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Abstract

In this study, we investigate suborbital graphsGu,N of the normalizer ΓB(N) of Γ0(N) in PSL(2,R)

for N = 2α3β > 1 where α = 0, 2, 4, 6, and β = 0, 2. In these cases the normalizer becomes a
triangular group. We first define an imprimitive action of ΓB(N) on Q̂ using the group Γ0

C(N) and
then obtain some properties of the suborbital graphs arising from this action. Finally we define
suborbital graphs Fu,N and investigate their properties. As a consequence, we find some certain
relationships between the lengths of circuits in suborbital graphs Fu,N and the periods of the group
Γ0
C(N).

Keywords: Normalizer; Congruence Subgroup; Suborbital Graphs

MSC 2010 No.: 20H10; 05C25

1. Introduction

Orbital graphs, also called suborbital graphs, were introduced into the theory of permutation groups
(especially finite permutation groups) by Sims (1967). In their paper, Jones et al. (1991) investigate
the concept in the relation to the modular group Γ acting on the projective line PG(1,Q) over the
field of rational numbers. This is an interesting infinite permutation group that, for well over a
century, has played an important role in number theory, in the theory of binary quadratic forms,
and in the theory of modular forms and automorphic functions.

The group SL(2,Z), the group of 2× 2 matrices of determinant 1 with integer entries, has a natural
action by Mobius transformations on PG(1,Q), given by
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12 N. Yazici Gözütok and B.Ö. Güler

(
a b

c d

)
: z 7→ az + b

cz + d
for z ∈ Q ∪ {∞}.

The kernel of this action is I2,−I2 and Γ is PSL(2,Z), the quotient of SL(2,Z) by this kernel, that
is, it is the induced permutation group. It is natural to identify elements of Γ with the associated
2× 2 matrices X, although one must always appreciate that X and −X represent the same member
of Γ. The modular group has a wealth of subgroups, among which the congruence subgroups are
perhaps the most important and certainly the best known. Of the congruence subgroups, the groups
Γ0(N) have been studied extensively, especially, by Klein, Fricke, and many others, and are basic
to the theory of the elliptic modular functions (Schoeneberg (1974)).

The normalizer ΓB(N) of Γ0(N) in PSL(2,R) has acquired significance because it is related to the
Monster simple group Conway and Norton (1977), Chua and Lang (2004). As in Akbaş (1989),
ΓB(N) consists exactly of the matrices (

ae b/h

cN/h de

)
,

where all parameters are integers, e||Nh2 and h is the largest divisor of 24 for which h2|N with
understanding that the determinant e of the matrix is positive, and that r||s means that r|s and
(r, r/s) = 1 . It has also played an important role in work on Weierstrass points on Riemann surfaces
associated to Γ0(N) by Lehner and Newman (1964). ΓC(N) is one of the important subgroups of
the normalizer which is the set of transformations of determinant one. Another subgroup of ΓB(N)

is the set Γ0
C(N) which consists of the matrices(

a b/h

cN d

)
,

with determinant 1. It is easily seen that Γ0
C(N) ≤ ΓC(N) ≤ ΓB(N).

Akbaş and Singerman (1990) shows that Γ0(N) contains an elliptic element of order 2(3) if and
only if there exists a unit u in the group UN of units (mod N) such that Fu,N contains a two-gon
(triangle), respectively. This is important taking into account that the order of the elliptic elements
is one of invariants in the signature of Fuchsian groups. In this study, examining the suborbital
graphs of ΓB(N) in the cases where the normalizer is a triangle group, we calculate the order of
the elliptic element of the group Γ0

C(N).

2. The Action of ΓB(N) on Q̂

In this section, we describe transitive and imprimitive action of ΓB(N). Hence we can apply Sim’s
theory to obtain suborbital graphs in the next section.

Every element of Q̂ can be represented as a reduced fraction x
y , with x, y ∈ Z and (x, y) = 1. Since

x
y = −x

−y this representation is not unique. We represent ∞ as 1
0 = −1

0 . The action of the matrix

2
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(
a b

c d

)
on x

y is

(
a b

c d

)
:
x

y
→ ax+ by

cx+ dy
.

Remark.

It is easily seen that if the determinant of the matrix

(
a b

c d

)
is 1 and if x

y ∈ Q̂ then, since c(ax +

by)− a(cx+ dy) = −y and d(ax+ by)− b(cx+ dy) = x, (ax+ by, cx+ dy) = 1.

In this paper, we study suborbital graphs Gu,N of the normalizer ΓB(N) for N = 2α3β > 1 where
α = 0, 2, 4, 6, β = 0, 2. With this purpose in mind, from now on, unless otherwise stated explicitly,
N will denote an integer such that N = 2α3β > 1 where α = 0, 2, 4, 6, and β = 0, 2.

Theorem 2.2.

ΓB(N) acts transitively on Q̂.

Proof:

It is enough to prove that the orbit containing∞ is Q̂. Let xy ∈ Q̂, (y, h) = k and y = y1k, h = h1k,
since (y, h) = k, (y1, h1) = 1. Also since (x, y) = 1, and (x, y1) = 1. Thus (xh1, y1) = 1, follows that
there are integers a, b ∈ Z such that axh1 − by1 = 1. Therefore,

T =

(
xh1 b/h

y1h a

)
∈ ΓB(N),

and T (∞) = x
y . This completes the proof. �

Theorem 2.3.

The stabilizer of∞ is the group ΓB(N)∞ whose elements are of the form(
1 b/h

0 1

)
, b ∈ Z.

Proof:

The stabilizer of∞ is the set ΓB(N)∞ = {T ∈ ΓB(N) : T (∞) =∞}.

We obtain T

(
1

0

)
=

(
1

0

)
for T =

(
a b/h

ch d

)
∈ ΓB(N). Then we have a = 1 and c = 0. Since

ad− bc = 1, we have d = 1. Therefore, T has the form(
1 b/h

0 1

)
, b ∈ Z. �
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14 N. Yazici Gözütok and B.Ö. Güler

Now we consider the imprimitivity of the action of ΓB(N) on Q̂, hence we start with a general
discussion of primitivity of permutation groups.

Let (G,∆) be a transitive permutation group, consisting of a group G acting on a set ∆ transitively.
An equivalence relation ≈ on ∆ is called G-invariant if, whenever α, β ∈ ∆ satisfy α ≈ β, then
g(α) ≈ g(β) for all g ∈ G.

The equivalence classes are called blocks, and the block containing α is denoted by [α].

We call (G,∆) imprimitive if ∆ admits some G-invariant equivalence relation different from

(i) the identity relation, α ≈ β if and only if α = β;
(ii) the universal relation, α ≈ β for all α, β ∈ ∆.

Otherwise (G,∆) is called primitive. These two relations are supposed to be trivial relations.
Clearly, a primitive group must be transitive, for if not the orbits would form a system of blocks.
The converse is false, but we have the following useful result.

Lemma 2.4 (Biggs and White (1979)).

Let (G,∆) be a transitive permutation group. (G,∆) is primitive if and only if Gα the stabilizer of
α ∈ ∆, is a maximal subgroup of G for each α ∈ ∆.

From the above lemma we see that whenever for some α, Gα � H � G, then Ω admits some G-
invariant equivalence relation other than the trivial cases. Because of the transitivity, every element
of Ω has the form g(α) for some g ∈ G. Thus one of the non-trivial G-invariant equivalence relation
on Ω is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

If we set G = ΓB(N), ∆ = Q̂, H = Γ0
C(N) and Gα = ΓB(N)∞, then we clearly see that ΓB(N)∞ �

Γ0
C(N) � ΓB(N). By Lemma 2.4, ΓB(N) acts imprimitively on Q̂.

We define the following ΓB(N) invariant equivalence relation “ ≈ " on Q̂. Since ΓB(N) acts tran-
sitively on Q̂, every element of Q̂ has the form g(∞) for some g ∈ ΓB(N). So, it is easily seen
that

g(∞) ≈ g′(∞)⇐⇒ g′ ∈ gΓB(N),

gives a ΓB(N)−invariant imprimitive equivalence relation.

Let v = r
s , w = x

y ∈ Q̂ such that (s, h) = h1 and (y, h) = h2. If s = s1h1, y = y1h2 and h′1 = h
h1

,
h′2 = h

h2
, then since (s, h) = h1 and h′1 = h

h1
we have (s1, h

′
1) = 1. Also since (r, s) = 1, (r, s1) = 1.

Thus (rh′1, s1) = 1, follows that there are integers a, b ∈ Z such that arh′1 − bs1 = 1. Therefore,

g =

(
rh′1 b/h

s1h a

)
∈ ΓB(N),

4
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and g(∞) = r
s . Similarly it is obtained that (xh′2, y1) = 1. There are integers a′, b′ ∈ Z such that

a′xh′2 − b′y1 = 1. Therefore,

g′ =

(
xh′2 b

′/h

y1h a′

)
∈ ΓB(N),

and g′(∞) = x
y . Since

g−1g′ =

(
a −b/h
−s1h rh′1

)(
xh′2 b

′/h

y1h a′

)
=

(
∗ ∗

(ry1h
′
1 − xs1h′2)h ∗

)
,

g−1g′ ∈ Γ0
C(N) if and only if ry1h′1 − xs1h′2 ≡ 0 (mod h). Thus we obtain the block condition as

v ≈ w ⇐⇒ ry1h
′
1 − xs1h′2 ≡ 0 (mod h). (1)

By our general discussion of imprimitivity, the number of blocks under ≈ is given by the index
|ΓB(N) : Γ0

C(N)|.

Lemma 2.5.

The index of Γ0(N) in Γ0
C(N) is equal to h, where h is the largest divisor of 24 for which h2|N .

Proof:

We can easily verify that

Γ0(N/h) =

(
h 0

0 1

)
Γ0
C(N)

(
1 0

0 h

)
,

that is to say that Γ0
C(N) is a conjugate of Γ0(N/h) by

(
h 0

0 1

)
. Thus we get

|Γ0
C(N) : Γ0(N)| = |Γ0(N/h) : Γ0(N)|

=
|Γ : Γ0(N))|
|Γ : Γ0(N/h)|

=
N
∏
p|N

(
1 + 1

p

)
N/h

∏
p|N/h

(
1 + 1

p

) = h. �

Lemma 2.6 (Akbaş (1989)).

|ΓB(N) : Γ0(N)| = 2ρh2τ where h is the largest divisor of 24 for which h2|N , ρ is the number of
distinct prime factors of N/h2 and

τ =
∏
p|N

(1 +
1

p
)/

∏
p|N/h2

(1 +
1

p
).

5

Gözütok and Güler: Elliptic Elements of a Subgroup of the Normalizer

Published by Digital Commons @PVAMU, 2019



16 N. Yazici Gözütok and B.Ö. Güler

Theorem 2.7.

The number of blocks arising from the imprimitive action of ΓB(N) by above relation is equal to
2ρhτ .

Proof:

The number of blocks arising from the imprimitive action of ΓB(N) by above relation is the index
|ΓB(N) : Γ0

C(N)|. By using Lemma 2.5 and Lemma 2.6, we have

|ΓB(N) : Γ0
C(N)| = |ΓB(N) : Γ0(N)|

|Γ0
C(N) : Γ0(N)|

= 2ρhτ. �

3. Suborbital graphs for ΓB(N)

Sims (1967) introduced the idea of the suborbital graphs of a permutation group G acting on a
set ∆. These are graphs with vertex-set ∆, on which G induces automorphisms. We summarize
Sims’ theory as follow: Let (G,∆) be a transitive permutation group. Then G acts on ∆ × ∆ by
g(α, β) = (g(α), g(β)), (g ∈ G , α, β ∈ ∆). The orbits of this action are called suborbitals of G . The
orbit containing (α, β) is denoted byO(α, β). FromO(α, β) we can form a suborbital graphG(α, β):
its vertices are the elements of ∆, and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β). A
directed edge from γ to δ is denoted by (γ → δ). If (γ, δ) ∈ O(α, β), then we say that there exists
an edge (γ → δ) in G(α, β).

If α = β, then the corresponding suborbital graph G(α, α), called the trivial suborbital graph, is
self-paired: it consists of a loop based at each vertex α ∈ ∆. By a circuit of length m (or a closed
edge path), we mean a sequence v1 → v2 → . . . → vm → v1 such that vi 6= vj for i 6= j, where
m ≥ 3. If m = 3 or 4 then the circuit is called a triangle or rectangle.

In this study, G is ΓB(N) and ∆ is Q̂. We now consider the suborbital graphs for the action ΓB(N)

on Q̂. Since ΓB(N) acts transitively on Q̂, each suborbital contains a pair (∞, uN ) for some u
N ∈ Q̂

such that (u,N) = 1. We denote this suborbital by O(u,N) and corresponding suborbital graph
G(u,N) by Gu,N .

Theorem 3.1 (Edge condition).
r
s −→

x
y is an edge in Gu,N if and only if there exists an integer h1 with h1|h, h/h1|s and if h = h1h

′
1

then either

(i) x ≡ ur (mod h′1), y ≡ us (mod h′1h), and ry − sx = h′21 , or
(ii) x ≡ −ur (mod h′1), y ≡ −us (mod h′1h), and ry − sx = −h′21 .

Proof:

Let rs −→
x
y ∈ Gu,N , then there exists a transformation

(
a b/h

ch d

)
in ΓB(N) which sends 1

0 to r
s and

u
N to x

y , therefore a
ch = r

s and au+bN/h
cuh+dN = au+bh

cuh+dN = x
y . Let (a, h) = h1, and let a = a1h1, h = h1h

′
1.

6
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Thus (a1, h
′
1) = 1 and a

ch = a1

ch′
1
. Since the determinant ad− bc = 1, (a, c) = 1 follows (a1, ch

′
1) = 1.

Then we have a1 = r and ch′1 = s. The last equation leads to h/h1 = h′1|s. We know that (u,N) = 1,

thus (u,N/h) = 1, that is, (u, h) = 1. Since

(
a b

c d

)
has determinant 1, then using Remark 2.1 we

see that (au+ bh, cu+ dh) = 1. Hence we will have the following matrix equation:(
a b/h

ch d

)(
1 u

0 N

)
=

(
a au+ bh

ch cuh+ dN

)
=(

a1h1 h1(a1u+ bh′1)

ch1h
′
1 h1h

′
1(cu+ dh)

)
=

(
(−1)ih1r (−1)jh1x

(−1)ih1s (−1)jh1y

)
,

(2)

where i, j = 0, 1. If i = j = 0 then a1h1 = rh1, h1(a1u+ bh′1) = h1x, ch1h′1 = h1s, h1h′1(cu+ dh) =

h1y. That is, x = ur+ bh′1 and y = us+dh′1h. Hence it is obtained that x ≡ ur (mod h′1) and y ≡ us
(mod h′1h). Taking determinants in Equation 2 we see that ry − sx = h′21 , so (i) holds. Similarly if
i = 1 and j = 0, we obtain (ii). If i = j = 1, then again (i) holds. If, finally, i = 0 and j = 1, then
(ii) holds.

Conversely, if (i) holds, then there exist integers b, d such that x = ur+ bh′1 and y = us+ dh′1h. Let

s = s1h
′
1. Then the element

(
rh1 b/h

sh1 d

)
belongs to ΓB(N) and sends ∞ to r

s and u
N to x

y . For (ii),

the result is obtained in a similar way. �

Corollary 3.2.

Let uv ≡ −1 (mod h′1h), then the suborbital graph Gu,N is paired with Gv,N .

Proof:

We will observe that r
s →

x
y in Gu,N if and only if x

y →
r
s in Gv,N . Since r

s →
x
y in Gu,N , using

Theorem 3.1, we have that there exists an integer h1 with h1|h, h/h1|s and h = h1h
′
1 such that

either x ≡ ur (mod h′1), y ≡ us (mod h′1h), and ry − sx = h′21 , or x ≡ −ur (mod h′1), y ≡ −us
(mod h′1h), and ry − sx = −h′21 .

Suppose that the former holds, then xs− ry = −h′21 and vx ≡ ruv (mod h′1), vy ≡ suv (mod h′1h).
Since uv ≡ −1 (mod h′1h), we have xs − yr = −h′21 and r ≡ −rx (mod h′1), s ≡ −vy (mod h′1h),
that is, xy →

r
s in Gv,N . �

Corollary 3.3.

Gu,N is self-paired if and only if u2 ≡ −1 (mod h).

Proof:

Suppose Gu,N is self paired. So the pair (∞, u/N) is sent to (u/N,∞) by ΓB(N). It is easily seen

that such elements of ΓB(N) must be of the form

(
u b/h

N −u

)
, where the determinant is 1. Therefore

u2 ≡ −1 (mod h).

7
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18 N. Yazici Gözütok and B.Ö. Güler

Conversely, let u2 ≡ −1 (mod h). Since u2 ≡ −1 (mod h), then there exists an integer b such that

−u2 + bh = 1. Therefore the element

(
u b/h

N −u

)
is in ΓB(N) and satisfies the required properties. �

4. Properties of The Graphs Fu,N and Gu,N

Since the action of ΓB(N) on Q̂ is transitive, ΓB(N) permutes the blocks transitively; so the sub-
graphs are all isomorphic. Hence it is sufficient to study only one block. On the other hand, it
is clear that each non-trivial suborbital graph contains a pair (∞, uN ) for some u

N ∈ Q̂ where
(u,N) = 1. Therefore, we study on the following case: We denote by Fu,N the subgraph of Gu,N
such that its vertices are in the block [∞].

Theorem 4.1.
r
s →

x
y in Fu,N if and only if ry − sx = 1 or ry − sx = −1.

Proof:

From Equation 1, it is easily seen that [∞] =
{
x
y : y ≡ 0 (mod h2)

}
. Since r

s ,
x
y ∈ [∞], the proof is

obvious by Theorem 3.1. �

Theorem 4.2.

Γ0
C(N) permutes the vertices and edges of Fu,N transitively.

Proof:

Let k
l ,
m
n ∈ [∞] be two vertices of the graph Fu,N . Since ΓB(N) acts transitively on Q̂, there exists

an element T =

(
a b/h

ch d

)
∈ ΓB(N) such that(

a b/h

ch d

)(
k

l

)
=

(
m

n

)
.

This yields ckh + dl = n. Since n − dl ≡ 0 (mod h2) we obtain ckh ≡ 0 (mod h2). We know that
(k, h) = 1, therefore c ≡ 0 (mod h). Thus we have T ∈ Γ0

C(N).

Let x1 −→ y1 and x2 −→ y2 be two edges in Fu,N . Since ΓB(N) acts transitively on the edges of

Fu,N , there exists an element S =

(
p r/h

qh s

)
∈ ΓB(N) such that S(x1 −→ y1) = S(x2 −→ y2). Thus

we have S(x1) = S(x2) and S(y1) = S(y2), giving(
p r/h

qh s

)(
p1
q1

)
=

(
p r/h

qh s

)(
p2
q2

)
and (

p r/h

qh s

)(
r1
s1

)
=

(
p r/h

qh s

)(
r2
s2

)
.

8
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From second equation above, we obtain q ≡ 0 (mod h). Thus, S ∈ Γ0
C(N). �

Theorem 4.3.

If Fu,N is self-paired, then the corresponding map to any circuit in Fu,N is an elliptic element of
order 2 in Γ0

C(N).

Proof:

Since Fu,N is self-paired, u2 ≡ −1 (mod h). Therefore, there exists an element k ∈ Z such that
−u2 + kh = 1. Then we obtain

A =

(
u −k/h
N −u

)
∈ Γ0

C(N).

Since A2 = I, A is of order 2. �

Theorem 4.4.

Let a
b →

c
d →

e
f →

a
b be a triangle in Fu,N . Then there exists a unique elliptic element T ∈ Γ0

C(N)

of order 3 such that T (ab ) = c
d , T ( cd) = e

f , T ( ef ) = a
b .

Proof:

Since a
b →

c
d ∈ Fu,N , by Theorem 4.1, we have ad− bc = ∓1 and for all Φ ∈ Γ0

C(N), a1

b1
= Φ(ab )→

Φ( cd) = c1
d1

, a1d1 − b1c1 = ∓1. By Theorem 4.2, there exists an element K ∈ Γ0
C(N) such that

K(ab ) =∞ and K( cd) = u
N . Since c1

d1
→ K( ef ) = e1

f1
and c1f1 − e1d1 = ∓1, we obtain e1

f1
= u∓1

1 , that
is, K transforms the triangle a

b →
c
d →

e
f →

a
b to the triangle∞→ u

N →
u∓1
N →∞. Then

S =

−u u2 ∓ u+ 1

N
−N u∓ 1


is an elliptic element of order 3 in Γ0

C(N). If we set T = K−1SK, then T ∈ Γ0
C(N) is an elliptic

element of order 3. �

5. Conclusion

Actually, the suborbital graphs of the normalizer has been studied under restrictions by Keskin
(2006), Keskin and Demirturk (2009), Köroglu et al. (2017), Güler et al. (2011), and Kader (2017).
It is known that using different subgroups for the imprimitive action, the characters of the sub-
graphs are changed (Jones et al. (1991)). The purpose of our work is related to these choices. We
recall that Akbaş found certain relationship between the lengths of circuits in suborbital graphs
of the modular group and periods of elliptic elements of the group Γ0(N). He used the relation
Γ∞ < Γ0(N) < Γ for imprimitive action as in Jones et al. (1991). This is an important result, taking
into account that the orders of the elliptic elements are one of the invariants of the group. Hence,
suborbital graphs can be viewed as a tool to investigate permutation groups in terms of combi-
natorics. Then the authors changed the relation as Γ∞ < Γ1(N) < Γ and found aforementioned
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relationship between the newly constructed subgraphs and the group Γ1(N). Hence, one can apply
this method to other finitely generated Fuchsian groups. The modular group has a wealth of sub-
groups, among which the congruence subgroups are perhaps the most important and the certainly
the best known. The normalizers of the congruence subgroups have also special interest because
of their importance in number theory and group theory. One of the most remarkable of them is
the normalizer of Γ0(N) in PSL(2,R) as mentioned in introduction part. Akbaş and Singerman
describe some important subgroups of ΓB(N) which will enable us to understand its structure. One
of them is the Atkin-Lehner group ΓW (N) (Köroglu et al. (2017)). Another is the group ΓC(N)

which is denoted by the set of transformations of the normalizer ΓB(N) where determinant of ma-
trix equals to 1. In this study, Γ0

C(N) is defined as a congruence subgroup of ΓB(N) and then is
examined by orbital graphs. In order to calculate the order of elliptic elements, this paper utilizes
the Fuchsian group action on the upper half plane and their graphs properties.
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