam

20



	Optimal Inequalities for Submanifolds of an Indefinite Space Form
	tmp.1630598906.pdf.BLajT

