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Abstract 

In this article Homotopy Perturbation Method (HPM) is applied to obtain an approximate 

analytical solution of a fractional diffusion equation with an external force and a reaction term 

different from the reaction term used by Das and Gupta (2010). The anomalous behavior of 

diffusivity in presence or absence of linear external force due to the presence of this force of 

reaction term are obtained and presented graphically. 
 

 

Keywords: Fractional diffusion equation; External force; Reaction term; Absorbent term; 
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1. Introduction 

We focus our attention to find the solution of the equation 
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where, D  is a diffusion coefficient, )(xF  is an external force, )(t  is a time-dependent 

absorbent term which may be related to a reaction diffusion process. Here the reaction term 

d
x

xu
t

t
),(
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0

  is different from that used by Schot et al. (2007) and Das and Gupta 

(2010). Here we have used the fractional Riemann-Liouville fractional integral operator of order 

10 , 0t . 

 

Also, the Caputo fractional derivative, applied to the time variable is defined by 
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In this article the Homotopy Perturbation Method He (1999, 2000) is used to solve the fractional 

diffusion equation problem in the presence of both linear external force and an absorbent term. 

Using the initial condition, the approximate analytical expressions of ),( txu for different 

Brownian motions are obtained. The objective of the study is to show the effect of reaction term 

on the fractional diffusion equation with or without the presence of the linear external force. 

 

2. Solution of the problem 

Our aim is to solve the analytical fractional diffusion equation (1) for 1D and .)( xkxF  
The equation (1) now becomes  
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with initial condition  
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Equation (2) can be written in operator form as 
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where, .
t

Dt   

According to the homotopy perturbation method, we construct the following homotopy 
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(5) 

where the homotopy parameter p  is considered as a small parameter ( ]1,0[p ). In case 0p , 

equation (5) becomes a linear equation, 0uDt , which is easy to solve Belendez et al. (2008), 

Darvishi and Khani (2008), Mausa and Ragab (2008). Now applying the classical perturbation 

technique, we can assume that the solution of equation (2) can be expressed as a power series in 

p as given below: 
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(6) 

When 1p , equation (5) corresponds to equation (4) and (6) becomes the approximate solution 

of (4) i.e., of equation (2). The convergence of the method has been proved in He (2000). 

Substituting equation (6) for equation (5), and equating the terms with the identical powers of p, 

we can obtain a series of equations: 
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(10) 

and so on. 

 

Applying the operator tJ (the inverse of Caputo operator tD ) on both sides of the equations (7) 

– (10), we obtain the solutions of 0i,t)(x,iu for 
)(

)(
1t

t  , 0 . 10  (Schot et al. 

(2007)) as 
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Proceeding in this manner the rest of the components of 0,nun
 can be completely obtained, 

and the series solutions are thus entirely determined. 

 

Finally, we approximate the analytical solution of ),( txu by the truncated series  
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The above series solutions generally converge very rapidly. A classical approach of convergence 

of this type of series is already presented by Abbaoui and Cherruault (1995). 
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3. Particular Cases 

 
Case I. If 1,0,)( kxxf i.e., in the presence of only external force, the expression of 

the displacement becomes 
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where 
0 )1(

)(
r

r

r

t
tE  , ( 0 ) is the Mittag-Leffler function in one parameter. This result 

is same as the results given in Das and Gupta (2010), Saha Ray and Bera (2006) and Das (2009). 

 

 

Case II.  If 1,1,)( kxxf  i.e., in the presence of both the linear external force and 

absorbent term, 
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where, )12( rrK . 

 

Case III.  If 0,1,)( kxxf  i.e., in the presence of the absorbent term, 
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4. Numerical Results and Discussion 
  

In this article, the displacement ),( txu  for different fractional Brownian motions 
3
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and also for the standard case, the numerical values motion 1 are calculated Case II and Case 

III, for various values of time t  at 1x . The results thus obtained are depicted through Figure 1 

for Case II and Figure 2 for Case III. 

 

It is observed from Figure 1 that the displacement increases with time in the presence of both the 

external force and the reaction term but converges rapidly with the increase of .
 For Brownian 

motion the rate of convergence is more and hence the effective damping is better than in standard 

motion. The rate of convergence is very high in comparison to the treatment carried out by Das 

and Gupta (2010). 

 

Figure 2 shows the convergence of displacement ),( txu  in the presence of only the reaction 

term. It is obvious that the displacement converges to zero unlike the earlier case studies carried 

out by Das and Gupta (2010). It is seen that for the response to converge to zero, more time is 

required with the increase of . Therefore the effective damping is less as it goes to the 

Brownian motions from the standard motion. 

 

 

5. Conclusion 

 
There are three important goals that we have achieved through this study. First one is the usage 

of extremely simple, concise and highly efficient mathematical tool like HPM to solve the 

general fractional diffusion equation. Secondly, the effect of reaction term on the fractional 

diffusion equation with or without the presence of drift term (external force) has been analysed. 

 

The most important part of this study is to compare the effect of reaction term on the fractional 

diffusion equation for different Brownian motions with the existing result of Das and Gupta 

(2010) while using different reaction term and the same absorbent term. Hence it is seen that the 

choice of this reaction term helps to exercise better damping on the dynamic response of the 

system. The results of the study have been clearly exhibited through graphs. 

  

Plots reveal the rapid convergence of displacement ),( txu  with increase in  in the presence of 

both the external force and the reaction term. So, it can be concluded that dynamic performance 

and relative stability characteristics of a forced system are better under the influence of the new 

absorbent term. On the other hand dynamic performance and relative stability characteristics of 

an unforced system are better for Brownian motion than for standard motion. So we can infer 

that  should be chosen carefully keeping in consideration the performance requirements. 

 

The authors strongly believe that the detailed study of the stability analysis will be beneficial and 

appealing to the scientists and engineers working in this field of research and they would be 

motivated to choose the proposed reaction term during their study. 
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Figure 1.    (i)  Plot of ),( txu  vs. t  at 1x  for ,
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(iii) Plot of ),( txu  vs. t  at 1x  for ,
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(iv) Plot of ),( txu vs. t  at 1x  for 1,1,1 k . 
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Figure 2.    (i) Plot of ),( txu vs. t  at 1x  for ,
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(ii) Plot of ),( txu vs. t  at 1x  for ,
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(iii) Plot of ),( txu  vs. t  at 1x  for ,
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(iv) Plot of ),( txu vs. t  at 1x  for 1,0,1 k  
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