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Abstract 
 
The laminar steady flow of an incompressible, viscous fluid near a stagnation point has been 
computed using the homotopy perturbation method (HPM). Both the cases, (i) two-dimensional 
flow and (ii) axisymmetric flow, have been considered. A sequence of successive 
approximations has been obtained in the solution, and the convergence of the sequence is 
achieved by using the Padé approximants. It is found that there is a complete agreement between 
the results obtained by the HPM and the exact numerical solution. 
 
Keywords: Stagnation point flow, homotopy perturbation method, Padé approximants. 
 
AMS Classification: 34L30, 35Q70, 65Q30 
 
Introduction 
 
The stagnation point flow is one of those rare problems in fluid dynamics which finds its place in 
almost every textbook, such as Schlichting (1968), Shih-i-Pai (1956) and White (1991). Besides 
being technologically very important in aerodynamics the problem is also ideal pedagogically as 
it is one of those for which the governing partial differential equations can be reduced to a single 
ordinary differential equation using similarity variables. The problem has been solved for a two-
dimensional flow (Hiemenz, 1911), axi-symmetric flow (Homann, 1936) and the general three-
dimensional flow (Howarth, 1951). Since an exact numerical solution of the boundary value 
problem (BVP) describing the flow is apparently not possible, there have been attempts to solve 
the problem both numerically and also analytically, though in the latter case the solutions have to 
be necessarily either approximate or in the form of some series. Using the integral method, 
Pohlhausen (1921) derived the solution for the Falkner-Skan flow, from which the solutions can 
be readily derived for two-dimensional and axi-symmetric flows. From the engineering point of 
view there was a satisfactory agreement between the solution obtained by the integral method by 
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Pohlhausen and the exact numerical solution. For the Falkner-Skan flow, a detailed numerical 
solution has been given by Nachtsheim and Swigert (1965). 
 
The analytical solutions of the engineering problems have always been of practical importance to 
engineers as well as have presented mathematical challenges to the researchers. Whereas a 
numerical solution gives the values at some discrete values in time and space -- and to obtain the 
value at some point different than those for which the solution is obtained, some further 
interpolation is required, in general -- the analytical solutions have the immense advantage in 
that they give the values at any arbitrarily chosen value of the variables of interest. For the two-
dimensional stagnation point flow in hydromagnetics, an approximate solution, making use of 
the weighted residual method in which the residual of the differential equation is minimized in 
the least square sense, has been derived by Ariel (1994). The solution has the attractive feature 
that it is not only accurate for the purely hydrodynamics case, but that its accuracy improves as 
the magnitude of the Hartmann number is increased. The numerical methods, in general, suffer 
degradation when the Hartmann number’s value is increased as the problem becomes 
increasingly sensitive numerically. 
 
There is yet another factor that needs to be addressed when a numerical solution is sought of the 
stagnation point flow. It is related to the infinite domain of the flow. For a numerical solution the 
infinite domain of integration is usually replaced by a finite value, in which the value is 
hopefully chosen sufficiently large to minimize the error introduced as a result of replacing 
infinity by a finite value. There have been attempts to address this issue and one of the 
techniques suggested in the literature is known as the free boundary value problem (FBVP) 
formulation. Using FBVP formulation Fazio (1992) obtained the solution of the Blasius flow – 
the remarkable feature about the solution being that the accuracy of the solution could be 
improved substantially by choosing sufficiently small value of the skin-friction at the outer 
boundary. A similar approach was chosen by Ariel (1993) to get the solution of the two-
dimensional stagnation point flow. 
 
Of late considerable interest has been generated in obtaining the solution of nonlinear problems 
in science and technology by invoking the concept of homotopy. The basic idea is to introduce a 
homotopy parameter p which varies from 0 to 1. When p is zero, the problem simplifies to a 
somewhat a trivial problem, which is usually linear and whose solution can be found relatively 
easily. As p is incremented to 1, a family of solutions is generated, which ultimately approaches 
the desired solution as p takes the value 1. Watson (1979) has been the main exponent of the 
technique as he and his coworkers (Watson and Wang, 1978; Wang and Watson, 1979a, 1979b; 
Watson, 1981, 1990) solved a number of difficult problems using the technique numerically.  
 
Recently the idea of using the homotopy technique to derive analytical solutions has attracted a 
lot of attention of researchers mainly due to efforts of Liao (1992) and He (1999). Liao refined 
the technique by introducing an auxiliary parameter ħ, besides another optional auxiliary 
function in his formulation of the problem. The parameter ħ can be used to control the 
convergence of the series solution obtained as the power series in p. Liao, Hayat, Abbasbandy 
and their coworkers have solved a number of important problems (Liao, 1999, 2003, 2004; Wang 
et al, 2003; Hayat et al 2004; Hayat and Sajid, 2007; Sajid et al, 2007; Tan and Abbasbandy, 
2008; Abbasbandy and Hayat, 2009a, 2009b) and succeeded in obtaining purely analytical 
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solutions in lieu of numerical solutions. He, on the other hand, has demonstrated that it is not 
essential to use the auxiliary parameter ħ. Instead by introducing other parameters and judi-
ciously adjusting their values by requiring some appropriate conditions, He (1998, 2003a, 2003b, 
2006a, 2006b, 2008) showed that analytical solutions can be obtained which require very few 
terms in the power series in p, and yet they are sufficiently accurate. 
 
For the flows caused by moving boundary, the HPM has proved to be very useful and effective. 
Using only one-term correction Ariel et al (2006) derived an analytical solution for the 
axisymmetric flow past a stretching sheet which was remarkably accurate even when the effects 
of suction and magnetic field were included separately or jointly. Ariel (2007a) also gave a fully 
analytical solution for the axisymmetric flow past a stretching sheet when there is a partial slip at 
the sheet. That the HPM is not limited to the solution of the problems characterized by a single 
BVP, Ariel (2007b) obtained the solution for the generalized three dimensional flow past a 
stretching sheet. There has been a criticism that the HPM as developed in (Ariel et al, 2006;  
Ariel 2007a, 2007b) cannot be generalized, i.e., more correction terms cannot be included in the 
solution (El-Mistikawy, 2009). Ariel (2009a), however, extended the classical version of HPM to 
derive the extended HPM which can include an arbitrary number of correction terms, and used it 
to obtain the solution of the problem of axisymmetric flow past a stretching sheet, and also the 
solution past a rotating disk (Ariel, 2009b). 
 
For the two-dimensional stagnation point flow, He (2004) has used his HPM to obtain an 
approximate solution. He also used only a one-term correction. His results can be considered 
satisfactory from an engineering angle, however, if more accurate results are required then it is 
not quite obvious how the method given by him can be generalized to obtain more correction 
terms. In any case, as opposed to the flow past a stretching sheet, to date no attempt has been 
made to derive a solution by HPM of the problem of the stagnation point flow which 
systematically improves the accuracy of the solution. The present paper is an attempt in that 
direction. The equations of motion as given in the textbooks are first transformed to a BVP in a 
finite domain [0, 1] using Crocco’s variables, as indicated by Djukić (1974). The resulting 
equation is reset in the framework of HPM and a power series solution is obtained in terms of p, 
the homotopy parameter. The convergence of the solution is attained by taking recourse to Pade 
approximants. 
 
Formulation of the problem 
 
We consider the steady, laminar flow of a viscous, incompressible fluid impinging normally on a 
plane taken along the XOY plane. The equations of motion are the well known Navier-Stokes 
equations 
 

2 ,P    q q q                                                                                                               (1) 
 

0, q                                                                                                                                  (2) 
 
where ρ and μ are respectively the density and coefficient of viscosity, assumed to be constant, P 
is the pressure at a point, and q is the velocity. 
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The flow far from the plane z = 0 is governed by the potential flow given by 
 

xaxq e for the two-dimensional flow, and 
 

rarq e for the axisymmetric flow,                                                                                         (3) 
 
where a is a constant. 
  
We define the similarity variables 
 

a
z





  and  zqf

a s


 


,                                                                                                  (4) 

 
where qz is the velocity of the fluid normal to the plane z = 0, and s is a parameter that 
characterizes the nature of the flow. It is equal to 1 for two-dimensional flow, and equal to 2 for 
the axisymmetric flow. 
  
In terms of the similarity variables, the equations of motion (1) and (2) reduce to the following 
BVP 

21 0,f sff f                                                                                                                     (5) 
 
(0) 0, '(0) 0, '( ) 1.f f f                                                                                                         (6) 

  
BVP (5)-(6) has been solved numerically and analytically numerous times in the literature. Its 
counterpart, involving interchange of boundary conditions on f  for the flow past a stretching 
sheet, has been solved by Ariel et al (2006) using the HPM. On the other hand, a fully analytical 
solution of the BVP (5) and (6) as it stands, with some minor adjustments, has been derived by 
Liao (2003) using the HAM. As mentioned earlier, He (2004) gave an approximate solution with 
one correction term for the two-dimensional flow (s = 1). But so far in the literature, using the 
HPM, no solution has been proposed that has been generalized to include an arbitrary number of 
correction terms.  
  
Following Djukić (1974), we find it convenient to introduce the Crocco’s variables 
 

2', .f f                                                                                                                              (7) 
 
As a result, BVP (5)-(6) “reduces” to the following form: 
 

22
2

2

1
(1 ) 2(2 ) 0,

2

d d d
s

d d d

              
                                                                             (8) 

 

@ 0, 2,
d

d


   


 and  @ 1, 0.                                                                                          (9) 
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Djukić (1974) solved BVP (8)-(9) by using the integral method due to Pohlhausen (1921) to 
obtain the solution of the two-dimensional stagnation flow of a power law fluid in 
hydromagnetics. On the other hand Ariel (2002) solved a similar BVP numerically to obtain the 
solution of the two-dimensional flow of a power law fluid past a stretching sheet. 
  
There is one more transformation, namely, 
 

1 ,                                                                                                                                   (10) 
 
that is needed to facilitate the work in the sequel. With this transformation, equations (8) and (9) 
take the form 
 

22

2

1
(2 ) 2(2 )(1 ) 0,

2

d d d
s

d d d

   
             

                                                                      (11) 

 

@ 0, 0,     and  @ 1, 2.
d

d


  


                                                                                        (12) 

 
Homotopy Perturbation Formulation 
 
We set up the homotopy perturbation formulation by rewriting equation (11) as 
 

22

2

1
(2 ) 2(2 )(1 ) ,

2

d d d
p s

d d d

    
              

                                                                     (13) 

 
where p is the homotopy parameter. 
  
We seek a perturbation solution for φ in the form of a power series in p as under 
 

2
0 1 2

0

,nn
n

p p p




                                                                                                    (14) 

  
Assuming that the series (14) converges for p = 1, the final solution for   is given by 
 

0

.n
n





                                                                                                                                  (15) 

  
The quantity of the greatest physical significant, namely the skin-friction at the plane, and 
represented by (0)f  is then given by 
 

1
(0) .f


                                                                                                                           (16) 
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The velocity profiles can be computed by 
  

1
1

,d


  
                                                                                                                            (17) 

 
which expresses η in terms of  or .f   A second integration would give f in terms of η.  

 
HPM Solution 
 
Substituting for φ from equation (14) into equations (13) and (12), and equating like powers of p 
on both sides, we obtain the following system of BVPs. 
Zeroth order system: 
 

2
0

0 2
0,

d

d


 


                                                                                                                           (18) 

 

0@ 0, 0,     and  0@ 1, 2.
d

d


  


                                                                                    (19) 

 
Higher order systems: 
 

2 2
1

0 1,2 2
1

1
(2 ) 2(2 )(1 )

2

n
n n m m n m n

m n
m

d d d d d
s

d d d d d
  




     
               

                              (20) 

 

@ 0, 0,n     and  @ 1, 0.nd

d


  


                                                                                    (21) 

The solution of the BVP (18)-(19) is  
 

0 2 .                                                                                                                                    (22) 
  
 
The solution of the BVP (20)-(21) is now straightforward. After dividing equation (20) by φ0, we 
first integrate equation (20) and use the boundary condition at 1  in equation (21) to obtain 

/ .nd d  Next, another integration is carried out and use is made of the boundary condition at 
0  in equation (21) to obtain φn. This step can be repeated up to any desired value of n. Below 

we list the first few φn for both: s = 1 (two-dimensional flow) and s = 2 (axi-symmetric flow). 
  
T w o – d i m e n s i o n a l   f l o w: 

 
21

1 6
(3 6ln ),                                                                                                                   (23)  

 
2 3 4 21

3602 [230 180 5 10 3 90ln 90(ln ) ],                                                                    (24) 
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2 3 4 5 61

151200

3 4 2 3

3 [82817 94500 15575 1050 882 518 110

67200 2100 630 28350( ) 6( )ln ln )n3 l0 ]0(

  

 

           

    
                                 (25) 

2 3 41
190512000

5 6 7 8 2 3

4 5 6 3 4 2

4 [110480745 136930500 33093375 7938000 2075346

51450 217020 85725 14350 (94510710 7938000 661500

1349460 652680 138600 (39028500 66)ln )1500 19845 n )

9

(0 l

  



       

            

           




3 4922500(ln ) 992250(ln ) ] 

           (26) 

   
   
 
A x i s y m m e t r i c   F l o w 
 

21
1 6

(3 6 6ln ),                                                                                                              (27) 

 
2 3 4 21

3602 25[370 450 115 3 270ln 90(ln ) ],                                                              (28) 

 
2 3 4 5 61

151200

3 4 2 3

3

2

[ 77 10

630 ( ) 630

169988 217350 60025 11025 +357

(134400 12600 5250 )ln 47250 ln l ) ]( n0

            

         
                                 (29) 

 
2 3 4

381024000

5 6 7 8 2

3 4 5 2

4

3

1

6

460984515 601303500 157400250 9628500 7491267

2132970 413760 69750 3850 (383528880 66150000

17860500 52920 194040 25200 (144207000 7938000

33075

[

)ln

00 39

      

   

    

     

 

 

       

 

 

 4 2 3 46900 ) 27783000(ln ) 1984500) ( n(ln ]l )     

                  (30) 

 
  
 
  

 
There is no doubt that the expansions for the higher order perturbation terms can be listed, if 
necessary. However, they become increasingly unwieldy, and for the sake of brevity are not 
given here. 
 
In Table 1, the values of φ at 1  are listed for s = 1 (two-dimensional flow) and s = 2 
(axisymmetric flow) for the first thirty orders of the HPM solution. 
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  Table 1. Illustrating the variation of φ at 1  for s = 1 (two-dimensional flow) and s = 2 
       (axisymmetric flow) for various values of n, the order of the HPM solution 
 

n s=1 s=2 n s=1 s=2 
0 2 2 16 1.51928797 1.72116497 
1 1.33333333 1.66666667 17 1.51929295 1.72117138 
2 1.50555556 1.70277778 18 1.51929186 1.72117594 
3 1.52121693 1.71654762 19 1.51928810 1.72117894 
4 1.52428168 1.72113160 20 1.51928370 1.72118072 
5 1.52315311 1.72221721 21 1.51927971 1.72118166 
6 1.52135556 1.72214833 22 1.51927655 1.72118203 
7 1.52001697 1.72181868 23 1.51927429 1.72118206 
8 1.51928242 1.72152230 24 1.51927281 1.72118191 
9 1.51899059 1.72132374 25 1.51927193 1.72118168 
10 1.51894793 1.72121192 26 1.51927150 1.72118142 
11 1.51901297 1.72115924 27 1.51927134 1.72118118 
12 1.51910402 1.72114122 28 1.51927137 1.72118098 
13 1.51918328 1.72114088 29 1.51927148 1.72118081 
14 1.51923897 1.72114795 30 1.51927163 1.72118069 
15 1.51927201 1.72115685       

 
It can be seen from Table 1 that the HPM solution is converging to the desired solution; however 
the convergence is not as rapid as one would like it to be. The convergence can be accelerated 
considerably by invoking the Shank’s transformation (1955). This has been done advantageously 
by Ariel (2009a) to compute accurately the axisymmetric flow past a stretching sheet. There is an 
attractive alternative in seeking the Padé approximants corresponding to the sequence of 
approximations – the latter has the advantage of zeroing in to the correct limit even if the 
sequence happens to be divergent (Ariel, 2010). Encouraged by these developments in the 
present work we have taken recourse to Padé approximants. In Tables 2 and 3, the values of φ at 

1  are listed for two-dimensional flow and axisymmetric flow respectively, this time applying 
the Padé [m, n] rational approximations, where either m = n or m = n-1. 
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Table 2. Illustrating the variation of φ at 1  for the two-dimensional flow for various 
values of [m, n], the order of the Padé rational approximations 

m n φ(1) m n φ(1) 
0 0 2 0 1 1.5 
1 1 1.4701986755 1 2 1.4868990588 
2 2 1.5248466678 2 3 1.5228634480 
3 3 1.5046681613 3 4 1.5183082794 
4 4 1.5189935995 4 5 1.5191364179 
5 5 1.5193342077 5 6 1.5193093097 
6 6 1.5192838556 6 7 1.5192755561 
7 7 1.5192696459 7 8 1.5192702022 
8 8 1.5192723868 8 9 1.5192728152 
9 9 1.5192727302 9 10 1.5192731061 
10 10 1.5192724002 10 11 1.5192723774 
11 11 1.5192723277 11 12 1.5192723242 
12 12 1.5192723236 12 13 1.5192723240 
13 13 1.5192723330 13 14 1.5192723327 
14 14 1.5192723343 14 15 1.5192723320 
15 15 1.5192723320 15 16 1.5192723320 
16 16 1.5192723321 16 17 1.5192723323 
17 17 1.5192723317 17 18 1.5192723317 
18 18 1.5192723317 18 19 1.5192723317 
19 19 1.5192723317 19 20 1.5192723317 
20 20 1.5192723317       
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Table 3. Illustrating the variation of φ at 1  for the axisymmetric flow for various 
values of [m, n], the order of the Padé rational approximations 

 

m n φ(1) m n φ(1) 
0 0 2 0 1 1.714285714 
1 1 1.6992481203 1 2 1.7066025532 
2 2 1.7234029221 2 3 1.7224651436 
3 3 1.7209686239 3 4 1.7210362853 
4 4 1.7211936888 4 5 1.7211927799 
5 5 1.7211943420 5 6 1.7212437722 
6 6 1.7211796692 6 7 1.7211798626 
7 7 1.7211804934 7 8 1.7211805402 
8 8 1.7211805608 8 9 1.7211805554 
9 9 1.7211805104 9 10 1.7211805091 
10 10 1.7211805090 10 11 1.7211805091 
11 11 1.7211805134 11 12 1.7211805128 
12 12 1.7211805126 12 13 1.7211805127 
13 13 1.7211805127 13 14 1.7211805127 
14 14 1.7211805129 14 15 1.7211805125 
15 15 1.7211805126 15 16 1.7211805126 
16 16 1.7211805126 16 17 1.7211805126 
17 17 1.7211805126 17 18 1.7211805126 
18 18 1.7211805126 18 19 1.7211805126 
19 19 1.7211805126 19 20 1.7211805126 
20 20 1.7211805126     

 
It is evident from Tables 2 and 3 that a [15, 15] Padé rational approximant accelerates the 
convergence of the solution sufficiently to ensure the accuracy of ten-digits. The values 
of (0)f  can be readily obtained by taking the square root of φ at 1.   We have 
   

(0)   1.2325876568f   for the two-dimensional flow, 
   

(0)   1.3119376939f   for the axisymmetric flow.  
 
The Padé approximation is also in full agreement with the numerical solution obtained by Ariel 
(1993) for the two-dimensional flow using the FBVP formulation, where the value of (0)f  has 
been computed to sixteen-digit accuracy. For the axisymmetric flow, it may be added that, we 
believe that the value of (0)f  calculated here is the most accurate reported in the literature. 
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Conclusion 
 
In the present work we computed the steady, laminar, flow of an incompressible, viscous fluid 
near a stagnation point using the HPM. Both the cases (i) the two-dimensional flow, and (ii) 
axisymmetric flow have been considered. For an efficient implementation of the HPM, the usual 
BVPs characterizing the flows are first transformed to appropriate BVPs in a finite domain [0, 1] 
using the Crocco variables. Even though the resulting BVP is such that the zeroth order solution 
is nonlinear, no difficulty was encountered in developing an HPM solution. The resulting 
solution in the form of a power series in p turns out to be converging rather slowly at 

1.p  However an application of Padé approximation considerably accelerates the convergence 
and leads to a solution which is accurate to ten-digit accuracy using only [15, 15] Padé 
approximant. 
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